Skip to main content

Multiscale Texture Orientation Analysis Using Spectral Total-Variation Decomposition

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9087))

Abstract

Multi-level texture separation can considerably improve texture analysis, a significant component in many computer vision tasks. This paper aims at obtaining precise local texture orientations of images in a multiscale manner, characterizing the main obvious ones as well as the very subtle ones. We use the total variation spectral framework to decompose the image into its different textural scales. Gabor filter banks are then employed to detect prominent orientations within the multis-cale representation. A necessary condition for perfect texture separation is given, based on the spectral total-variation theory. We show that using this method we can detect and differentiate a mixture of overlapping textures and obtain with high fidelity a multi-valued orientation representation of the image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differential and Integral Equations 14(3), 321–360 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Aujol, J., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. Int. J. Computer Vision 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(R^N\). Journal of Differential Equations 184(2), 475–525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. Methods and Apps. of Anal. 20(4), 295–334 (2013)

    MATH  MathSciNet  Google Scholar 

  6. Bianconi, F., Fernández, A.: Evaluation of the effects of gabor filter parameters on texture classification. Pattern Recognition 40(12), 3325–3335 (2007)

    Article  MATH  Google Scholar 

  7. Bresson, X., Tai, X.C., Chan, T., Szlam, A.: Multi-class transductive learning based on \(\ell 1\) relaxations of cheeger cut and mumford-shah-potts model. Journal of Mathematical Imaging and Vision 49(1), 191–201 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burger, M., Eckardt, L., Gilboa, G., Moeller, M.: Spectral representations of one-homogeneous functionals. In: Proc. Scale Space and Variational Methods in Computer Vision, SSVM (2015)

    Google Scholar 

  9. Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  10. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research 20(10), 847–856 (1980)

    Article  Google Scholar 

  11. Giannakis, D., Majda, A.: Nonlinear laplacian spectral analysis for time series with intermittency and low-frequency variability. Proceedings of the National Academy of Sciences 109(7), 2222–2227 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gilboa, G.: A spectral approach to total variation. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 36–47. Springer, Heidelberg (2013)

    Google Scholar 

  13. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sciences 7(4), 1937–1961 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilles, J.: Multiscale texture separation. Multiscale Modeling & Simulation 10(4), 1409–1427 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  16. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 171–184 (2013)

    Article  Google Scholar 

  17. Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations: The 15th Dean Jacquelines B. Lewis Memorial Lectures (March 2001)

    Google Scholar 

  18. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems 2, 849–856 (2002)

    Google Scholar 

  19. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H\(^{-1}\) norm. SIAM Multiscale Modeling and Simulation 1(3), 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Penatti, O.A., Valle, E., Torres, R.D.S.: Comparative study of global color and texture descriptors for web image retrieval. Journal of Visual Communication and Image Representation 23(2), 359–380 (2012)

    Article  Google Scholar 

  21. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  22. Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV, L2) decompositions. SIAM Multiscale Modeling and Simulation 2(4), 554–579 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yang, Y., Han, S., Wang, T., Tao, W., Tai, X.C.: Multilayer graph cuts based unsupervised color-texture image segmentation using multivariate mixed student’s t-distribution. Pattern Recognition 46(4), 1101–1124 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dikla Horesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Horesh, D., Gilboa, G. (2015). Multiscale Texture Orientation Analysis Using Spectral Total-Variation Decomposition. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics