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Abstract. This paper investigates several pruning techniques applied
on Binary Partition Trees (BPTs) and their usefulness for low-level pro-
cessing of PolSAR images. BPTs group pixels to form homogeneous re-
gions, which are hierarchically structured by inclusion in a binary tree.
They provide multiple resolutions of description and easy access to sub-
sets of regions. Once constructed, BPTs can be used for a large number
of applications. Many of these applications consist in populating the tree
with a specific feature and in applying a graph-cut called pruning to ex-
tract a partition of the space. In this paper, different pruning examples
involving the optimization of a global criterion are discussed and ana-
lyzed in the context of PolSAR images for segmentation. Initial experi-
ments are also reported on the use of Minkowski norms in the definition
of the optimization criterion.
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1 Introduction

The application of Binary Partition Trees (BPTs) [18] for remote sensing appli-
cations such as Polarimetric SAR (PolSAR) [2] and hyperspectral images [20, 21]
is currently gaining interest. BPTs are hierarchical region-based representations
in which pixels are grouped by similarity. Their construction is often based on
an iterative region-merging algorithm: starting from an initial partition, the pair
of most similar neighboring regions is iteratively merged until one region rep-
resenting the entire image support is obtained. The BPT essentially stores the
complete merging sequence in a binary tree structure. Once constructed, BPTs
can be used for a large number of tasks including image filtering with connected
operators, segmentation, object detection or classification [18, 3]. Many of these
tasks involve the extraction of a partition from the BPT through a graph cut.
In this paper, we focus on low level PolSAR image processing tasks. We study
in particular the interest of a specific graph cut called pruning in this context.

* This work has been developed in the framework of the project BIGGRAPH-
TEC2013-43935-R, financed by the Spanish Ministerio de Economia y Competi-
tividad and the European Regional Development Fund (ERDF).



We discuss and evaluate various pruning techniques formulated as the search in
the BPT of a partition optimizing a certain criterion. The criteria we analyze
take into account the specific nature of PoISAR data and the presence of speckle
noise resulting from the coherent integration of the electromagnetic waves. The
main contributions of this paper compared to [2,3,17] is the proposal of new
pruning strategies for POISAR images as well as the objective evaluation of the
resulting partitions thanks to a set of realistic simulated PolSAR images where
the underlying ground truth is available [8].

The paper is organized as follows: Section 2 is a short introduction on PolSAR
data. Section 3 discusses the BPT creation and its processing with graph cut.
Four pruning criteria useful for segmentation of PolSAR images are presented
in section 4 and evaluated in section 5. A preliminary study of the interest of
Minkowski norms in the definition of the optimization criterion is presented in
section 6. Finally, conclusions are reported in section 7.

2 PolSAR data

Synthetic Aperture Radars (SAR) are active microwave imaging systems. They
are becoming increasingly popular for Earth observation because they work in-
dependently of the day and night cycle and of weather conditions. A SAR system
essentially transmits an electromagnetic wave and records its echo to localize tar-
gets. In order to achieve a high spatial resolution, narrow beamwidth or equiva-
lently large antennas are necessary. SAR systems deal with this issue by making
use of the relative motion between the sensor and the target. As the radar moves,
it repeatedly illuminates the target with electromagnetic pulses. The echoes are
coherently recorded and combined in a post-processing that synthesizes a very
large array and creates a high resolution image. The speckle noise results from
the coherent addition of the scattered electromagnetic waves and is considered
as one of the main problems for the exploitation of SAR data.

In the early 90’s, multidimensional systems were developed. They provide
complex SAR images [S1, 52, ..., Sn] by introducing some sort of diversity. An
important example is Polarimetric SAR (PolSAR) [5,13] where the diversity
is based on considering different polarization states for the transmitted and
received electromagnetic waves. This makes SAR data sensitive to the target
geometry, including vegetation, and to the dielectric properties of the target.
For every resolution cell, a PoISAR system measures the scattering matrix:
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where h and v represent the horizontal and vertical polarization states and Sy, for
p,q € {h,v} denotes the complex SAR image where the reception (transmission)
polarization states is p (q).

Since the dimensions of the resolution cell are normally larger that the wave-
length of the electromagnetic wave, the scattered wave results from the coherent
combination of many waves. This coherent addition process is known as the



speckle. Although the speckle represents a true electromagnetic measurement,
its complexity is such that it is considered as a random process. Rewriting the
S matrix as a vector k [6]:

k= [Shh7 \/ﬁShva va]T (2)

k is characterized by a three dimensional zero-mean complex Gaussian pdf:

1
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Therefore, the distribution of k is completely described by the Hermitian positive
definite covariance matrix:
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where E{z} is the statistical expectation of x. The Maximum Likelihood Es-
timation (MLE) of C, i.e., the multilook, under the assumption of statistical
ergodicity and homogeneity, is obtained by substituting the statistical expecta-
tion by an averaging:

Z = (kk'), = %Zkikf ()
=1

where n indicates the number of independent looks or samples employed to
estimate C and k; is the it sample vector. The estimated covariance matrix Z
is statistically characterized by a Wishart distribution [12].

3 BPT creation and processing through graph cut

The BPT creation starts by the definition of an initial partition which can be
composed of individual pixels as in [2,3]. While this strategy guarantees a high
precision as starting point of the merging process, it also implies high computa-
tional and memory costs as many regions have to be handled. As an alternative,
the initial partition may correspond to an over-segmentation as a super-pixel
partition. This initial partition issue was studied in [17] where several alterna-
tive strategies were evaluated. The main conclusion of this study is that the
use of super-pixel partition as initial partition of the merging process can in-
deed drastically reduce the computational load of the BPT creation without any
significant impact on the quality of the regions and partitions represented by
the tree. One of the key point however is to use a denoising filter adapted to
PolSAR images such as [14, 7] before computing the super-pixel partitions. The
best combination found in [17] involves the use of the o-Lee denoising filter [14]
followed by the SLIC algorithm [1] to compute the super-pixel. Only the three
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Fig. 1. Tllustration of the pruning on a BPT. Left: The root of the BPT is connected
to a source node and the leaves are connected to a sink node. The pruning creates two
connect component where siblings belong to the same connected component. Right:
the pruned BPT is the connected component that includes the source. Its leaves define
the extracted partition.

diagonal elements of the covariance matrices Z (after denoising) have been used
to generate the super-pixels.

Once the initial partition is defined, the BPT construction is done by itera-
tively merging the pair of most similar neighboring regions. In the PolSAR case
of interest here, the information carried by pixels (i, j) of an image I corresponds
to the covariance matrix Z{j after denoising. To construct the BPT, we need to
define a region model and a similarity measure between neighboring regions.

We use the strategy defined in [2] where regions R are modeled by their
mean covariance matrix Zp = ﬁ Y ijer Z{j, where |R| is the region number
of pixels. If the region is homogeneous, this estimation corresponds to the MLE
defined by Eq. 5. The distance between neighboring regions, which defines the
merging order, relies on the Symmetric revised Wishart dissimilarity [2]. The
revised Wishart dissimilarity measure [9] is based on a statistical test assuming
that the two regions follow a Wishart pdf and that one pdf is known. Thus, it
is not symmetric as it depends on which region pdf is assumed to be known. In

order to define the merging order, a symmetric version is used:
drw (R, Rg) = (tr(Z! Zr,) + tr(Z 5, Zg,)) (|R1| + |Ra) (6)

where Ry, R are the two neighboring regions and ¢r(A) denotes the trace of the
A matrix and A~ its inverse.

Once the BPT has been constructed, it can be used for a wide range of
applications including filtering, segmentation or classification. In many cases, the
application relies on the extraction of a partition from the BPT. This process can
be seen as a particular graph cut called pruning that can be formally defined as



follows: Assume the tree root is connected to a source node and that all the tree
leaves are connected to a sink node. A pruning is a graph cut that separates the
tree into two connected components, one connected to the source and the other
to the sink, in such a way that any pair of siblings falls in the same connected
component. The connected component that includes the root node is itself a
BPT and its leaves define a partition of the space. This process is illustrated in
Fig. 1. In the sequel, we discuss several examples of PolSAR image pruning.

4 Optimum pruning of BPTs for PolSAR data

As previously mentioned, the extraction of a partition from the BPT can be
defined by a pruning strategy. In this paper, we are interested in pruning tech-
niques that extract partitions optimizing a certain criterion. More precisely, we
restrict ourselves to additive criteria, that are criteria defined as:

C=> ¢r (7)

where R is a set of regions described in the BPT that forms a partition and ¢g
a measure depending on R.

