Skip to main content

A sparse algorithm for dense optimal transport

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9087))

Abstract

Discrete optimal transport solvers do not scale well on dense large problems since they do not explicitly exploit the geometric structure of the cost function. In analogy to continuous optimal transport we provide a framework to verify global optimality of a discrete transport plan locally. This allows construction of a new sparse algorithm to solve large dense problems by considering a sequence of sparse problems instead. Any existing discrete solver can be used as internal black-box. The case of noisy squared Euclidean distance is explicitly detailed. We observe a significant reduction of run-time and memory requirements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CPLEX. http://www.ilog.com

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc (1993)

    Google Scholar 

  3. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik 84(3), 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertsekas, D.P.: A distributed algorithm for the assignment problem. Technical report, Lab. for Information and Decision Systems Report. MIT, May 1979

    Google Scholar 

  5. Burkhard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Discr. Appl. Math. 70(2), 95–161 (1996)

    Article  Google Scholar 

  6. Carlier, G., Galichon, A., Santambrogio, F.: From Knothe’s transport to Brenier’s map and a continuation method for optimal transport. SIAM J. Math. Anal. 41, 2554–2576 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transportation distances. In: Advances in Neural Information Processing Systems 26 (NIPS), pp. 2292–2300 (2013). http://arxiv.org/abs/1306.0895

  8. Dezsőa, B., Jüttnerb, A., Kovácsa, P.: LEMON – an open source C++ graph template library. In: Workshop on Generative Technologies (WGT) 2010, volume 264 of Electronic Notes in Theoretical Computer Science, pp. 23–45 (2011)

    Google Scholar 

  9. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive approximation. Math. Oper. Res. 15(3), 430–466 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comp. Vision 60, 225–240 (2004)

    Article  Google Scholar 

  11. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics 2, 83–97 (1955)

    Article  Google Scholar 

  12. Mérigot, Q.: A multiscale approach to optimal transport. Computer Graphics Forum 30(5), 1583–1592 (2011)

    Article  Google Scholar 

  13. Pele, O., Werman, W.: Fast and robust Earth Mover’s Distances. In: International Conference on Computer Vision (ICCV 2009) (2009)

    Google Scholar 

  14. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comp. Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  15. Schmitzer, B., Schnörr, C.: A hierarchical approach to optimal transport. In Scale Space and Variational Methods (SSVM 2013), pp. 452–464 (2013)

    Google Scholar 

  16. Villani, C.: Optimal Transport: Old and New, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (2009)

    Book  Google Scholar 

  17. Wang, W., Slepčev, D., Basu, S., Ozolek, J.A., Rohde, G.K.: A linear optimal transportation framework for quantifying and visualizing variations in sets of images. Int. J. Comp. Vision 101, 254–269 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schmitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schmitzer, B. (2015). A sparse algorithm for dense optimal transport. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics