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Abstract. Bias in image restoration algorithms can hamper further
analysis, typically when the intensities have a physical meaning of inter-
est, e.g., in medical imaging. We propose to suppress a part of the bias
– the method bias – while leaving unchanged the other unavoidable part
– the model bias. Our debiasing technique can be used for any locally
affine estimator including ℓ1 regularization, anisotropic total-variation
and some nonlocal filters.

1 Introduction

Restoration of an image of interest from its single noisy degraded observation
necessarily requires imposing some regularity or prior on the solution. Being
often only crude approximations of the true underlying signal of interest, such
techniques always introduce a bias towards the prior. However, in general, this is
not the only source of bias. In many cases, even though the model was perfectly
accurate, the method would remain biased. This part of the bias often emerges
from technical reasons, e.g., when approaching an NP-hard problem by an easier
one (typically, using the ℓ1 convex relaxation of an ℓ0 pseudo-norm).

It is well known that reducing bias is not always favorable in terms of mean
square error because of the so-called bias-variance trade-off. It is important to
highlight that a debiasing procedure is expected to re-inject part of the variance,
therefore increasing the residual noise. Hence, the mean square error is not always
expected to be improved by such techniques. Debiasing is nevertheless essential
in applications where the image intensities have a physical sense and critical
decisions are taken from their values. For instance, the authors of [7] suggest
using image restoration techniques to estimate a temperature map within a
tumor tissue for real time automatic surgical intervention. In such applications,
it is so crucial that the estimated temperature is not biased. A remaining residual
noise is indeed favorable compared to an uncontrolled bias.

We introduce a debiasing technique that suppresses the extra bias – the
method bias – emerging from the choice of the method and leave unchanged the
bias that is due to the unavoidable choice of the model – the model bias. To
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that end, we rely on the notion of model subspace essential to carefully define
different notions of bias. This leads to a mathematical definition of debiasing for
any locally affine estimators that respect some mild assumptions.

Interestingly, our debiasing definition for the ℓ1 synthesis (also known as
LASSO [20] or Basis Pursuit [5]) recovers a well known debiasing scheme called
refitting that goes back to the “Hybrid LASSO” [9] (see [15] for more details).

For the ℓ1 analysis [10], including the ℓ1 synthesis but also the anisotropic
total-variation [18], we show that debiasing can be performed with the same
complexity as the primal-dual algorithm of [4] producing the biased estimate.

In other cases, e.g., for an affine version of the popular nonlocal-means [2],
we introduce an iterative scheme that requires only a few run of an algorithm of
the same complexity as the original one producing the biased estimate.

2 Background

We consider observing f = f0 + w ∈ R
P a corrupted linear observation of

an unknown signal u0 ∈ R
N such that f0 = Φu0 where Φ ∈ R

N×P is a linear
operator and w is a random vector modeling the noise fluctuations. We assume
that E[w] = 0 where E is the expectation operator. The linear operator Φ is a
degrading operator typically with P 6 N and with a non-empty kernel encoding
some information loss such that the problem becomes ill-posed.

We focus on estimating the unknown signal u0. Due to the ill-posedness of the
observation model, we consider variational approaches that attempt to recover
u0 from the single observation f as a solution of the optimization problem

u⋆
f ∈ argmin

u∈RN

E(u, f) . (1)

where E : RN×R
P → R is assumed to have at least one minimum. The objective

E is typically chosen to promote some structure, e.g., smoothness, piece-wise
constantness, sparsity, etc., that is captured by the so-calledmodel subspace M∗

f .

Providing u⋆
f is uniquely defined and differentiable at f , we define M⋆

f ⊆ R
N as

the tangent affine subspace at f of the mapping f 7→ u⋆
f , i.e.,

M⋆
f = u⋆

f+Im[J⋆
f ] =

{
u∈R

N ; ∃z∈R
P , u = u⋆

f + J⋆
f z

}
with J⋆

f =
∂u⋆

f

∂f

∣
∣
∣
∣
f

(2)

where J⋆
f is the Jacobian operator at f of the mapping f 7→u⋆

f (see [23] for an
alternative but related definition of model subspace). When u⋆

f ∈ Im[J⋆
f ], the

model subspace restricts to the linear vector subspace M⋆
f =Im[J⋆

f ]. In the rest
of the paper, u⋆

f is assumed to be differentiable at f0 and for almost all f .

Example 1 The least square estimator constrained to the affine subspace C =
b+ Im[A], b ∈ R

N and A ∈ R
N×Q, is a particular instance of (1) where

E(u, f) = ||Φu − f ||2 + ιC(u) (3)

and for any set C, ιC is its indicator function: ιC(u) = 0 if u ∈ C, +∞ otherwise.
The solution of minimum Euclidean norm is unique and given by

u⋆
f = b+A(ΦA)+(f − Φb) (4)



On debiasing restoration algorithms 3

where for a matrix M , M+ is its Moore-Penrose pseudo-inverse. The affine
constrained least square restricts the solution u⋆

f to the affine model subspace

M⋆
f = b + Im[A(ΦA)t] (as Im[M+]= Im[M t]). Taking C=R

N with for instance

Q=N , A = Id and b = 0, leads to an unconstrained solution u⋆
f =Φ+f whose

model subspace is M⋆
f =Im[Φt] reducing to R

N when Φ has full column rank.

Example 2 The Tikhonov regularization (or Ridge regression) [21,14] is an-
other instance of (1) where, for some parameter λ > 0 and matrix Γ ∈ R

L×N ,

E(u, f) =
1

2
||Φu − f ||2 +

λ

2
||Γu||2 . (5)

Provided KerΦ∩KerΓ ={0}, u⋆
f is uniquely defined as u⋆

f = (ΦtΦ+λΓ tΓ )−1Φtf

which has a linear model subspace given by M⋆
f = Im[Φt].

Example 3 The hard thresholding [8], used when Φ = Id and f0 is supposed to
be sparse, is a solution of (1) where, for some parameter λ > 0,

E(u, f) =
1

2
||u− f ||2 +

λ2

2
||u||0 , (6)

where ||u||0 = # {i ∈ [P ] ; ui 6= 0} counts the number of non-zero entries of u
and [P ] = {1, . . . , P}. The hard thresholding operation writes

(u⋆
f )If

= fIf
and (u⋆

f )Ic
f
= 0 (7)

where If ={i∈ [P ] ; |fi|>λ} is the support of u⋆
f , I

c
f is the complement of If on

[P ], and for any vector v, vIf
is the sub-vector whose elements are indexed by If .

As u⋆
f is piece-wise differentiable, its model subspace is only defined for almost

all f as M⋆
f = {u∈R

N ; uIc
f
=0}=Im[IdIf

], where for any matrix M , MIf
is

the sub-matrix whose columns are indexed by If . Note that IdIf
∈R

N×#If .

Example 4 The soft thresholding [8], used when Φ = Id and f0 is supposed to
be sparse, is another particular solution of (1) where

E(u, f) =
1

2
||u− f ||2 + λ||u||1 , (8)

with ||u||1 =
∑

i |ui| the ℓ1 norm of u. The soft thresholding operation writes

(u⋆
f)If

= fIf
− λ sign(fIf

) and (u⋆
f )Ic

f
= 0 , (9)

where If is defined as above, and, as for the hard thresholding: M⋆
f = Im[IdIf

].

3 Bias of reconstruction algorithms

Due to the ill-posedness of our observation model and without any assump-
tions on u0, one cannot ensure the noise variance to be reduced while keeping the
solution u⋆

f unbiased. Recall that the statistical bias is defined as the difference

Statistical bias = E[u⋆
f ]− u0 . (10)
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An estimator is said unbiased when its statistical bias vanishes. Unfortunately
the statistical bias is difficult to manipulate when f 7→ u⋆

f is non linear. We
therefore restrict to a definition of bias at f0 = Φu0 as the error u⋆

f0
− u0. Note

that when f 7→ u⋆
f is affine, both definitions match (the expectation being linear).

