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Abstract. We study three representations of hierarchies of partitions:
dendrograms (direct representations), saliency maps, and minimum span-
ning trees. We provide a new bijection between saliency maps and hier-
archies based on quasi-flat zones as used in image processing and char-
acterize saliency maps and minimum spanning trees as solutions to con-
strained minimization problems where the constraint is quasi-flat zones
preservation. In practice, these results form a toolkit for new hierarchical
methods where one can choose the most convenient representation. They
also invite us to process non-image data with morphological hierarchies.
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1 Introduction

Many image segmentation methods look for a partition of the set of image pixels
such that each region of the partition corresponds to an object of interest in
the image. Hierarchical segmentation methods, instead of providing a unique
partition, produce a sequence of nested partitions at different scales, enabling
to describe an object of interest as a grouping of several objects of interest that
appear at lower scales (see references in [I4]). This article deals with a theory
of hierarchical segmentation as used in image processing. More precisely, we
investigate different representations of a hierarchy: by a dendrogram (direct set
representation), by a saliency map (a characteristic function), and by a minimum
spanning tree (a reduced domain of definition). Our contributions are threefold:

1. a new bijection theorem between hierarchies and saliency maps (Th. [1]) that
relies on the quasi-flat zones hierarchies and that is simpler and more general
than previous bijection theorem for saliency maps; and

2. a new characterization of the saliency map of a given hierarchy as the mini-
mum function for which the quasi-flat zones hierarchy is precisely the given
hierarchy (Th. [2); and

3. a new characterization of the minimum spanning trees of a given edge-
weighted graph as the minimum subgraphs (for inclusion) whose quasi-flat
zones hierarchies are the same as the one of the given graph (Th. .

* This work received funding from ANR (contract ANR-2010-BLAN-0205-03),
CAPES/PVE (grant 064965/2014-01), and CAPES/COFECUB (grant 592,08).



The links established in this article between the maps that weight the edges of a
graph G, the hierarchies on the vertex set V(G) of G, the saliency maps on the
edge set E(G) of G, and the minimum spanning trees for the maps that weight
the edges of G are summarized in the diagram of Fig.
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Fig.1. A diagram that summarizes the results of this article. The solutions to prob-
lems (P1), (P2), and (P3) are given by Ths. and [3] respectively. The constraint
involved in (P) and (Ps) is to leave the induced quasi-flat zones hierarchy unchanged.
In the diagram, QF Z stands for quasi-flat zones (Eq. , and the symbols ¢ and ¥
stand for the saliency map of a hierarchy (Eq.[5) and of a map respectively (Section.

One possible application of these results is the design of new algorithms for
computing hierarchies. Indeed, our results allow one to use indifferently any of
the three hierarchical representations. This can be useful when a given oper-
ation is more efficiently performed with one representation than with the two
others. Naturally, one could work directly on the hierarchy (or on its tree-based
representation) and finally compute a saliency map for visualization purposes.
For instance, in [8/I7], the authors efficiently handle directly the tree-based rep-
resentation of the hierarchy. Conversely, thanks to Th. [I} one can work on a
saliency map or, thanks to Th. [3] on the weights of a minimum spanning tree
and explicitly computes the hierarchy in the end. In [5I15], a resulting saliency
map is computed before a possible extraction of the associated hierarchy of wa-
tersheds. In [9], a basic transformation that consists of modifying one weight on
a minimum spanning tree according to some criterion is considered. The cor-
responding operation on the equivalent dendrogram is more difficult to design.
When this basic operation is iterated on every edge of the minimum spanning
tree, one transforms a given hierarchy into another one. An application of this
technique to the observation scale of [7] has been developed in [9] (see Fig. [2).

