

An Industrial Case Study on Test Cases as Requirements

Elizabeth Bjarnason1, Michael Unterkalmsteiner2, Emelie Engström1, Markus Borg1

1Lund University

SE-221 00 Lund, Sweden

FirstName.LastName@cs.lth.se

2Blekinge Institute of Technology

SE-371 79 Karlskrona, Sweden

mun@bth.se

Abstract. It is a conundrum that agile projects can succeed ‘without require-

ments’ when weak requirements engineering is a known cause for project fail-

ures. While Agile development projects often manage well without extensive

requirements documentation, test cases are commonly used as requirements. We

have investigated this agile practice at three companies in order to understand

how test cases can fill the role of requirements. We performed a case study based

on twelve interviews performed in a previous study. The findings include a range

of benefits and challenges in using test cases for eliciting, validating, verifying,

tracing and managing requirements. In addition, we identified three scenarios for

applying the practice, namely as a mature practice, as a de facto practice and as

part of an agile transition. The findings provide insights into how the role of re-

quirements may be met in agile development including challenges to consider.

Keywords: Agile development, Behaviour-driven development, Acceptance

test, Requirements and Test Alignment, Case study

1 Introduction

Agile development methods strive to be responsive to changing business requirements

by integrating requirements, design, implementation and testing processes [1][2]. Face-

to-face communication is prioritised over written requirements documentation and cus-

tomers are expected to convey their needs directly to the developers [3][4]. However,

weak customer communication in combination with minimal documentation is reported

to cause problems in scaling and evolving software for agile projects [4].

Requirements specifications fill many roles. They are used to communicate among

stakeholders within a software development project, to drive design and testing, and to

serve as a reference for project managers and in the evolution of the system [6]. Due to

the central role of requirements in coordinating software development, there exists a

plethora of research on how to document requirements with varying degrees of formal-

ity depending on its intended use. This spans from formal requirements specifications

[7] and requirements models [8], over templates [9] to user stories [10] and require-

ments expressed using natural language. At the formal end of the spectrum, require-

ments specifications can be automatically checked for consistency [11] and used to de-

rive other artefacts, e.g. software designs [12] or test cases [13]. For the less formal

approaches, requirements documentation is driven by heuristics and best practices for

achieving high quality [14] requirements.

The coordination of evolving requirements poses a challenge in aligning these with

later development activities including testing [5]. In a previous study we identified the

use of test cases as requirements (TCR) as one of several industrial practices used to

address this challenge [5]. In this paper, we investigate this practice further by a more

detailed analysis of the interview data from the three case companies (of six) that ex-

plicitly mentioned this practice. The case study presented in this paper investigates how

the practice may support the role of requirements engineering (RE) by investigating

RQ1 How does the TCR practice fulfil the role of requirements? and RQ2 Why and

how is the TCR practice applied?

The rest of this paper is organized as follows. Section 2 describes related work. Sec-

tion 3 presents the case companies and Section 4 the applied research method. The

results are reported in Section 5, while the research questions are answered in Sections

6 and 7. The paper is concluded in Section 8.

2 Agile RE: Test Cases as Requirements Documentation

In agile software development requirements and tests can be seen as two sides of the

same coin. Martin and Melnik [15] hypothesize that as the formality of specifications

increases, requirements and tests become indistinguishable. This principle is taken to

the extreme by unit tests [16] where requirements are formalized in executable code.

Practitioners report using unit tests as a technical specification that evolves with the

implementation [17]. However, unit tests may be too technical for customers and

thereby lack the important attribute of being understandable to all relevant stakeholders.

Acceptance tests are used to show customers that the system fulfils the requirements

[18]. However, developing acceptance tests from requirements specifications is a sub-

jective process that does not guarantee that all requirements are covered [18]. This is

further complicated by requirements documentation rarely being updated [19], leading

to potentially outdated acceptance tests. In agile development, automated acceptance

tests (AATs) drive the implementation and address these issues by documenting re-

quirements and expected outcomes in an executable format [4][20]. This agile practice

is known, among others, as customer tests, scenario tests, executable/automated ac-

ceptance tests, behaviour driven development and story test driven development [21].