Most methods are biased since, without assumptions, u0 cannot be guaranteed
to be in complete accordance with the model subspace, i.e., u0 /∈ M⋆

f0
. It is

then important to distinguish techniques that are only biased due to a problem
of modeling to the ones that are biased due to the method. We then define the
model bias and the method bias as the quantities

u⋆
f0

− u0 = u⋆
f0

−ΠM⋆
f0
(u0)

︸ ︷︷ ︸

Method bias

−Π(M⋆
f0

)⊥(u0)
︸ ︷︷ ︸

Model bias

, (11)

where for any set S, ΠS denotes the orthogonal projection on S and S⊥ denotes
its orthogonal set. We now define a methodically unbiased estimator as follows.

Definition 1 An estimator u⋆
f is methodically unbiased if

∀u0 ∈ R
N , u⋆

f0
= ΠM⋆

f0
(u0)

We also define the weaker concept of weakly unbiased estimator as follows.

Definition 2 An estimator u⋆
f is weakly unbiased if

∀u0 ∈ M⋆
f0
, u⋆

f0
= u0.

The quantity u⋆
f0

− u0 for u0 ∈ M⋆
f0

is called the weak bias of u⋆
f at u0.

Remark that a methodically unbiased estimator is also weakly unbiased.

Examples. The unconstrained least-square estimator is methodically unbiased
since u⋆

f0
= Φ+f0 = Φ+Φu0 = ΠIm[Φt](u0) = ΠM⋆

f0
(u0). Moreover, being linear,

it becomes statistically unbiased whenever Φ has full column rank since Φ+Φ=
Id. However the constrained least-square estimator is only weakly unbiased: its
methodical bias only vanishes when u0 ∈M⋆

f0
, i.e., when there exists t0 ∈ R

Q

such that u0=b+A(ΦA)tt0. The hard thresholding is also methodically unbiased
remarking that u⋆

f0
is the orthogonal projection on M⋆

f0
=Im[IdIf0

]. Unlike the
unconstrained least-square estimator, Tikhonov regularization has a non zero
weak bias. The soft thresholding is also known to be biased [11] and its weak
bias is given by −λIdIf0

sign(f0)If0
. Often, estimators are said to be unbiased

when they are actually only weakly unbiased.

4 Definitions of debiasing

Given an estimate u⋆
f of u0, we define a debiasing of u⋆

f as follows.

Definition 3 An estimator ũ⋆
f of u0 is a weak debiasing of u⋆

f if it is weakly

unbiased and M̃⋆
f = M⋆

f for almost all f , with M̃⋆
f the model subspace of ũ⋆

f at
f . Moreover, it is a methodical debiasing if it is also methodically unbiased.
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Examples. The unconstrained least square estimator is a methodical debiasing of
the Tikhonov regularization, since it is a methodically unbiased estimator of u0

and they share the same model subspace. The hard thresholding is a methodical
debiasing of the soft thresholding, for the same reasons.

A good candidate for debiasing u⋆
f is the constraint least squares on M⋆

f :

ũ⋆
f = u⋆

f + U⋆
f (ΦU

⋆
f )

+(f − Φu⋆
f) ∈ argmin

u∈M⋆
f

||Φu − f ||2 (12)

where U⋆
f ∈R

N×n with n=rank[J⋆
f ] is a matrix whose columns form a basis of

Im[J⋆
f ]. Let V

⋆
f ∈R

n×P be a matrix such that J⋆
f = U⋆

f V
⋆
f . The following theorem

shows that under mild assumptions this choice corresponds to a debiasing of u⋆
f .

Theorem 1 Assume that f 7→ u⋆
f is locally affine for almost all f and that Φ

is invertible on M⋆
f . Then ũ⋆

f defined in Eq. (12) is a weak debiasing of u⋆
f .

Proof. Since f 7→ u⋆
f is locally affine, f 7→ U⋆

f can be chosen locally constant.

Deriving (12) for almost all f leads to the Jacobian J̃⋆
f of ũ⋆

f given by

J̃⋆
f =

∂ũ⋆
f

∂f
=

∂u⋆
f

∂f
+ U⋆

f (ΦU
⋆
f )

+

(
∂f

∂f
− Φ

∂u⋆
f

∂f

)

= J⋆
f + U⋆

f (ΦU
⋆
f )

+(Id− ΦJ⋆
f )

= U⋆
f V

⋆
f + U⋆

f (ΦU
⋆
f )

+(Id− ΦU⋆
f V

⋆
f ) = U⋆

f (ΦU
⋆
f )

+ , (13)

since ΦU⋆
f has full column rank due to the assumption that Φ is invertible on

M⋆
f . It follows that

M̃⋆
f = ũ⋆

f + Im[J̃⋆
f ] = u⋆

f + U⋆
f (ΦU

⋆
f )

+(f − Φu⋆
f ) + Im[U⋆

f (ΦU
⋆
f )

+] (14)

= u⋆
f + Im[U⋆

f (ΦU
⋆
f )

+] = u⋆
f + Im[U⋆

f ] = M⋆
f , (15)

since ΦU⋆
f has full column rank. Moreover, for any u0∈M⋆

f0
, the equation Φu=f0

has a unique solution u=u0 in M⋆
f0

since Φ is invertible on M⋆
f0
. Hence, ũ⋆

f0
=u0

is the unique solution of (12), which concludes the proof. �

The next proposition shows that the condition “Φ invertible on M⋆
f” can be

dropped when looking at u⋆
f and ũ⋆

f through Φ. The debiasing becomes further-
more methodical.

Proposition 1 Assume f 7→ u⋆
f is locally affine for almost all f . Taking ũ⋆

f

defined in Eq. (12), then the predictor Φũ⋆
f of f0=Φu0 is equal to ΠΦM⋆

f
(f) and

is a methodical debiasing of Φu⋆
f .

Proof. Since ΦU⋆
f (ΦU

⋆
f )

+ =ΠIm[ΦU⋆
f
], we have Φũ⋆

f =ΠΦM⋆
f
(f). As the orthog-

onal projector on its own model space, it is methodically unbiased. Moreover
Im[ΠIm[ΦU⋆

f
]]=Im[ΦU⋆

f ], hence Φũ⋆
f and Φu⋆

f share the same model subspace. �

Remark 1 As an immediate consequence, the debiasing of any locally affine
denoising algorithm is a methodical debiasing, since Φũ⋆

f = ũ⋆
f .
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We focus in the next sections on the debiasing of estimators without explicit
expression for M⋆

f , meaning that Eq. (12) cannot be used directly. We first
introduce an algorithm for the case of ℓ1 analysis relying on the computation of
the directional derivative J⋆

f f . We propose next a general approach, applied to
an affine nonlocal estimator, that requires J⋆

f δ for randomized directions δ.

5 Debiasing the ℓ1 analysis minimization

From now on, the dependency of all quantities with respect to the observation
f will be dropped for the sake of simplicity. Given a linear operator Γ ∈R

L×N ,
the ℓ1 analysis minimization reads, for λ > 0, as

E(u, f) =
1

2
||Φu − f ||2 + λ||Γu||1 . (16)

Provided KerΦ∩KerΓ={0}, there exists a solution given implicitly, see [22], as

u⋆ = U(ΦU)+f − λU(U tΦtΦU)−1U t(Γ t)IsI (17)

for almost all f and where I = {i ; (Γu⋆)i 6= 0}⊆ [L] = {1, . . . , L} is called the
co-support of the solution, s = sign(Γu⋆), U = U⋆

f is a matrix whose columns

form a basis of Ker[IdtIcΓ ] and ΦU has full column rank. Note that sI and U are
locally constant almost everywhere since the co-support is stable with respect
to small perturbations [22]. It then follows that the model subspace is implicitly
defined as M⋆=Im[U ]=Ker[IdtIcΓ ], and so, the ℓ1 analysis minimization suffers
from a weak bias equal to −λU(U tΦtΦU)−1U t(Γ t)IsI . Given that u⋆ ∈ Im[U ]
and it is locally affine, its weak debiased solution is defined for almost all f as