Another interest of our work is to precise the link between hierarchical clas-
sification [I6] and hierarchical image segmentation. In particular, it suggests
that hierarchical image segmentation methods can be used for classification (the
converse being carried out for a long time). Indeed, our work is deeply related
to hierarchical classification, more precisely, to ultrametric distances, subdomi-
nant ultrametrics and single linkage clusterings. In classification, representation



of hierarchies, on which no connectivity hypothesis is made, are studied since
the 60’s (see references in [I6]). The framework presented in this article deals
with connected hierarchies and a graph needs to be specified for defining the
connectivity of the regions of the partitions in the hierarchies. The connectivity
of regions is the main difference between what has been done in classification
and in segmentation. Rather than restricting the work done for classification,
the framework studied in this article generalizes it. Indeed the usual notions of
classification are recovered from the definitions of this article when a complete
graph (every two points are linked by an edge) is considered. For instance, when
a complete graph is considered, a saliency map becomes an ultrametric distance,
which is known to be equivalent to a hierarchy. However, Th. [I|shows that, when
the graph is not complete, we do not need a value for each pair of elements in
order to characterize a hierarchy (as done with an ultrametric distance) but one
value for each edge of the graph is enough (with a saliency map). Furthermore,
when a complete graph is considered, the hierarchy of quasi-flat zones becomes
the one of single linkage clustering. Hence, Th. [3| allows to recover and to gener-
alize a well-known relation between the minimum spanning trees of the complete
graph and single linkage clusterings.

Fig. 2. Top row: some images from the Berkeley database [I]. Middle row: saliency
maps according to [9] developed thanks to the framework of this article. Bottom row:
segmentations extracted from the hierarchies with (a) 3, (b) 18, (c) 6 and (d) 16 regions.

2 Connected hierarchies of partitions

A partition of a finite set V is a set P of nonempty disjoint subsets of V' whose
union is V (ie,, VX,Y € P, XNY =0 if X # Y and U{X € P} = V).



Any element of a partition P of V is called a region of P. If x is an element
of V, there is a unique region of P that contains x; this unique region is denoted
by [P].. Given two partitions P and P’ of a set V, we say that P’ is a refinement
of P if any region of P’ is included in a region of P. A hierarchy (on V) is
a sequence H = (Py,...,Py) of indexed partitions of V' such that P;_; is a
refinement of P;, for any i € {1,...,¢}. If H = (Po,...,Py) is a hierarchy, the
integer / is called the depth of H. A hierarchy H = (Py, ..., Py) is called complete
if Py = {V} and if Py contains every singleton of V' (i.e., Po = {{z} | x € V}}).
The hierarchies considered in this article are complete.
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Fig. 3. Illustration of a hierarchy H = (Po,P1,P2,P3). For every partition, each
region is represented by a gray level: two dots with the same gray level belong to the
same region. The last subfigure represents the hierarchy # as a tree, often called a den-
drogram, where the inclusion relation between the regions of the successive partitions
is represented by line segments.

Figure [3| graphically represents a hierarchy H = (P, P1, Py, P3) on a rect-
angular subset V of Z? made of 9 dots. For instance, it can be seen that P is a
refinement of Py since any region of P is included in a region of P5. It can also
be seen that the hierarchy is complete since P is made of singletons and Pj is
made of a single region that contains all elements.

In this article, we consider connected regions, the connectivity being given
by a graph. Therefore, we remind basic graph definitions before introducing
connected partitions and hierarchies.

A (undirected) graph is a pair G = (V, E), where V is a finite set and FE
is composed of unordered pairs of distinct elements in V, i.e., E is a subset
of {{z,y} CV |z # y}. Each element of V is called a vertex or a point (of G),
and each element of F is called an edge (of G). A subgraph of G is a graph
G’ = (V' E') such that V' is a subset of V, and E’ is a subset of E. If G’ is
a subgraph of G, we write G’ C G. The vertex and edge sets of a graph X are
denoted by V(X) and E(X) respectively.

Let G be a graph and let (xq,...,2;) be a sequence of vertices of G. The
sequence (Zo,...,xx) is a path (in G) from xzq to xy if, for any 7 in {1,...,k},
{zi—1,z;} is an edge of G. The graph G is connected if, for any two vertices x
and y of G, there exists a path from x to y. Let X be a subset of V(G). The
graph induced by X (in G) is the graph whose vertex set is X and whose edge set
contains any edge of G which is made of two elements in X. If the graph induced
by X is connected, we also say, for simplicity, that X is connected (for G) . The



subset X of V(G) is a connected component of G if it is connected for G and
maximal for this property, i.e., for any subset Y of V(G), if Y is a connected
superset of X, then we have Y = X. In the following, we denote by C(G) the
set of all connected components of G. It is well-known that this set C(G) of
all connected components of G is a partition of V(G). This partition is called
the (connected components) partition induced by G. Thus, the set [C(G)], is the
unique connected component of G that contains x.