Some organisations view and use the AATs as requirements thereby fully integrating

these two artefacts [15]. AATs are used to determine if the system is acceptable from a

customer perspective and used as the basis for customer discussions, thus reducing the

risk of building the wrong system. However, the communication might be more tech-

nical and require more technical insight of the customer. Melnik et al. [22] found that

customers in partnership with software engineers could communicate and validate busi-

ness requirements through AATs, although there is an initial learning curve.

The conceptual difficulty of specifying tests before implementation [23][24][25] led

to the conception of behaviour-driven development (BDD) [26]. BDD incorporates as-

pects of requirements analysis, requirements documentation and communication, and

automated acceptance testing. The behaviour of a system is defined in a domain-spe-

cific language (DSL); a common language that reduces ambiguities and misunderstand-

ings. This is further enhanced by including terms from the business domain in the DSL.

Haugset and Hansen studied acceptance test driven development (ATDD) as an RE

practice and report on its benefits and risks [20]. Our work extends on this by also

investigating companies that use the TCR practice without applying ATDD principles.

3 Case Companies

The three case companies all develop software using an agile development model.

However, a number of other factors vary between the companies. These factors are

summarised in Table 1 and the interviewees are characterised in Table 2. .

Table 1. Overview of the case companies.

3.1 Company A

Company A develops network equipment consisting of hardware and software. The

software development unit covered by the interview study has around 150 employees.

The company is relatively young but has been growing fast during the past few years.

A typical software project has a lead time of 6-18 months, around 10 co-located mem-

bers and approximately 100 requirements and 1,000 system test cases. A market-driven

requirements engineering process is applied. The quality focus for the software is on

Company A B C

Type of company
Softw. develop.,

embedded products
Consulting

Softw. develop., embed-

ded products

#employees in

softw development
125-150 135 1,000

#employees in typi-

cal project
10

Mostly 4-10, but varies

greatly

Previously:

800-1,000 person years

Distributed No No Yes

Domain / System

type

Computer network-

ing equipment

Advisory/technical ser-

vices, appl. management
Telecom

Source of reqts Market driven Bespoke Bespoke, market driven

Main quality focus
Availability, perfor-

mance, security

Depends on customer

focus
Performance, stability

Certification Not software related No ISO9001

Process Model Agile Agile in variants
Agile with gate decisions

Previous: Waterfall

Project duration 6-18 months No typical project Previously: 2 years

#requirements in

typical project

100 (20-30 pages

HTML)
No typical project

Previously:

14,000

#test cases in typi-

cal project
~1,000 test cases No typical project

Previously: 200,000 for

platform, 7,000 for system

Product Lines Yes No Yes

Open Source Yes Yes incl. contributions Yes (w agile dev model)

availability, performance and security. Furthermore, the company applies a product-

line approach and uses open-source software in their development.

A product manager, a project manager, and a tester were interviewed at Company

A, all of which described how the company manages requirements as test cases.

3.2 Company B

Company B is a consultancy firm that provides technical services to projects that vary

in size and duration. Most projects consist of one development team of 4-10 people

located at the customer site. The requirements are defined by a customer (bespoke).

The three consultants that were interviewed at Company B can mainly be character-

ised as software developers. However, they all typically take on a multitude of roles

within a project and are involved throughout the entire lifecycle. All three of these in-

terviewees described the use of the TCR practice.

3.3 Company C

Company C develops software for embedded products in the telecommunications do-

main. The software development unit investigated in this study, consists of 1,000 peo-

ple. At the time of the interviews, the company was transitioning from a waterfall pro-

cess to an agile process. Projects typically run over 2 years and include 400-500 people.

The project size and lead time is expected to decrease with the agile process. The pro-

jects handle a combination of bespoke and market-driven requirements. Including the

product-line requirements, they handle a very complex and large set of requirements.

Six of the interviewees (of 15) discussed the practice, namely one requirements en-

gineer, two project managers, two process managers and one tester.

Table 2. Interviewees per company. Experience in role noted as S(enior) = more than 3 years, or

J(unior) = up to 3 years. Interviewees mentioning the TCR practice are marked with bold. Note:

For Company B, software developers also perform RE and testing tasks.

Role A B C

Requirements engineer C1:S, C6:S, C7:S

Systems architect C4:S

Software developer B1:J, B2:S, B3:S C13:S

Test engineer A2:S C9:S, C10:S, C11:J, C12:S, C14:S

Project manager A1:J C3:J, C8:S

Product manager A3:S

Process manager C2:J, C5:S, C15:J

4 Method

We used a flexible exploratory case study design and process [27] consisting of four

stages: 1) Definition, 2) Evidence selection, 3) Data analysis and 4) Reporting.

Definition of Research Questions and Planning. Since we were interested in how

agile development can be successful ‘without requirements’ we selected to focus on the

practice of using test cases as requirements. We formulated the research questions,

(RQ1) How does the TCR practice fulfil the role of requirements? and (RQ2) Why and

how is the TCR practice applied?

Evidence Selection. We selected to use word-by-word transcriptions from our pre-

vious study of RE-Testing coordination. The research questions of this paper are within

the broader scope of the previous study [5], which also included agile processes. In

addition, the semi-structured interviews provided rich material since the interviewees

could freely describe how practices were applied including benefits and challenges.

Data selection was facilitated by the rigorous coding performed in the previous study.

We selected the interview parts coded for the TCR practice. In addition, the transcripts

were searched for key terms such as ‘acceptance test’, ‘specification’.

Data Analysis. The analysis of the selected interview data was performed in two

steps. First the transcripts were descriptively coded. These codes were then categorised

into benefits and challenges, and reported per case company in Section 5. The analysis

was performed by the first author. The results were validated independently by the third

author. The third author analysed and interpreted a fine-grained grouping of the inter-

view data produced in the previous study, and compared this against the results obtained

by the first researcher. No conflicting differences were found.

5 Results

Two of the investigated companies apply the TCR practice while the third company

plan to apply it. The maturity of the practice thus varied. The interviewees for Company

B provided the most in depth description of the practice, which is reflected in the

amount of results per company. Limitations of the findings are discussed in Section 5.4.

5.1 Company A: A De Facto Practice

Test cases have become the de facto requirements in company A due to weak RE

(A21), i.e. the RE maturity in the company is low while there is a strong competence

within testing. Formal (traditional) requirements are mainly used at the start of a pro-

ject. However, these requirements are not updated during the project and lack tracea-

bility to the test cases. Instead, the test cases become the requirements in the sense that

they verify and ensure that the product fulfils the required behaviour.

Benefits. Efficient way of managing requirements in a small and co-located organi-

sation that does not require managing and maintaining a formal requirements specifi-

cation once test design has been initiated (A1). In addition, the structure of the test

specifications is closer to the code simplifying navigation of these ‘requirements’ once

the implementation has started (A1).

1 Mentioned by this interviewee, see interviewee codes in Table 2.

Challenges. As the company grows, the lack of traces to formal requirements is a

problem in communication of requirements changes to the technical roles (A1, A2) and

in ensuring correct test cases (A2). In addition, the test cases lack information about

requirements priority, stakeholders etc., needed by the development engineers when a

test case fails (A2) or is updated (A3). The untraced artefacts do not support either

ensuring test coverage of the formal requirements (A1, A3), or identifying the test cases

corresponding to the requirements re-used for a new project (A2).

5.2 Company B: An Established Practice

Company B actively applies the TCR practice through behaviour-driven develop-

ment supported by tools. The customer and the product owner define product and cus-

tomer requirements. Then, for each iteration, the development engineers produce ac-

ceptance criteria (user scenarios) and acceptance test cases from these requirements.

These ‘requirements test cases’ are iterated with the business roles to ensure validity

(B1), and entered into an acceptance test tool that produces an executable specification.

The interviewees described that the acceptance criteria can be used as a system speci-

fication. However, interviewee B3 stated that the acceptance criteria can be read ‘to get

an impression. But, if you wonder what it means, you can look at the implementation’,

i.e. this documentation is not fully stand-alone.

Benefits. The interviewees stated that the main benefits are improved customer col-

laboration around requirements, strengthened alignment of business requirements with

verification, and support for efficient regression testing. The customer collaboration

raises the technical discussion to a more conceptual level while also improving require-

ments validity, since, as an engineer said, ‘we understand more of the requirements.

They concretize what we will do.’ (B1) This alignment of business and technical as-

pects was experienced to also be supported when managing requirements changes by

the use of acceptance test cases as formal requirements (B2, B3). At the end of a project

the acceptance test cases show ‘what we’ve done’ (B2). Furthermore, the executable

specification provided by this practice, in combination with unit tests, acts as a safety

net that enables projects to ‘rebound from anything’ (B1) by facilitating tracking of test

coverage, efficiently managing bugs and performance issues.

Challenges. The interviewees mentioned several challenges for the practice con-

cerning active customer involvement, managing complex requirements, balancing ac-

ceptance vs. unit tests and maintaining the ‘requirements test cases’. Over time the

company has achieved active customer involvement in defining and managing require-

ments with this practice, but it has been challenging to ensure that ‘we spoke the same

language’ (B3). The interviewees see that customer competence affects the communi-

cation and the outcome. For example, interviewee B3 said that non-technical customers

seldom focus on quality requirements. Similarly, getting the customer to work directly

with requirements (i.e. the acceptance test cases) in the tool has not been achieved. This

is further complicated by issues with setting up common access across networks.

Complex interactions and dependencies between requirements, e.g. for user inter-

faces (B1) and quality requirements (B2), are a challenge both to capture with ac-

ceptance test cases and in involving the customer in detailing them. Furthermore, auto-

matically testing performance and other quality aspects on actual hardware and in a live

testing environment is challenging to manage with this approach.

All interviewees mentioned the challenge in balancing acceptance vs. unit test cases.

It can be hard to motivate engineers to write acceptance-level test cases. Furthermore,

maintenance of the acceptance test cases needs to be considered when applying this

practice (B1, B2, B3). Interviewee B3 pointed out that test cases are more rigid than

requirements and thus more sensitive to change. There is also a risk of deteriorating test

case quality when testers make frequent fixes to get the tests to pass (B2).

5.3 Company C: Planned Practice as part of Agile Transition

The agile transition at the company included introduction of this practice. Requirements

will be defined by a team consisting of a product owner, developers and testers. User

stories will be detailed into requirements that specify ‘how the code should work’ (C8).

These will be documented as acceptance test cases by the testers and traced to the user

stories. Another team will be responsible for maintaining the software including the

user stories, test cases and traces between them. In the company’s traditional process,

test cases have been used as quality requirements, as a de facto practice. Interviewee

C1 describes an attempt to specify these as formal requirements that failed due to not

reaching an agreement on responsibility for the cross-functional requirements within

the development organisation.

Benefits. The practice is believed to decrease misunderstandings of requirements

between business and technical roles, improve on the communication of changes and

in keeping the requirements documentation updated (C5, C10).

Challenges. Integrating the differing characteristics and competences of the RE and

testing activities are seen as a major challenge (C5, C10) in the collaboration between

roles and in the tools. RE aspects that need to be provided in the testing tools include

noting the source of a requirement, connections and dependencies to other requirements

and validity for different products (C5).

5.4 Limitations

We discuss limitations of our results using guidelines provided by Runeson et al. [27].

Construct validity. A main threat to validity lies in that the analysed data stems

from interviews exploring the broader area of coordinating RE and testing. This limits

the depth and extent of the findings to what the interviewees spontaneously shared

around the practice in focus in this paper. In particular, the fact that the practice was

not yet fully implemented at Company C at the time of the interviews limits the insights

gained from those interviews. However, we believe that the broad approach of the orig-

inal study in combination with the semi-structured interviews provide valuable insights,

even though further studies are needed to fully explore the topic.

External validity. The findings may be generalized to companies with similar char-

acteristics as the case companies (see Section 3), by theoretical generalization [27].

Reliability. The varying set of roles from each case poses a risk of missing important

perspectives, e.g. for Company B the product owner’s view would complement the

available interview data from the development team. There is a risk of researcher bias

in the analysis and interpretation of the data. This was partly mitigated by triangulation;

two researchers independently performing these steps. Furthermore, a rigorous process

was applied in the (original) data collection including researcher triangulation of inter-

viewing, transcription and coding, which increases the reliability of the selected data.

6 Test Cases in the Role of Requirements (RQ1)

We discuss how the TCR practice supports the main roles of RE and the require-

ments specification according to roles defined by Lauesen [28], i.e. the elicitation and

validation of stakeholders’ requirements; software verification; tracing; and managing

requirements. The discussion is summarised in Table 3.

Table 3. Summary of benefits and challenges per role of RE.

Benefits Challenges

Elicitation and Validation

Cross-functional communication Good Customer-Developer relationship

Align goals & perspectives between roles Active customer involvement

Address barrier of specifying solutions Sufficient technical and RE competence

 Complex requirements

Verification

Supports regression testing Quality requirements

Increased requirements quality

Test coverage

Tracing

Requirements - test case tracing in BDD Tool integration

Requirements Management

Maintaining RET alignment Locating impacted requirements

Requirement are kept updated Missing requirement context

Communication of changes Test case maintenance

Efficient documentation updates

6.1 Elicitation and Validation

The TCR practice supports elicitation and validation of requirements by its direct

and frequent communication between business and technical roles for all companies.

The customer involvement in combination with increased awareness of customer per-

spectives among the technical roles supports defining valid requirements. This confirms

observations by Melnik and Maurer [29], Park and Maurer [30], Haugset and Hanssen

[20] and Latorre [31]. Furthermore, at Company B, the use of the acceptance criteria

format led to customers expressing requirements at a higher abstraction level instead of

focusing on technical details. Thus, this practice can address the elicitation barrier of

requesting specific solutions rather than expressing needs [28].

Nevertheless, the TCR practice requires good customer relations, as stated by inter-

viewees in Company B. Active customer involvement is a known challenge for agile

RE due to time and space restrictions for the customer, but also due to that this role

requires a combination of business and technical skills [4][31]. Business domain tools

can be used to facilitate the customers in specifying acceptance tests [30]. For example,

Haugset and Hanssen [20] report that customers used spread-sheets to communicate

information and never interacted directly with actual test cases.

Eliciting and validating requirements, in particular complex ones, relies on compe-

tence of the roles involved. At Company B limited technical knowledge affected the

customer’s ability to discuss quality requirements. This can lead to neglecting to elicit

them altogether [4]. Similarly, capturing complex requirements with acceptance test

cases is a challenge, in particular for user interactions and quality requirements.

6.2 Verification

The TCR practice supports verification of requirements by automating regression

tests as for Company B. The AATs act as a safety net that catches problems and enables

frequent release of product-quality code. This was also observed by Kongsli [32],

Haugset and Hanssen [20], and Latorre [31]. The practice ensures that all specified

requirements (as test cases) are verified and test coverage can be measured by executing

the tests.

The verification effort relies on verifiable, clear and unambiguous requirements [6].

Test cases are per definition verifiable and the format used by Company B supports

defining clear requirements. Nevertheless, Company B mentioned quality requirements

as a particular challenge for embedded devices as this requires actual hardware. This

confirms previous findings by Ramesh [4] and Haugset and Hanssen [20] that quality

requirements are difficult to capture with AATs.

6.3 Tracing

Tracing of requirements and test cases is supported by the TCR practice, however the

benefits depend on the context. Merely using test cases as de facto requirements (as in

Company A) does not affect tracing. For the BDD approach applied at Company B, the

tools implicitly trace acceptance criteria and test cases, although there are no traces

between the original customer requirements and the acceptance criteria. Hence, as the

requirements evolve [33] this knowledge is reflected purely in the test cases.

At Company C, where user stories were to be detailed directly into acceptance test

cases, tracing remains a manual, albeit straight forward task of connecting acceptance

test cases to the corresponding user stories. Furthermore, the responsibility for these

traces is clearly defined in the development process, a practice identified by Uusitalo

[34] as supporting traceability. However, it is a challenge for the company to identify

tools which provide sufficient support for requirements and for testing aspects, and for

the integration of the two.

6.4 Requirements Management

The TCR practice provides benefits in managing requirements in an efficient way

throughout the life-cycle. As mentioned for Companies A and B, the practice facilitates

a joint understanding of requirements that provides a base for discussing and making

decisions regarding changes. However, the practice also requires effort in involving

development engineers in the requirements discussion. The optimal balance between

involving these technical roles to ensure coordination of requirements versus focusing

on pure development activities remains as future work.

The challenge of keeping requirements updated after changes [5] is addressed by a

close integration with test cases, as for Company B, since the test cases are by necessity

updated throughout the project. Furthermore, since the requirements are documented in

an executable format, conflicting new or changed requirements are likely to cause ex-

isting test cases to fail. However, locating requirements in a set of test cases was men-

tioned as a challenge for Company B due to badly structured test cases. The difficulty

of organizing and sorting automated tests has also been reported by Park [21].

Contextual requirements information, e.g. purpose and priority [28], is seldom re-

tained in the test cases but can support, for example, impact analysis and managing

failed test cases. Without access to contextual information from the test cases, addi-

tional effort is required to locate it to enable decision making.

7 The Reasons for and Contexts of the Practice (RQ2)

Each case company applies the practice differently and for different reasons. At Com-

pany A it has become a de facto practice due to strong development and test compe-

tence, and weak RE processes. However, merely viewing test cases as requirements

does not fully compensate for a lack of RE. Company A faces challenges in managing

requirements changes and ensuring test coverage of requirements. The requirements

documentation does not satisfy the information needs of all stakeholders and staff turn-

over may result in loss of (undocumented) product knowledge. As size and complexity

increase so does the challenge of coordinating customer needs with testing effort [5].

Company B applies the practice consciously using a full BDD approach including

tool support. This facilitates customer communication through which the engineering

roles gain requirements insight. The AATs provide a feedback system confirming the

engineers’ understanding of the business domain [30]. However, it is a challenge to get

customers to specify requirements in the AAT tools. Letting domain experts or custom-

ers provide information via e.g. spread-sheets may facilitate this [30].

The third practice variant is found at Company C, where it is consciously planned

as part of a transition to agile processes applying story test driven development [21].

The practice includes close and continuous collaboration around requirements between

business and development roles. However, no specific language for expressing the ac-

ceptance criteria or specific tools for managing these are planned. In contrast to the de

facto context, Company C envisions this practice as enabling analysis and maintenance

of requirements. To achieve this, requirements dependencies and priorities need to be

supported by the test management tools.

8 Conclusions and Future Work

Coordinating and aligning frequently changing business needs is a challenge in soft-

ware development projects. In agile projects this is mainly addressed through frequent

and direct communication between the customer and the development team, and the

detailed requirements are often documented as test cases.

Our case study provides insights into how this practice meets the various roles that

the requirements play. The results show that the direct and frequent communication of

this practice supports eliciting, validating and managing new and changing customer

requirements. Furthermore, specifying requirements as acceptance test cases allow the

requirements to become a living document that supports verifying and tracing require-

ments through the life cycle. We have also identified three contexts for this practice; as

a de facto practice, part of an agile transition and as a mature practice.

The results can aid practitioners in improving their agile practices and provide a basis

for further research. Future work includes investigating how to further improve the RE

aspects when documenting requirements as test cases.

Acknowledgement. We want to thank the interviewees. This work was funded by

EASE (ease.cs.lth.se).

9 References

1. Sommerville, I.: Integrated requirements engineering: a tutorial. IEEE Softw. 22, 16–23

(2005).

2. Layman, L., Williams, L., Cunningham, L.: Motivations and measurements in an agile case

study. J. Syst. Archit. 52, 654–667 (2006).

3. Beck, K.: Manifesto for Agile Software Development, http://agilemanifesto.org/.

4. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and chal-

lenges: an empirical study. Inf. Syst. J. 20, 449–480 (2010).

5. Bjarnason, E., Runeson, P., Borg, et al.: Challenges and practices in aligning requirements

with verification and validation: a case study of six companies. Empir. Softw. Eng. 19, 1809–

1855 (2014).

6. Davis, A.M.: Just Enough Requirements Management: Where Software Development Meets

Marketing. Dorset House, New York (2005).

7. Lamsweerde, A. van: Formal Specification: A Roadmap. Conf. on The Future of Software

Engineering. pp. 147–159. ACM, Limerick, Ireland (2000).

8. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques. Springer,

Berlin, Germany (2010).

9. Mavin, A., Wilkinson, P.: Big Ears (The Return of “Easy Approach to Requirements Engi-

neering”). 18th Int Reqts Engineering Conf. pp. 277–282. IEEE, Sydney, Australia (2010).

10. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley Profes-

sional, Boston (2004).

11. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated Consistency Checking of Require-

ments Specifications. ACM Trans Softw Eng Methodol. 5, 231–261 (1996).

12. Dromey, R.G.: From requirements to design: formalizing the key steps. 1st Int’l Conf. on

Software Engineering and Formal Methods. pp. 2–11. IEEE, Brisbane, Australia (2003).

13. Miller, T., Strooper, P.: A case study in model-based testing of specifications and implemen-

tations. Softw. Test. Verification Reliab. 22, 33–63 (2012).

14. Davis, A., Overmyer, S., Jordan, K., et al.: Identifying and measuring quality in a software

requirements specification. 1st Int Softw Metrics Symp. pp 141–152. Baltimore, USA (1993).

15. Martin, R.C., Melnik, G.: Tests and Requirements, Requirements and Tests: A Möbius Strip.

IEEE Softw. 25, 54–59 (2008).

16. Whittaker, J.A.: What is software testing? And why is it so hard? IEEE Softw. 17, 70–79

(2000).

17. Runeson, P.: A survey of unit testing practices. IEEE Softw. 23, 22–29 (2006).

18. Hsia, P., Kung, D., Sell, C.: Software requirements and acceptance testing. Ann. Softw. Eng.

3, 291–317 (1997).

19. Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use documentation: the

state of the practice. IEEE Softw. 20, 35–39 (2003).

20. Haugset, B., Hanssen, G.K.: Automated Acceptance Testing: A Literature Review and an

Industrial Case Study. Agile Conf. pp. 27–38. IEEE, Toronto, Canada (2008).

21. Park, S., Maurer, F.: A Literature Review on Story Test Driven Development. 11th Int Conf

on Agile Processes in Softw Engin and Extreme Progr pp. 208–213. (2010).

22. Melnik, G., Maurer, F., Chiasson, M.: Executable Acceptance Tests for Communicating

Business Requirements: Customer Perspective. IEEE Agile Conf pp. 35–46. USA (2006).

23. Causevic, A., Sundmark, D., Punnekkat, S.: Factors Limiting Industrial Adoption of Test

Driven Development: A Systematic Review. 4th Int’l Conf. on Software Testing, Verification

and Validation. pp. 337–346. IEEE, Berlin, Germany (2011).

24. George, B., Williams, L.: A structured experiment of test-driven development. Inf. Softw.

Technol. 46, 337–342 (2004).

25. Janzen, D.S., Saiedian, H.: A Leveled Examination of Test-Driven Development Acceptance.

29th Int’l Conf. on Software Engineering. pp. 719–722. IEEE, Minneapolis, USA (2007).

26. North, D.: Behavior Modification: The evolution of behavior-driven development, (2006).

27. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineer-

ing: Guidelines and Examples. Wiley, Hoboken, USA (2012).

28. Lauesen, S.: Software Requirements: Styles & Techniques. Addison-Wesley Professional,

Harlow (2002).

29. Melnik, G., Maurer, F.: Multiple Perspectives on Executable Acceptance Test-driven Devel-

opment. 8th Int’l Conf. on Agile Processes in Software Engineering and Extreme Program-

ming. pp. 245–249. Springer, Como, Italy (2007).

30. Park, S., Maurer, F.: Communicating domain knowledge in executable acceptance test driven

development. 10th Int’l Conf. on Agile Processes in Software Engineering and Extreme Pro-

gramming. pp. 23–32. Springer, Pula, Italy (2009).

31. Latorre, R.: A successful application of a Test-Driven Development strategy in the industrial

environment. Empir. Softw. Eng. 19, 753–773 (2014).

32. Kongsli, V.: Towards Agile Security in Web Applications. 21st ACM SIGPLAN Symp on

Object-oriented Progr Systems, Languages, & Appl. pp. 805–808. Portland, USA (2006).

33. Mugridge, R.: Managing Agile Project Requirements with Storytest-Driven Development.

IEEE Softw. 25, 68–75 (2008).

34. Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.: Linking Requirements and Testing

in Practice. 16th Int Conf Reqts Engineering. pp. 265–270. IEEE, Catalunya, Spain (2008).