ũ⋆ = U(ΦU)+f . (18)

The ℓ1 synthesis [20,8] consists in taking Γ =Id, hence U=IdI , so (17) becomes

u⋆
I = (ΦI)

+f − λ((ΦI)
tΦI)

−1sI and u⋆
(I)c = 0 . (19)

Its model subspace is implicitly defined as M⋆ = Im[IdI ], its weak bias is
−λIdI((ΦI)

tΦI)
−1sI and its weak debiasing is ũ⋆ = IdI(ΦI)

+f . Subsequently,
taking Φ = Id leads to the soft-thresholding presented earlier.

The anisotropic Total-Variation (TV) [18] is a particular instance of (16) where
u0 ∈ R

N can be identified to a d-dimensional discrete signal, for which Γ ∈R
L×N ,

with L = dN , is the concatenation of the discrete gradient operators in each
canonical directions. In this case I is the set of indexes where the solution has
discontinuities (non-null gradients) and M⋆ is the space of piece-wise constant
signals sharing the same discontinuities as the solution. Its weak bias reveals a
loss of contrast: a shift of intensity on each piece depending on its surrounding
and the ratio between its perimeter and its area, as shown, e.g., in [19]. Note
that the so-called staircasing effect of TV regularization is encoded in our frame-
work as a model bias, and is therefore not reduced by our debiasing technique.
Strategies devoted to the reduction of this effect have been studied in, e.g., [16].
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Since in general u⋆ has no explicit solutions, it is usually estimated thanks
to an iterative algorithm that can be expressed as a sequence uk converging to
u⋆. The question we address is how to compute ũ⋆ in practice, i.e., to evaluate
Eq. (18), or more precisely, how to jointly build a sequence ũk converging to ũ⋆.

We propose a technique that relies on the observation that, given (17), for
almost all f , the Jacobian J⋆ of u⋆ at f applied to f , leads to Eq. (18), i.e.,

J⋆[f ] = U(ΦU)+f = ũ⋆ (20)

since U and sI are locally constant [22]. We so define a sequence ũk which is, up
to a slight modification, the closed-form derivation of the primal-dual sequence
uk of [4]. Most importantly, we provide a proof of its convergence towards ũ⋆.

Note that other debiasing techniques could be employed for the ℓ1 analysis,
e.g., using iterative hard-thresholding [13,1], refitting techniques [9,15], post-
refinement techniques based an Bregman divergences and nonlinear inverse scale
spaces [17,3,24] or with ideal spectral filtering in the analysis sense [12].

5.1 Primal-dual algorithm

Before stating our main result, let us recall some of the properties of primal-
dual techniques. Dualizing the ℓ1 analysis norm u 7→ λ||Γu||1, the primal problem
can be reformulated as the following saddle-point problem

z⋆ = argmax
z∈RL

min
u∈RN

1

2
‖Φu− f‖2 + 〈Γu, z〉 − ιBλ

(z) (21)

where z⋆ ∈ R
L is the dual variable, and Bλ = {z ; ||z||∞ 6 λ} is the ℓ∞ ball.

First order primal-dual optimization. Taking στ < 1
‖Γ‖2

2

, θ ∈ [0, 1] and initializ-

ing (for instance,) u0 = v0 = 0 ∈ R
N , z0 = 0 ∈ R

L, the primal-dual algorithm
of [4] applied to problem (21) reads







zk+1 = ΠBλ
(zk + σΓvk),

uk+1 = (Id + τΦtΦ)−1
(
uk + τ(Φtf − Γ t(zk+1))

)
,

vk+1 = uk+1 + θ(uk+1 − uk),
(22)

where the projection of z over Bλ is done component-wise as

ΠBλ
(z)i =

{
zi if |zi| 6 λ,
λ sign(zi) otherwise.

