Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9082))

Abstract

A new combinatorial coordinate system for cells in the diamond grid is presented, and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. The incidence (boundary and co-boundary) and adjacency relations of the cells can easily be captured by these coordinate values. Therefore, the new coordinate system can effectively by applied in morphological and topological operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Čomić, L., De Floriani, L.: Modeling and Manipulating Cell Complexes in Two, Three and Higher dimensions. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms: Theoretical Foundations and Applications to Computational Imaging, pp. 109–144. Springer (2012)

    Google Scholar 

  2. Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds of arbitrary dimension. Journal of Mathematical Imaging and Vision 50(3), 261–285 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Forman, R.: Morse Theory for Cell Complexes. Advances in Mathematics 134, 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Her, I.: Geometric transformations on the hexagonal grid. IEEE Transactions on Image Processing 4(9), 1213–1222 (1995)

    Article  Google Scholar 

  5. Herman, G.T.: Geometry of Digital Spaces. Birkhauser, Boston (1998)

    MATH  Google Scholar 

  6. Kardos, P., Palágyi, K.: Topology-preserving hexagonal thinning. Int. J. Comput. Math. 90(8), 1607–1617 (2013)

    Article  MATH  Google Scholar 

  7. Klette, R., Rosenfeld, A.: Digital geometry. Geometric methods for digital picture analysis. Morgan Kaufmann Publishers, San Francisco (2004)

    MATH  Google Scholar 

  8. Kovalevsky, V.A.: Geometry of Locally Finite Spaces (Computer Agreeable Topology and Algorithms for Computer Imagery). Editing House Dr. Bärbel Kovalevski, Berlin (2008)

    Google Scholar 

  9. Meyer, F., Angulo, J.: Micro-viscous morphological operators. In: Mathematical Morphology 8th International Symposium (ISMM), pp. 165–176 (2007)

    Google Scholar 

  10. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Advances in Pattern Recognition. Springer (2005)

    Google Scholar 

  11. Nagy, B.: Generalized triangular grids in digital geometry. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 20, 63–78 (2004)

    MATH  Google Scholar 

  12. Nagy, B.: Cellular topology on the triangular grid. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 143–153. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Annals of Mathematics and Artificial Intelligence (2014), http://dx.doi.org/10.1007/s10472-014-9404-z

  14. Nagy, B., Strand, R.: A connection between Zn and generalized triangular grids. In: Bebis, G., et al. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 1157–1166. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Nagy, B., Strand, R.: Neighborhood sequences in the diamond grid. In: Proceedings of IWCIA 2008 Special Track on Applications Image Analysis - From Theory to Applications, pp. 187–195 (2008)

    Google Scholar 

  16. Nagy, B., Strand, R.: Non-traditional grids embedded in Zn. International Journal of Shape Modeling 14(2), 209–228 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nagy, B., Strand, R.: Neighborhood sequences in the diamond grid - algorithms with four neighbors. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 109–121. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Nagy, B., Strand, R.: Neighborhood sequences in the diamond grid: Algorithms with two and three neighbors. Int. J. Imaging Systems and Technology 19, 146–157 (2009)

    Article  Google Scholar 

  19. Strand, R., Nagy, B., Borgefors, G.: Digital distance functions on three-dimensional grids. Theor. Comput. Sci. 412, 1350–1363 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Čomić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Čomić, L., Nagy, B. (2015). A Combinatorial 4-Coordinate System for the Diamond Grid. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_49

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics