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Abstract. The enhancement and detection of elongated structures in
noisy image data is relevant for many biomedical applications. To han-
dle complex crossing structures in 2D images, 2D orientation scores
U : R2 × S1 → R were introduced, which already showed their use
in a variety of applications. Here we extend this work to 3D orientation
scores U : R3 × S2 → R. First, we construct the orientation score from a
given dataset, which is achieved by an invertible coherent state type of
transform. For this transformation we introduce 3D versions of the 2D
cake-wavelets, which are complex wavelets that can simultaneously de-
tect oriented structures and oriented edges. For efficient implementation
of the different steps in the wavelet creation we use a spherical harmonic
transform. Finally, we show some first results of practical applications of
3D orientation scores.

Key words: Orientation Scores, Reproducing Kernel Spaces, 3DWavelet
Design, Scale Spaces on SE(3), Coherence Enhancing Diffusion on SE(3)

1 Introduction

The enhancement and detection of elongated structures is important in many
biomedical image analysis applications. These tasks become problematic when
multiple elongated structures cross or touch each other in the data. In these
cases it is useful to decompose an image in local orientations by constructing an
orientation score. In the orientation score, we extend the domain of the data to
include orientation in order to separate the crossing or touching structures (Fig.
1). From 3D data f : R3 → R we construct a 3D orientation score U : R3×S2 →
R, in a similar way as is done for the more common case of 2D data f : R2 → R

and 2D orientation score U : R2 × S1 → R. Next, we consider operations on
orientation scores, and process our data via orientation scores (Fig. 2). For such
operations it is important that the orientation score transform is invertible, in a
well-posed manner. In comparison to continuous wavelet transforms on the group
of 3D rotations, translations and scalings, we use all scales simultaneously and
exclude the scaling group from the wavelet transform and its adjoint, yielding a
coherent state type of transform [1], see App.A. This makes it harder to design
appropriate wavelets, but has the computational advantage of only needing a
single scale transformation.

http://arxiv.org/abs/1505.07690v1


2 Invertible Orientation Scores of 3D Images

The 2D orientation scores have already showed their use in a variety of
applications. In [11, 17] the orientation scores were used to perform crossing-
preserving coherence-enhancing diffusions. These diffusions greatly reduce the
noise in the data, while preserving the elongated crossing structures. Next to
these generic enhancement techniques, the orientation scores also showed their
use in retinal vessel segmentation [3], where they were used to better handle
crossing vessels in the segmentation procedure.

To perform detection and enhancement operations on the orientation score,
we first need to transform a given greyscale image or 3D dataset to an orientation
score in an invertible way. In previous works various wavelets were introduced to
perform a 2D orientation score transform. Some of these wavelets did not allow
for an invertible transformation (e.g. Gabor wavelets [15]). A wavelet that allows
an invertible transformation was proposed by Kalitzin [14]. A generalization
of these wavelets was found by Duits [8] who derived a unitarity result and
expressed the wavelets in a basis of eigenfunctions of the harmonic oscillator.
This type of wavelet was also extended to 3D. This wavelet however has some
unwanted properties such as poor spatial localization (oscillations) and the fact
that the maximum of the wavelet did not lie at its center [8, Fig. 4.11]. In [8]
a class of cake-wavelets were introduced, that have a cake-piece shaped form in
the Fourier domain (Fig. 5). The cake-wavelets simultaneously detect oriented
structures and oriented edges by constructing a complex orientation score U :
R2×S1 → C. Because the different cake-wavelets cover the full Fourier spectrum,
invertibility is guaranteed.

In this paper we propose an extension of the 2D cake-wavelets to 3D. First,
we discuss the theory of invertible orientation score transforms. Then we con-
struct 3D cake-wavelets and give an efficient implementation using a spherical
harmonic transform. Finally we mention two application areas for 3D orienta-
tion scores and show some preliminary results for both of them. In the first
application, we present a practical proof of concept of a natural extension of
the crossing preserving coherence enhancing diffusion on invertible orientation
scores (CEDOS) [11] to the 3D setting. Compared to the original idea of co-
herence enhancing diffusion acting directly on image-data [18, 4, 5] we have the
advantage of preserving crossings. Diffusions on SE(3) have been studied in pre-
vious SSVM-articles, see e.g. [6], but the full generalization of CEDOS to 3D
was never established.

2 Invertible Orientation Scores

An invertible orientation score Wψ[f ] : R
3×S2 → C is constructed from a given

ball-limited 3D dataset f ∈ L
̺
2(R

3) = {f ∈ L2(R
3)|supp(Ff) ⊂ B0,̺}, with

̺ > 0 by correlation ⋆ with an anisotropic kernel

(Wψ [f ])(x,n) = (ψn ⋆ f)(x) =

∫

R3

ψn(x′ − x)f(x′) dx′, (1)

where ψ ∈ L2(R
3)∩L1(R

3) is a wavelet aligned with and rotationally symmetric
around the z-axis, and ψn(x) = ψ(RT

nx) ∈ L2(R
3) the rotated wavelet aligned
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with n. HereRn is any rotation which rotates the z-axis onto n where the specific
choice of rotation does not matter because of the rotational symmetry of ψ. The
overline denotes a complex conjugate. The exact reconstruction formula for this
transformation is

f(x) = (W−1
ψ [Wψ[f ]])(x)

= F−1
R3

[

M−1
ψ FR3

[

x̃ 7→

∫

S2

(ψ̌n ⋆Wψ[f ](·,n))(x̃) dσ(n)

]]

(x),
(2)

with FR3 the Fourier transform onR3 given by (Ff)(ω) = (2π)−
3

2

∫

R3 e
−iω·xf(x)dx

and ψ̌n(x) = ψn(−x). In fact Wψ is a unitary mapping on to a reproducing ker-
nel space, see App. A. The function Mψ : R3 → R+ is given by

Mψ(ω) = (2π)
3

2

∫

S2

|FR3 [ψn](ω)|
2
dσ(n). (3)

The function Mψ quantifies the stability of the inverse transformation [8], since
Mψ(ω) specifies how well frequency component ω is preserved by the cascade
of construction and reconstruction when M−1

ψ would not be included in Eq. (2).
An exact reconstruction is possible as long as

∃M>0,δ>0 0 < δ ≤Mψ(ω) ≤M <∞, for all ω = B0,̺. (4)

In practice it is best to aim for Mψ(ω) ≈ 1, in view of the condition number of
Wψ : L̺2(R

3) → L
̺
2(R

3×S2) with Wψf = Wψf . Also, when Mψ(ω) = 1 we have
L2-norm preservation

‖f‖2
L2(R3) = ‖Wψf‖

2
L2(R3

×S2), for all f ∈ L
̺
2(R

3), (5)

and Eq. (2) simplifies to f(x) =
∫

S2(ψ̌n ⋆Wψ[f ](·,n))(x)dσ(n). We can further

simplify the reconstruction for wavelets for which (2π)
3

2

∫

S2 FR3 [ψn](ω)dσ(n) ≈
1, where the reconstruction formula simplifies to an integration over orientations

f(x) ≈

∫

S2

Wψf(x,n) dσ(n). (6)

Fig. 1. 2D Orientation score for an exemplary im-
age. In the orientation score crossing structures are
disentangled because the different structures have a
different orientation.

Fig. 2. A schematic view of
image processing via invertible
orientation scores.
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Fig. 3. Creating a 3D orientation score. Top: The data f is correlated with an oriented
filter ψex to detect structures aligned with the filter orientation ex. Bottom left: This
is repeated for a discrete set of filters with different orientations. Bottom right: The
collection of 3D datasets constructed by correlation with the different filters is an
orientation score and is visualized by placing a 3D dataset on a number of orientations.

2.1 Discrete Invertible Orientation Score Transformation

In the previous section, we considered a continuous orientation score transfor-
mation. In practice, we have only a finite number of orientations. To determine
this discrete set of orientations we uniformly sample the sphere using platonic
solids and/or refine this using tessellations of the platonic solids.

Assume we have a number No of orientations V = {n1,n2, ...,nNo} ⊂ S2,
and define the discrete invertible orientation score Wd

ψ[f ] : R
3 × V → C by

(Wd
ψ[f ])(x,ni) = (ψni ⋆ f)(x). (7)

The exact reconstruction formula is in the discrete setting given by

f(x) = ((Wd
ψ)

−1[Wd
ψ[f ]])(x)

= F−1
R3

[

(Md
ψ)

−1FR3

[

x̃ →

No
∑

i=1

(ψ̌ni ⋆W
d
ψ [f ](·,ni))(x̃)dσ(ni)

]]

(x),
(8)
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with dσ(ni) the discrete spherical area measure which for reasonably uniform
spherical sampling can be approximated by dσ(ni) ≈

4π
No

, and

Md
ψ(ω) = (2π)

3

2

No
∑

i=1

|FR3 [ψni ](ω)|
2
dσ(ni). (9)

Again, an exact reconstruction is possible iff 0 < δ ≤Md
ψ(ω) ≤M <∞.

3 3D Cake-Wavelets

A class of 2D cake-wavelets, see [8], was successfully used for the 2D orientation
score transformation. We now generalize these 2D cake-wavelets to 3D cake-
wavelets. Our 3D transformation using the 3D cake-wavelets should fulfill a set
of requirements, compare [11] :

1. The orientation score should be constructed for a finite number (No) of
orientations.

2. The transformation should be invertible and all frequencies should be trans-
ferred equally to the orientation score domain (Md

ψ ≈ 1).
3. The kernel should be strongly directional.
4. The kernel should be polar separable in the Fourier domain, i.e., (Fψ)(ω) =
g(ρ)h(θ, φ), with ω = (ωx, ωy, ωz) = (ρ sin θ cosφ, ρ sin θ sinφ, ρ cos θ). Be-
cause by definition the wavelet ψ has rotational symmetry around the z-axis
we have h(θ, φ) = h(θ).

5. The kernel should be localized in the spatial domain, since we want to pick
up local oriented structures.

6. The real part of the kernel should detect oriented structures and the imag-
inary part should detect oriented edges. The constructed oriented score is
therefore a complex orientation score.

3.1 Construction of Line and Edge Detectors

We now discuss the procedure used to make 3D cake-wavelets. According to
requirement 4 we only consider polar separable wavelets in the Fourier domain,
so that (Fψ)(ω) = g(ρ)h(θ). For the radial function g(ρ) we use, as in [11],

g(ρ) = MN (ρ2t−1) = e−
ρ2

t

N
∑

k=0

(ρ2t−1)k

k!
, (10)

which is a Gaussian function with scale parameter t multiplied by the Taylor
approximation of its reciprocal to order N to ensure a slower decay. This func-
tion should go to 0 when ρ tends to the Nyquist frequency ρN . Therefore the
inflection point of this function is fixed at γ ρN with 0 ≪ γ < 1 by setting

t = 2(γ ρN )2

1+2N . In practice we have ̺ = ρN , and because radial function g causes
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Md
ψ to become really small when coming close to the Nyquist frequency, recon-

struction Eq.(8) becomes unstable. We solve this by either using approximate
reconstruction Eq.(6) or by replacing Md

ψ → max(Md
ψ, ǫ), with ǫ small. Both

make the reconstruction stable at the cost of not completely reconstructing the
highest frequencies which causes some additional blurring.

We now need to find an appropriate angular part h for the cake-wavelets.
First, we specify an orientation distribution A : S2 → R+, which determines
what orientations the wavelet should measure. To satisfy requirement 3 this
function should be a localized spherical window, for which we propose a B-spline
A(θ, φ) = Bk( θsθ ), with sθ > 0 and Bk the kth order B-spline given by

Bk(x) = (Bk−1 ∗B0)(x), B0(x) =

{

1 if− 1
2 < x < 1

2

0 otherwise
. (11)

The parameter sθ determines the trade-off between requirements 2 and 3, where
higher values give a more uniform Md

ψ at the cost of less directionality.
First consider setting h = A so that ψ has compact support within a convex

cone in the Fourier domain. The real part of the corresponding wavelet would
however be a plate detector and not a line detector (Fig. 4). The imaginary part
is already an oriented edge detector, and so we set

hIm(φ) = A(θ, φ) −A(π − θ, φ+ π) = Bk
(

θ

sθ

)

−Bk
(

π − θ

sθ

)

, (12)

where the real part of the earlier found wavelet vanishes by anti-symmetrization
of the orientation distribution A while the imaginary part remains. As to the
construction of hRe, there is the general observation that we detect a structure
that is perpendicular to the shape in the Fourier domain, so for line detection
we should aim for a plane detector in the Fourier domain. To achieve this we
apply the Funk transform to A, and we define

hRe(θ, φ) = FA(θ, φ) =

∫

Sp(n(θ,φ))

A(n′) ds(n′), (13)

where integration is performed over Sp(n) denoting the great circle perpendic-
ular to n(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ). This transformation preserves the
symmetry of A, so we have hRe(θ, φ) = hRe(θ). Thus, we finally set

h(θ) = hRe(θ) + hIm(θ). (14)

For an overview of the transformations see Fig. 5.

3.2 Efficient Implementations Via Spherical Harmonics

In Subsection 3.1 we defined the real part and the imaginary part of the wavelets
in terms of a given orientation distribution. In order to efficiently implement the
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various transformations (e.g. Funk transform), and to create the various rotated
versions of the wavelet we express our orientation distribution A in a spherical
harmonic basis {Y ml } up to order L:

A(θ, φ) =
L
∑

l=0

l
∑

m=−l

cl,mY
m
l (θ, φ), L ∈ N. (15)

Because of the rotational symmetry around the z-axis, we only need the spher-
ical harmonics with m = 0, i.e., A(θ, φ) =

∑L
l=0 cl,0Y

0
l (θ, φ). For determining

the spherical harmonic coefficients we use the pseudo-inverse of the discretized
inverse spherical harmonic transform (see [9, Section 7.1]), with discrete orien-
tations given by an icosahedron of tesselation order 15.

Funk Transform According to [7], the Funk transform of a spherical harmonic
equals

FY ml (θ, φ) =

∫

Sp(n(θ,φ))

Y ml (n′) ds(n′) = 2πPl(0)Y
m
l (θ, φ), (16)

with Pl(0) the Legendre polynomial of degree l evaluated at 0. We can therefore
apply the Funk transform to a function expressed in a spherical harmonic basis
by a simple transformation of the coefficients cml → 2πPl(0)c

m
l .

Anti-Symmetrization We have Y ml (π− θ, φ+π) = (−1)lY ml (θ, φ). We there-
fore anti-symmetrize the orientation distribution Eq.(12) via cml → (1−(−1)l)cml .

Making Rotated Wavelets To make the rotated versions ψn of wavelet ψ we
have to find hn in Ψn = g(ρ)hn(θ, φ). To achieve this we use the steerability of the
spherical harmonic basis. Spherical harmonics rotate according to the irreducible
representations of the SO(3) group Dl

m,m′(α, β, γ) (Wigner-D functions)

RRα,β,γ
Y ml (θ, φ) =

l
∑

m′=l

Dl
m,m′(α, β, γ)Y m

′

l (θ, φ). (17)

Here α, β and γ denote the Euler angles with counterclockwise rotations, i.e.,
R = Rez ,αRey,βRez,γ . This gives

hn(θ, φ) = RRα,β,γ
h(θ, φ) =

L
∑

l=0

l
∑

m=−l

l
∑

m′=−l

al,mD
l
m,m′(α, β, γ)Y m

′

l (θ, φ). (18)

Because both anti-symmetrization and Funk transform preserve the rotational
symmetry of A, we have h(θ, φ) =

∑L
l=0 al,0Y

0
l (θ, φ), and Eq. (18) reduces to

hn(θ, φ) =
L
∑

l=0

l
∑

m′=−l

al,0D
l
0,m′(0, β, γ)Y m

′

l (θ, φ). (19)
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Fig. 4. When directly setting orientation distribution A as angular part of the wavelet
h we construct plate detectors. From left to right: Orientation distribution A, wavelet
in the Fourier domain, the plate detector (real part) and the edge detector (imaginary
part). Orange: Positive iso-contour. Blue: Negative iso-contour. Parameters used: L =
16, sθ = 0.6, k = 2, N = 20, γ = 0.8 and evaluated on a grid of 51x51x51 pixels.

Fig. 5. Cake-Wavelets. Top: 2D cake-wavelets. From left to right: Illustration of the
Fourier domain coverage, the wavelet in the Fourier domain and the real and imag-
inary part of the wavelet in the spatial domain. [3]. Bottom: 3D cake-wavelets.
Overview of the transformations used to construct the wavelets from a given ori-
entation distribution. Upper part: The wavelet according to Eq. (12). Lower part:
The wavelet according to Eq. (13). IFT: Inverse Fourier Transform. Parameters used:
L = 16, sθ = 1.05, k = 2, N = 20, γ = 0.8 and evaluated on a grid of 31x31x31 pixels.
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4 Applications

4.1 Adaptive Crossing Preserving Flows

We now use the invertible orientation score transformation to perform data-
enhancement according to Fig. 2. Because R3 × S2 is not a Lie group, it is
common practice to embed the space of positions and orientations in the Lie
group of positions and rotations SE(3) by setting

Ũ(x,R) = U(x,R · ez), U(x,n) = Ũ(x,Rn), (20)

with Rn any rotation for which Rn · ez = n. This holds in particular for orien-
tation scores U = Wψf . The operations Φ which we consider are scale spaces on
SE(3) (diffusions), and are given by Φ = Φt with

Φt(U)(y,n) = W̃ (y,Rn, t). (21)

Here W̃ is the solution of

∂W̃

∂t
(g, t) =

6
∑

i,j=1

Ai|gDijAj |gW̃ (g, t), W̃ |t=0 = W̃ψ[f ], (22)

where in coherence enhancing diffusion on orientation scores (CEDOS) Dij is

adapted locally to data W̃ψ[f ] based on exponential curve fits (see [10]), and
with Ai|g=(x,R) = (Lg)∗Ai|e the left-invariant vector fields on SE(3), for mo-
tivation and details see [9]. Furthermore Dij is chosen such that equivalence

relation Eq. (20) is maintained for W̃ . These operations are already used with-
out adaptivity in the field of diffusion weighted MRI, where similar data (of the
type R3 × S2 → R+) is enhanced [9]. We then obtain Euclidean invariant image
processing via

Υf = W∗,ext
ψ ◦ Φ ◦Wψf = W∗

ψ ◦ PψΦ ◦Wψf (23)

which includes inherent projection Pψ of orientation scores, even if Φ = Φt maps
outside of the space of orientation scores in the embedding space (see App.
A). Below we show some preliminary results of these flows that enhance the
elongated structures while preserving the crossing, Fig. 6 and Fig. 7.

4.2 3D Vessel Tracking in Magnetic Resonance Angiography
(MRA) Data

We use the 3D orientation scores to extend the earlier work on 2D vessel segmen-
tation via invertible orientation scores [3] to 3D vessel segmentation in MRA-
data. Even though true crossing structures hardly appear in 3D data, we do
encounter vessels touching other vessels/structures. The orientation scores also
allow us to better handle complex structures, such as bifurcations. In Fig. 8 we
show some first results of the vessel segmentation algorithm.
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Fig. 6. Adaptive Crossing Preserving Flows. From left to right 3D visualization of
artificial data, slice of data, slice of (data + Gaussian noise), slice of enhanced data.
For the orientation score transformation we use: N0 = 42, sθ = 0.7, k = 2, N = 20, γ =
0.85, L = 16 evaluated on a grid of 21x21x21 pixels. We use approximate reconstruction
Eq.(8), and for diffusion we set t = 10. For the choice of Dij in CEDOS, see [10].

Fig. 7. Adaptive Crossing Preserving Flows combined with soft thresholding
Φ(U)(x,n) = |U(x,n)|1.5 sgn(U(x,n)) on data containing the Adam Kiewitzc vessel.
From left to right: Slice of data, data after soft thresholding, data after CEDOS, data
after CEDOS followed by soft thresholding. For parameters see Fig.6, but now t = 5.

Fig. 8. MRA vessel segmentation via in-
vertible orientation scores.

5 Conclusion

We have extended 2D cake-wavelets to 3D cake-wavelets, which can be used
for a 3D invertible orientation score transformation. Efficient implementation
for calculating the wavelets via spherical harmonics were introduced. The devel-
oped transformation allows us to consider all kinds of enhancement operations
via orientation scores such as the adaptive crossing preserving flows which we
are currently working on. Next to data-enhancement we also showed some first
results of 3D vessel segmentation using 3D orientation scores.
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A Invertible Orientation Scores of 3D-images and

Continuous Wavelet Theory

The continuous wavelet transform constructed by unitary irreducible represen-
tations of locally compact groups was first formulated by Grossman et al. [13].
Given a Hilbert space H and a unitary irreducible representation g 7→ Ug of any
locally compact group G in H , a non-zero vector ψ ∈ H is called admissible if

Cψ :=

∫

G

|(Ugψ, ψ)|
2

(ψ, ψ)H
dµG(g) <∞, (24)

where µG denotes the left-invariant Haar measure. Given an admissible vector
ψ and a unitary representation of a locally compact group G in H , the Coherent
State (CS) transformWψ : H → L2(G) is given by (Wψ [f ])(g) = (Ugψ, f)H . Wψ

is an isometric transform onto a unique closed reproducing kernel space CGKψ
with Kψ(g, g

′) = 1
Cψ

(Ugψ,Ug′ψ)H as an L2-subspace [1].

We distinguish between the isometric wavelet transform Wψ : L
̺
2(R

3) →
L2(G) and the unitary wavelet transform Wψ : L̺2(R

3) → CGK . We drop the
formal requirement of U being square-integrable and ψ being admissible in the
sense of (24), and replace the requirement by (4), as it is not strictly needed in
many cases. This includes our case of interest G = SE(3) and its left-regular
action on L2(R

3) whereWψ gives rise to an orientation scoreWψf : R3⋊S2 → C

Wψf(x,n) = W̃ψf(x,Rn), (25)

with Rn any rotation mapping ez onto n and ψ symmetric around the z-axis.
Here the domain is the coupled space of positions and orientations: R3 ⋊ S2 :=
SE(3)/({0} × SO(2)), cf. [9].

From the general theory of reproducing kernel spaces [8, Thm 18],[2] (where
one does not even rely on the group structure), it follows that Wψ : L̺2(R

3) →

CR
3
⋊S2

K is unitary, where CR
3
⋊S2

K denotes the abstract complex reproducing ker-
nel space consisting of functions on R3 ⋊ S2 with reproducing kernel

K(y,n)(y
′,n′) = (U(y,Rn)ψ,U(y′,R

n
′)ψ)L2(R3), (26)

with left-regular representation (y,R) 7→ U(y,R)ψ given by (U(y,R)ψ)(x) =

ψ(RT (x − y)). Now, as the characterization of the inner product on CR
3
⋊S2

K

is awkward [16], we provide a basic characterization next via the so-called Mψ

inner product. This is in line with the admissibility conditions in [12].

Theorem 1. Let ψ be such that (4) holds. Then Wψ : L̺2(R
3) → CR

3
⋊S2

K is
unitary, and we have

(f, g)L2(R3) = (Wψf,Wψg)Mψ
, (27)

where (Wψf,Wψg)Mψ
= (TMψ

[Wψf ], TMψ
[Wψg])L2(R3⋊S2)), with [TMψ

[U ]](y,n) :=

F−1

[

ω 7→ (2π)−3/4M
−1/2
ψ (ω)F [U(·,n)](ω)

]

(y).
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Proof. We rely on [17, Thm 1], where we set H = L2(R
3). The rest follows by

well posed restriction to the quotient R3 ⋊ S2.

Corollary 1. Let Mψ > 0 on R3. The space CR
3
⋊S2

K is a closed subspace of

Hilbert space Hψ ⊗ L2(S
2), where Hψ = {f ∈ L2(R

3)| M
−

1

2

ψ F [f ] ∈ L2(R
3)},

and projection of embedding space onto the space of orientation scores is given
by (Pψ(U))(y,n) = (K(n,y), U)Mψ

= (WψW
∗,ext
ψ (U))(y,n), where W∗,ext

ψ is the
natural extension of the adjoint to the embedding space.
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