(23)

The primal-dual sequence uk converges to a solution u⋆ of (16) [4]. We assumed
here that u⋆ verifies (17) with ΦU full-column rank. This could be enforced as
shown in [22], but it did not seem to be necessary in our experiments.

5.2 Debiasing algorithm

As pointed out earlier, the debiasing of u⋆ consists in applying the Jacobian
matrix J⋆ at f to f itself. This idea leads to the proposed debiasing algorithm
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that constructs a sequence of debiased iterates from the original biased primal-
dual sequence with initialization ũ0 = ṽ0 = 0 ∈ R

N , z̃0 = 0 ∈ R
L as follows







z̃k+1 = Πzk+σΓvk(z̃k + σΓ ṽk),
ũk+1 = (Id + τΦtΦ)−1

(
ũk + τ(Φtf − Γ tz̃k+1)

)
,

ṽk+1 = ũk+1 + θ(ũk+1 − ũk),
(24)

where Πzk+σΓvk (z̃i) =

{
z̃i if |zk + σΓvk|i 6 λ+ β,
0 otherwise.

with β > 0. Note that when β = 0, deriving zk, uk and vk for almost all f at
f in the direction f using the chain rule leads to the sequences z̃k, ũk and ṽk

respectively (see also [6]). However, as shown in Theorem 2, it is important to
choose β > 0 to guarantee the convergence of the sequence1.

Theorem 2 Let α > 0 be the minimum non zero value2 of |Γu⋆|i for all i ∈ [L].
Choose β such that ασ > β > 0. The sequence ũk defined in (24) converges to
the debiasing ũ⋆ of u⋆.

Before turning to the proof of this theorem, let us introduce a first lemma.

Lemma 1 The debiasing ũ⋆ of u⋆ is the solution of the saddle-point problem

min
ũ∈RN

max
z̃∈RL

‖Φũ− f‖2 + 〈Γ ũ, z̃〉 − ιFI
(z̃), (25)

where ιFI
is the indicator function of the convex set FI=

{
p ∈ R

L ; pI=0
}
.

Proof. As ΦU has full column rank, the debiased solution is the unique solution
of the constrained least square estimation problem

ũ⋆ = U(ΦU)+f = argmin
ũ∈U⋆

‖Φũ− f‖2 . (26)

Remark that ũ ∈ U⋆ = Ker[IdtIcΓ ] ⇔ (Γ ũ)Ic = 0 ⇔ ιFIc
(Γ ũ) = 0, where

FIc =
{
p ∈ R

L ; pIc =0
}
.

Using Fenchel transform, ιFIc
(Γ ũ) = maxz̃ 〈Γ ũ, z̃〉 − ι∗FIc

(z̃), where ι∗FIc
is

the convex conjugate of ιFIc
. Observing that ιFI

= ι∗FIc
concludes the proof. �

Given Lemma 1, replacing Πzk+σΓvk in (24) by the projection onto FI , i.e.,

ΠFI
(z̃)Ic = z̃Ic and ΠFI

(z̃)I = 0 , (27)

leads to the primal-dual algorithm of [4] applied to problem (25) which converges
to the debiased estimator ũ⋆. It remains to prove that the projection Πzk+σΓvk

defined in (24) converges to ΠFI
in finite time.

Proof (Theorem 2). First consider i ∈ I, i.e., |Γu⋆|i > 0. By assumption on α,
|Γu⋆|i ≥α > 0. Necessary z⋆i = λ sign(Γu⋆)i in order to maximize (21). Hence,
|z⋆ + σΓu⋆|i≥λ+ σα. Using the triangle inequality shows that

λ+ σα 6 |z⋆ + σΓu⋆|i 6 |z⋆ − zk|i + σ|Γu⋆ − Γvk|i + |zk + σΓvk|i . (28)