Given a graph G = (V, E), a partition of V is connected (for G) if any of
its regions is connected and a hierarchy on V is connected (for G) if any of its
partitions is connected.

For instance, the partitions presented in Fig. [3] are connected for the graph
given in Fig. a). Therefore, the hierarchy H made of these partitions, which is
depicted as a dendrogram in Fig. [3| (rightmost subfigure), is also connected for
the graph of Fig. [4](a).

For image analysis applications, the graph G can be obtained as a pixel or
a region adjacency graph: the vertex set of G is either the domain of the image
to be processed or the set of regions of an initial partition of the image domain.
In the latter case, the regions can in particular be “superpixels”. In both cases,
two typical settings for the edge set of G can be considered: (1) the edges of G
are obtained from an adjacency relation between the image pixels, such as the
well known 4- or 8-adjacency relations; and (2) the edges of G are obtained by
considering, for each vertex x of GG, the nearest neighbors of x for a distance in
a (continuous) features space onto which the vertices of G' are mapped.
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Fig. 4. Illustration of quasi-flat zones hierarchy. (a) A graph G; (b) a map w (numbers
in black) that weights the edges of G (in gray); (c, d, e, ) the A-subgraphs of G, with A =
0,1,2,3. The associated connected component partitions that form the hierarchy of
quasi-flat zones of G for w is depicted in Fig. [

3 Hierarchies of quasi-flat zones

As established in the next sections, a connected hierarchy can be equivalently
treated by means of an edge-weighted graph. We first recall in this section that
the level-sets of any edge-weighted graph induce a hierarchy of quasi-flat zones.
This hierarchy is widely used in image processing [12].



Let G be a graph, if w is a map from the edge set of G to the set RT of
positive real numbers, then the pair (G,w) is called an (edge-)weighted graph.
If (G,w) is an edge-weighted graph, for any edge u of G, the value w(u) is called
the weight of u (for w).

Important notation. In the sequel of this paper, we consider a weighted
graph (G, w). To shorten the notations, the vertex and edge sets of G are denoted
by V and FE respectively instead of V(G) and E(G). Furthermore, we assume that
the vertex set of G is connected. Without loss of generality, we also assume that
the range of w is the set E of all integers from 0 to |E| — 1 (otherwise, one could
always consider an increasing one-to-one mapping from the set {w(u) | v € E}
into E). We also denote by E® the set EU {|E|}.

Let X be a subgraph of G and let A be an integer in E®. The A-level set of X
(for w) is the set wy(X) of all edges of X whose weight is less than A:

wA(X) = {u € E(X) | w(u) <A} (1)

The A-level graph of X is the subgraph w;/ (X) of X whose edge set is the A-level
set of X and whose vertex set is the one of X:

wy (X) = (V(X), wa(X)). (2)

The connected component partition C(wY (X)) induced by the A-level graph
of X is called the A-level partition of X (for w).

For instance, let us consider the graph G depicted in Fig.[4(a) and the map w
shown in Fig. b). The 0-, 1-, 2- and 3-level sets of G contain the edges depicted
in Figs. [[c), (d), (e), and (f), respectively. The graphs depicted in these figures
are the associated 0-, 1-, 2- and 3-level graphs of G and the associated 0-, 1-, 2-
and 3-level partitions are shown in Fig.

Let X be a subgraph of G. If A\; and Ay are two elements in [E® such that A\; <
Ao, it can be seen that any edge of the Ai-level graph of X is also an edge of
the Ao-level graph of X. Thus, if two points are connected for the \-level graph
of X, then they are also connected for the As-level graph of X. Therefore, any
connected component of the Aj-level graph of X is included in a connected
component of the Ao-level graph of X. In other words, the Aj-level partition
of X is a refinement of the Ag-level partition of X. Hence, the sequence

QF Z(X,w) = (C(wy (X)) | A € E*) (3)

of all A-level partitions of X is a hierarchy. This hierarchy QF Z(X, w) is called
the quasi-flat zones hierarchy of X (for w). It can be seen that this hierarchy is
complete whenever X is connected.