1 In practice, β can be chosen as the smallest positive floating number.
2 If |Γu⋆|i = 0 for all i ∈ [L], the result remains true for any α > 0.
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Choose ε > 0 sufficiently small such that σα − ε(1 + σ)> β. From the conver-
gence of the primal-dual algorithm of [4], the sequence (zk, uk, vk) converges to
(z⋆, u⋆, u⋆). Therefore, for k large enough, |z⋆ − zk|i<ε, |Γu⋆ − Γvk|i<ε, and

|zk + σΓvk|i > λ+ σα− ε(1 + σ) > λ+ β . (29)

Next consider i∈Ic, i.e., |Γu⋆|i=0, where by definition |z⋆|i6λ. Using again
the triangle inequality shows that

|zk + σΓvk|i 6 |zk − z⋆|i + σ|Γvk − Γu⋆|i + |z⋆|i . (30)

Choose ε > 0 sufficiently small such that ε(1 + σ) < β. As (zk, uk, vk) →
(z⋆, u⋆, u⋆), for k large enough, |zk − z⋆|i<ε, |Γvk − Γu⋆|i<ε, and

|zk + σΓvk|i<λ+ ε(1 + σ) 6 λ+ β . (31)

It follows that for k sufficiently large |zk+σΓvk|i6λ+β if and only if i∈Ic, and
hence Πzk+σKvk(z̃)=ΠFI

(z̃). As a result, all subsequent iterations of (24) will
solve (25), and hence from Lemma 1 this concludes the proof of the theorem. �

6 Debiasing other affine estimators

In most cases, U⋆ cannot be computed in reasonable memory load and/or
time, such that Eq. (12) cannot be used directly. However, the directional deriva-
tive, i.e., the application of J⋆ to a direction δ, can in general be obtained with
an algorithm of the same complexity as the one providing u⋆. If one can compute
the directional derivatives for any direction, a general iterative algorithm for the
computation of ũ⋆ can be derived as given in Algorithm 1.

The proposed technique relies on the fact that given n=dim(M⋆) uniformly
random directions δ1, . . . , δn on the unit sphere of RP , J⋆δ1, . . . , J

⋆δn forms a
basis of Im[J⋆] almost surely. Given this basis, the debiased solution can so be
retrieved from (12). Unfortunately, computing the image of the usually large
number n of random directions can be computationally prohibitive.

The idea is to approach the debiased solution by retrieving only a low dimen-
sional subspace ofM⋆ leading to a small approximation error. Our greedy heuris-
tic is to chose random perturbations around the current residual (the strength of
the perturbation being controlled by a parameter ε). As soon as ε > 0, the algo-
rithm converges in n iterations as explained above. But, by focusing in directions
guided by the current residual, the algorithm refines in priority the directions
for which the current debiasing gets significantly away from the data f , i.e., di-
rections that encodes potential remaining bias. Hence, the debiasing can be very
effective even though a small number of such directions has been explored. We
notice in our experiments that with a small value of ε, this strategy leads indeed
to a satisfying debiasing, close to convergence, reached in a few iterations.

The nonlocal-means example. The block-wise nonlocal-means proposed in [2]
can be rewritten as an instance of the minimization problem (1) with

E(u, f) =
1

2

∑

i,j

wi,j ||Piu− Pjf ||
2 with wi,j = ϕ

(
||Pif − Pjf ||

2

2σ2

)

(32)
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Algorithm 1 General debiasing pseudo-algorithm for the computation of ũ⋆.

Inputs: f ∈ R
P , u⋆ ∈ R

N , δ ∈ R
P → J⋆δ ∈ R

N , ε > 0.
Outputs: ũ⋆ ∈ R

N and U ∈ R
N×n

′

with n′
6 n an orthonormal family of Im[J⋆]

Initialize U ← [ ]
repeat until ũ⋆ reaches convergence

Generate δ ← η/||η||, η ∼ NP (0, Id) (perturbation ensuring convergence)
Compute u′ ← J⋆(f − Φũ⋆ + εδ) (perturbed image of the current residual)
Compute e← u′ − U(U tu′) (projection on the orthogonal of the currentM⋆)
Update U ← [U e/||e||]
Update ũ⋆ ← u⋆ + U((ΦU)+(f − Φu⋆))

until

where i ∈ [n1]× [n2] spans the whole image domain, j− i ∈ [−s, s]× [−s, s] spans
a limited search window domain and σ2 is the noise variance. We denote by Pi

the linear operator extracting the patch at pixel i of size (2p + 1) × (2p + 1).
Note that we assume periodical conditions such that all quantities remain inside
the image domain. The kernel ϕ : R+ → [0, 1] is a decreasing function which is
typically a decay exponential function. Taking ϕ piece-wise constant3, leads to
computing u⋆ and its Jacobian at f applied to δ for almost all f as follow

u⋆
i =

∑

j w̄i,jfj
∑

j w̄i,j

and (J⋆δ)i =

∑
w̄i,jδj

∑

j w̄i,j

with w̄i,j =
∑

k

wi−k,j−k (33)

where k ∈ [−p, p] × [−p, p] spans the patch domain. Note that the values of w
and w̄ can be obtained by discrete convolutions leading to an algorithm with
complexity in O(Ns2), independent of the half patch size p.

With such a choice of ϕ, the block-wise nonlocal filter becomes a piece-wise
affine mapping of f and hence Algorithm 1 applies.

7 Numerical experiments and results

Figure 1 gives an illustration of TV used for denoising a 1D piece-wise con-
stant signal in [0, 192] and damaged by additive white Gaussian noise (AWGN)
with a standard deviation σ=10. Even though TV has perfectly retrieved the
support of ∇u0 with one more extra jump, the intensities of some regions are
biased. Our debiasing is as expected unbiased for every region.

Figure 2 gives an illustration of our debiasing of 2D anisotropic TV used for
the restoration of an 8bits approximately piece-wise constant image damaged by
AWGN with σ=20. The observation operator Φ is a Gaussian convolution kernel
of bandwidth 2px. TV introduced a significant loss of contrast, typically for the
thin contours of the drawing, which are re-enhanced by our debiased result.

Figure 3 gives an illustration of our iterative debiasing for the block-wise
nonlocal-means algorithm used in a denoising problem for an 8bits image enjoy-
ing many repetitive patterns and damaged by AWGN with σ = 20. Convergence
has been considered as reached after 4 iterations only. Our debiasing provides
favorable results with many enhanced details compared to the biased result.

3 For instance, by quantification on a subset of predefined values in [0, 1].



On debiasing restoration algorithms 11

0 20 40 60 80 100 120 140 160 180 200
−50

0

50

100

150

200

Position

V
a
lu
e

Original: u0
Observation: f = u0 + w
TV: u
Debiased: ũ

Fig. 1. Solutions of 1D-TV and our debiasing on a piece-wise constant signal.

PSNR 19.13 / SSIM 0.76 PSNR 20.61 / SSIM 0.80 PSNR 21.90 / SSIM 0.87

Fig. 2. (left) Blurry image f=Φu0+w, (center) TV u⋆, (right) debiased ũ⋆.

PSNR 22.14 / SSIM 0.52 PSNR 27.89 / SSIM 0.82 PSNR 29.17 / SSIM 0.87

Fig. 3. (left) Noisy image f=u0+w, (center) nonlocal-means u⋆, (right) debiased ũ⋆.

8 Conclusion

We have introduced in this paper a mathematical definition of debiasing
which has led to an effective debiasing technique that can remove the method
bias that does not arise from the unavoidable choice of the model. This debiasing
technique simply consists in applying a least-square estimation constrained to
the model subspace chosen implicitly by the original biased algorithm. Numerical
experiments have demonstrated the efficiency of our technique in retrieving the
correct intensities while respecting the structure of the original model subspace.
Our technique is nevertheless limited to locally affine estimators. Isotropic total
variation, structured sparsity or nonlocal-means with smooth kernels are not yet
handled by our debiasing technique, and left for future work.
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