For instance, the quasi-flat zones hierarchy of the graph G (Fig. a)) for the
map w (Fig. [4b)) is the hierarchy of Fig.

For image analysis applications, we often consider that the weight of an
edge u = {z,y} represents the dissimilarity of  and y. For instance, in the case
where the vertices of G are the pixels of a grayscale image, the weight w(u)
can be the absolute difference of intensity between z and y. The setting of the
graph (G, w) depends on the application context.



4 Correspondence between hierarchies and saliency maps

In the previous section, we have seen that any edge-weighted graph induces a
connected hierarchy of partitions (called the quasi-flat zones hierarchy). In this
section, we tackle the inverse problem:

(Py) given a connected hierarchy H, find a map w from E to E such that the
quasi-flat zones hierarchy for w is precisely H.

We start this section by defining the saliency map of H. Then, we provide
a one-to-one correspondence (also known as a bijection) between saliency maps
and hierarchies. This correspondence is given by the hierarchy of quasi flat-zones.
Finally, we deduce that the saliency map of H is a solution to problem (P;).

Until now, we handled the regions of a partition. Let us now study their
“dual” that represents “borders” between regions and that are called graph-cuts
or simply cuts. The notion of a cut will then be used to define the saliency maps.

Let P be a partition of V, the cut of P (for G ), denoted by ¢(P), is the set
of edges of G whose two vertices belong to different regions of P:

¢ (P)={{z,y} € E[[Pl. # [Py} . (4)

Let X = (Pg,...,P;) be a hierarchy on V. The saliency map of H is the
map ®(H) from E to {0,..., ¢} such that the weight of u for #(H) is the maxi-
mum value A such that u belongs to the cut of Py:

& (H) (u) = max {\ € {0,...,0} |ued(Py)}. (5)

In fact, the weight of the edge u = {z,y} for @(H) is directly related to the
lowest index of a partition in the hierarchy H for which = and y belong to the
same region:

@ (H) (u) = min {A e{l,....0} | [P\, = [P,\]y} ~1. (6)

For instance, if we consider the graph G represented by the gray dots and
line segments in Fig. (a), the saliency map of the hierarchy H shown in Fig. [3|is
the map shown with black numbers in Fig. (a). When the 4-adjacency relation
is used, a saliency map can be displayed as an image (Figs. e,f) and Fig.
which is useful for visualizing the associated hierarchy at a glance.

We say that a map w from FE to E is a saliency map if there exists a hierar-
chy H such that w is the saliency map of H (i.e. w = &(H)).

If ¢ is a map from a set S; to a set Sy and if ¢! is a map from Sy to S
such that the composition of =1 with ¢ is the identity, then we say that ¢ *
is the inverse of .

The next theorem identifies the inverse of the map @ and asserts that there
is a bijection between the saliency maps and the connected hierarchies on V.

Theorem 1 The map @ is a one-to-one correspondence between the connected
hierarchies on V of depth |E| and the saliency maps (of range E). The in-
verse 1 of & associates to any saliency map w its quasi-flat zones hierarchy:
o Hw) = QFZ(G,w).
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Fig.5. Illustration of a saliency map. The map (depicted by black numbers) is the
saliency map s = @(H) of the hierarchy H shown in Fig. [3| when we consider the
graph G depicted in gray. (b, ¢, d) the 1-, 2-; and 3-level graphs of G for s. The
vertices are colored according to the associated 1-, 2-, and 3-level partitions of G: in
each subfigure, two vertices belonging to a same connected components have the same
grey level. Subfigures (e) and (f) show possible image representations of a saliency map
when one considers the 4-adjacency graph.

Hence, as a consequence of this theorem, we have QF Z(G, &(H)) = H, which
means that H is precisely the hierarchy of quasi-flat zones of G for its saliency
map @(H). In other words, the saliency map of H is a solution to problem (Py).
For instance, if we consider the hierarchy H shown in Fig. 3] it can be observed
that the quasi-flat zones hierarchy for #(H) (see Fig. |o]) is indeed H. We also
deduce that, for any saliency map w, the relation &(QF Z(G,w)) = w holds
true. In other words, a given saliency map w is precisely the saliency map of its
quasi-flat zones hierarchy.

From this last relation, we can deduce that there are some maps that weight
the edges of G and that are not saliency maps. Indeed, in general, a map is
not equal to the saliency map of its quasi-flat zones hierarchy. For instance, the
map w in Fig. [dis not equal to the saliency map of its quasi-flat zones hierarchy
which is depicted in Fig. |5l Thus, the map w is not a saliency map. The next
section studies a characterization of saliency maps.

5 Characterization of saliency maps

Following the conclusion of the previous section, we now consider the problem:

(P2) given a hierarchy H, find the minimal map w such that the quasi-flat zones
hierarchy for w is precisely H.

The next theorem establishes that the saliency map of H is the unique solution
to problem (Ps).

Before stating Th. [2] let us recall that, given two maps w and w’ from E
to E, the map w’ is less than w if we have w’(u) < w(u) for any u € E.

Theorem 2 Let H be a hierarchy and let w be a map from E to E. The map w
is the saliency map of H if and only if the two following statements hold true:

1. the quasi-flat zones hierarchies for w is ‘H; and



2. the map w is minimal for statement 1, i.e., for any map w’ such that w' < w,
if the quasi-flat zones hierarchy for w' is H, then we have w = w'.

Given a weighted graph (G,w), it is sometimes interesting to consider the
saliency map of its quasi-flat zones hierarchy. This saliency map is simply called
the saliency map of w and is denoted by ¥(w). From Th. [2| the operator ¥
which associates to any map w the saliency map $(QF Z(G, w)) of its quasi-flat
zones hierarchy, is idempotent (i.e. ¥(¥(w)) = ¥(w)). Furthermore, it is easy
to see that ¥ is also anti-extensive (we have ¥(w) < w) and increasing (for any
two maps w and w’, if w > w’, then we have ¥(w) > ¥(w')). Thus, ¥ is a
morphological opening. This operator is studied, in different frameworks, under
several names (see [LIT3/TO/I8/T6]). When the considered graph G is complete,
it is known in classification (see, e.g., [I6]) that this operator is linked to the
minimum spanning tree of (G, w). The next section proposes a generalization of
this link.

6 Minimum spanning trees

Two distinct maps that weight the edges of the same graph (see, e.g., the maps of
Figs.[4(b) and[5|(a)) can induce the same hierarchy of quasi-flat zones. Therefore,
in this case, one can guess that some of the edge weights do not convey any
useful information with respect to the associated quasi-flat zones hierarchy. More
generally, in order to represent a hierarchy by a simple (i.e., easy to handle) edge-
weighted graph with a low level of redundancy, it is interesting to consider the
following problem:

(P3) given an edge-weighted graph (G,w), find a minimal subgraph X C G
such that the quasi-flat zones hierarchies of G and of X are the same.

The main result of this section, namely Th. [3] provides the set of all solutions to
problem (P;): the minimum spanning trees of (G, w). The minimum spanning
tree problem is one of the most typical and well-known problems of combinatorial
optimization (see [3]) and Th. [3| provides, as far as we know, a new character-
ization of minimum spanning trees based on the quasi-flat zones hierarchies as
used in image processing.

Let X be a subgraph of G. The weight of X with respect to w, denoted
by w(X), is the sum of the weights of all the edges in E(X): w(X) = 3, c p(x) w(uw).
The subgraph X is a minimum spanning tree (MST) of (G,w) if:

1. X is connected; and

2. V(X)=V;and

3. the weight of X is less than or equal to the weight of any graph Y satisfying
(1) and (2) (i.e., Y is a connected subgraph of G whose vertex set is V).

For instance, a MST of the graph shown in Fig. (b) is presented in Fig. @(a).

Theorem 3 A subgraph X of G is a MST of (G,w) if and only if the two
following statements hold true:



1. the quasi-flat zones hierarchies of X and of G are the same; and

2. the graph X is minimal for statement 1, i.e., for any subgraph Y of X, if
the quasi-flat zones hierarchy of Y for w is the one of G for w, then we
have Y = X.

Theorem [3| (statement 1) indicates that the quasi-flat zones hierarchy of a
graph and of its MSTs are identical. Note that statement 1 appeared in [6]
but Th. [3| completes the result of [6]. Indeed, Th. |3| indicates that there is no
proper subgraph of a MST that induces the same quasi-flat zones hierarchy as
the initial weighted graph. Thus, a MST of the initial graph is a solution to
problem (Ps), providing a minimal graph representation of the quasi-flat zones
hierarchy of (G, w), or more generally by Th.|l|of any connected hierarchy. More
remarkably, the converse is also true: a minimal representation of a hierarchy in
the sense of (P3) is necessarily a MST of the original graph. To the best of our
knowledge, this result has not been stated before.

For instance, the level sets, level graphs and level partitions of the MST X
(Fig. [6{a)) of the weighted graph (G, w) (Fig.[d]) are depicted in Figs. [6[(b), (c),
(d). It can be observed that the level partitions of X are indeed the same as
those of G. Thus the quasi-flat zones hierarchies of X and G are the same.
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Fig. 6. Illustration of a minimum spanning tree and of its quasi-flat zones hierarchy.
(a) A minimum spanning tree X (black edges and black circled vertices) of the weighted
graph of Fig. b); (b, ¢, d) the 1- , 2-, and 3-level graphs of X. The vertices are colored
according to the associated 1-, 2-, and 3-level partitions of X: in each subfigure, two
vertices belonging to the same connected components have the same color.

7 Saliency map algorithms

When a hierarchy # is stored as a tree data structure (such as e.g. the dendro-
gram of Fig. 7 the weight of any edge for the saliency map of this hierarchy
can be computed in constant time, provided a linear time preprocessing. Indeed,
the weight of an edge linking x and y is associated (see Eq. @ to the lowest index
of a partition for which x and y belongs to the same region. This index can be
obtained by finding the index of the least common ancestor of {z} and {y} in the
tree. The algorithm proposed in [2] performs this task in constant time, provided
a linear time preprocessing of the tree. Therefore, computing the saliency map
of H can be done in linear O(|E| + |V|) time complexity.



Thus, the complete process that computes the saliency map ¥(w) of a given
map w proceeds in two steps:

i) build the quasi-flat zones hierarchy H = QF Z(G, w) of G for w; and
ii) compute the saliency map ¥ (w) = ®(H).

On the basis of [6], step i) can be performed with the quasi-linear time algorithm
shown in [I5] and step ii) can be performed in linear-time as proposed in the
previous paragraph. Thus, the overall time complexity of this algorithm is quasi-
linear with respect to the size |E| 4 |V| of the graph G.

The algorithm sketched in [I3], based on [4], for computing the saliency
map of a given map w has the same complexity as the algorithm proposed
above. However, the algorithm of [13] is more complicated since it requires to
compute the topological watershed of the map. This involves a component tree
(a data structure which is more complicated than the quasi-flat zones hierarchy
in the sense of [6]), a structure for computing least common ancestors, and a
hierarchical queue [4], which is not needed by the above algorithm. Hence, as
far as we know, the algorithm presented in this section is the simplest algorithm
for computing a saliency map. It is also the most efficient both from memory
and execution-time points of view. An implementation in C of this algorithm is
available at http://www.esiee.fr/"{}info/sml

8 Conclusions

In this article we study three representations for a hierarchy of partitions. We
show a new bijection between hierarchies and saliency maps and we characterize
the saliency map of a hierarchy and the minimum spanning trees of a graph as
minimal elements preserving quasi-flat zones. In practice, these results allow us
to indifferently handle a hierarchy by a dendrogram (the direct tree structure
given by the hierarchy), by a saliency map, or by an edge-weighted tree. These
representations form a toolkit for the design of hierarchical (segmentation) meth-
ods where one can choose the most convenient representation or the one that
leads to the most efficient implementation for a given particular operation. The
results of this paper were used in [9] to provide a framework for hierarchicalizing
a certain class of non-hierarchical methods. We study in particular a hierarchi-
calization of [7]. The first results are encouraging and a short term perspective
is the precise practical evaluation of the gain of the hierarchical method with
respect to its non-hierarchical counterpart.

Another important aspect of the present work is to underline and to precise
the close link that exists between classification and hierarchical image segmen-
tation. Whereas classification methods were used as image segmentation tools
for a long time, our results incite us to look if some hierarchies initially designed
for image segmentation can improve the processing of non-image data such as
data coming from geography, social network, etc.. This topic will be a subject
of future research.


http://www.esiee.fr/~{}info/sm
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