This type of criterion can be efficiently minimized using an dynamic pro-
graming algorithm originally proposed in [18] for global optimization on BPT.
The solution consists in propagating local decisions in a bottom-up fashion. The
BPT leaves are initially assumed to belong to the optimum partition. Then, one
checks if it is better to represent the area covered by two sibling nodes as two in-
dependent regions { Ry, R} or as a single region R (the common parent node of
R; and R3). The selection of the best choice is done by comparing the criterion
¢r evaluated on R with the sum of the criterion values ¢r, and ¢g,:

then select R
I ér < ér, + On, {else select R; and Ro (8)

The best choice (either “R” or “R;y plus Ry”) is stored in the node represent-
ing R with the corresponding criterion value (¢ or ¢r, + ¢g,). The procedure
is iterated up to the root and defines the best partition. This algorithm finds
the global optimum of the criterion on the tree and the selected regions form a
partition of the image.

We discuss now four pruning techniques for low-level processing and grouping
of PolSAR data. The main goal of theses pruning techniques is to segment the
images so that a precise estimation of the region contours as well as of the
polarimetric parameters can be done.

The first and most obvious pruning technique relies on the adaptation of
Square Error (SE) to the matrix case, here the covariance matrices. It simply
consists in computing the matrix norm of the difference between the covariance
matrices ij of the pixels belonging to a given region R and the covariance



matrix presenting the region model Zg:

¢r= Y |2, - Zzl, 9)
i.jER
where ||.|| represents the so-called Frobenius norm!. This criterion essentially

enforces the homogeneity of regions. However, on its own, it is useless because a
partition made of the initial leaves of the BPT will be optimum as this is where
the deviation of the individual pixels with respect to the region mean will be
minimized. Following classical approaches in functional optimization, ¢ can be
interpreted as a data fidelity term and combined with a data regularization term
which encourages the optimization to find partitions with a reduced number of
regions. As simple data regularization, we use a constant value A that penal-
izes the region presence. Therefore, the final homogeneity-based criterion to be
minimized is given by C'= )", ¢r with ¢r defined as follows:

2= 12— Zrl|, + X (10)
,JER

This first pruning criterion may be interesting to extract homogenous re-
gions in terms of the data covariance matrix but it does not take into account
the presence of the speckle noise. As discussed above the speckle noise is a ran-
dom process that is complex to characterize but it is often approximated by a
multiplicative noise [6]. Therefore, a second pruning criterion can be derived
from the first one normalizing the homogeneity measure by the average norm of
the region model. The corresponding ¢z can be written as:

oM = N 2] — Zg|l /2Rl + A (11)
i,jER

The third pruning criterion relies on the region similarity measure used for
the construction of the BPT. In section 3, we mentioned that a Wishart-based
measure was used to compute the similarity between neighboring regions. Eq. 6
can be adapted to measure the similarity between pixels and the region model. It
would lead to an expression such as: tr((Zl{j)*lZR) +tr((Zr)~'Z; ;). However,
the matrix inversion at the pixel level is computationally demanding and the
matrix may even be singular. Therefore, we used a simplified formulation of this
measure by taking into account only the diagonal elements of the matrices.

ishart Z{J(k,k)Q—FZ (k’ k)Q
RT= D 2 ( 2 DZA (T )“ (12)

i,jeR \ k=1,2,3

where ij(kz,k) and Zg(k, k) respectively represent the diagonal elements of
covariance matrices Zilj and Zg.

! The Frobenius norm of matrix A with elements [a(k,)] is: || A, = >y ok, )2



Finally, the last pruning criterion relies on a geodesic distance adapted to
the cone of positive definite Hermitian matrices [4]. This measure exploits the
geometry of the space defined by the covariance matrices and is given by:

liog (z,;l/zz{’j Zl_zl/Q) |, where log(.) represents the matrix logarithm. As pre-

viously, since this measure is quite complex to compute, we use a simplified ver-
sion taking into account only the diagonal elements of the matrices. The fourth
pruning criterion is then given by:

I

, Z1 (k. k
(Z)geodeszc _ Z Z In2 <ZZE[€,]€§> + A (13)

i,jeR \ k=1,2,3

where In represents the natural logarithm.

5 Evaluation

To objectively measure the performances of the pruning discussed in the previ-
ous section, we rely on a dataset of PolSAR images on which the ground-truth
polarimetric information is available. More precisely, we use the set of simulated
PolSAR images [8] where the underlying ground-truth, i.e. the class regions, is
modeled by Markov Random Fields. A set of typical polarimetric responses has
been extracted from an AIRSAR image (L-band) so that they represent the 8
classes found in the H /@ plane and randomly assigned to each class. Then, single
look complex images have been generated from the polarimetric responses us-
ing a Cholesky decomposition [11]. Examples of images and their corresponding
ground-truth, denoised images and super-pixel partitions are presented in Fig. 2.

Thanks to this dataset with ground-truth, we can measure the quality of the
pruning techniques in the context of segmentation because we know the ideal
partition. Fig. 3 shows the evaluation of the segmentation results as classically
done in the supervised case through Precision and Recall curves. On the left
side, the so-called Precision and Recall for boundaries [15] is presented. In this
case, each partition is evaluated by considering all pairs of neighboring pixels
and by classifying them in either boundary or interior segments. The Precision
and the Recall values of this classification are evaluated by comparison with
the classification resulting from the ground-truth partition. In addition to this
boundary-oriented evaluation, a region-oriented evaluation known as the Preci-
sion and Recall for objects and parts [16] is presented on the right side of Fig. 3.
In this context, regions of the partition are considered as potential candidates to
form regions of the ground-truth partition, and are classified as correct or not.
In both cases, the curves are formed by modifying the A value to get coarser or
finer partitions. The ideal system has Precision and Recall values equal to one.

As can be seen in Fig. 3, the region-oriented evaluation is more severe than
the boundary-oriented evaluation. This is to be expected as the boundary mea-
sure simply checks whether boundary elements in the ground-truth partitions
match boundary elements of the partitions extracted from the BPT. As the



Fig. 2. Examples of original PolSAR images (first row), their corresponding ground-
truth (second row), denoised images (third row) and super-pixel partitions (fourth row).
RGB-pauli color coding: the polarimetric channels |[HH — VV|, |[HV| and |HH +VV/|
are assigned to the RGB channels respectively.

partitions are rather dense, it not very difficult to find matching boundary ele-
ments. However, the boundary measure does not actually analyze whether the
ground-truth regions correspond to regions of the partitions computed from the
BPT. This issue is evaluated by the “objects and parts” measure (see [16] for
details on this issue). However, the conclusions on both plots are the same: the
best pruning technique is the one based on QS%AR'SE (Eq. 11). The pruning tech-
niques based on the Wishart pdf (Eq. 12) and the geodesic distance (Eq. 13)
seems to provide interesting results for very coarse partitions (precision values
close to one obtained for high values of A).

Precision and Recall curves describe the performances for the complete range
of pruning parameter values. However, they do not efficiently describe the system
sensitivity to the parameter value. To this end, Fig. 4 presents the F' value as a
function of the pruning parameter. The F value is classically used to summarize
the Precision P and Recall R trade-off. It is the harmonic mean of P and R:
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Fig. 3. Precision and Recall (PR) performances of the four pruning techniques (average
over the entire dataset). Left: PR for boundaries, Right: PR for objects and parts.
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Fig.4. F value as a function of the pruning parameter. Fy, (Fop) corresponds to the
Precision and Recall for boundaries (object and parts) curves. Top: ¢ZF and p7AR-SF,
Bottom: ¢VRVishart and ¢geodesic.

F = 2PR/(P + R). Fig. 4 shows that all pruning techniques provide stable
results for a wide range of A\ values. If we consider the best pruning approach
qﬁ%“R*SE for example, this means that, in practice, A values between 5 and 15
will extract similar partitions and there is no need to fine tune the parameter.
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Fig. 5. Results on real images. Right: Original images (RGB Pauli composition). Left:
Pruning with ¢3*f-9% (Eq. 11).
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Fig. 6. Precision and Recall (PR) performances of the h-increasing pruning technique
defined by Eq. 14 (average over the entire dataset). Left: PR for boundaries, Right:
PR for objects and parts.

Finally, the pruning with ¢54#-5F (Eq. 11) has been used on a L-band fully
polarimetric data set acquired in 2003 by the Deutsches Zentrum fiir Luftund
Raumfahrt (DLR) ESAR system over the area of the Oberpfaffenhofen airport
near Munich, Germany. The images are Single Look Complex with a pixel size
of 1,5x1,5m. Results are shown in Fig. 5 together with the original image. They
visually highlight the interest of the BPT to perform low-level processing of
PolSAR images while preserving the spatial resolution of the content.

6 Potential on non-additive criteria

It has been recently shown that the algorithm identifying optimum partitions
as described in section 4 is valid for a larger class of criteria than purely ad-
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ditive criteria such as C' = )", ¢gr. In particular [19] introduces the notion of
h-increasing criterion which is sufficient (and necessary) to guarantee that the
search algorithm identifies the optimum partition. Moreover, [10] shows that

Minkowski norms: C' = (3, gb‘j‘%)% ,Va, are h-increasing as well as their combi-
nation by addition or supremum. Therefore the same search algorithm can be
used for this larger class of criteria.

As a preliminary experiment to study the potential of h-increasing criteria
beyond additive ones (o = 1) for PolSAR data, we have studied a simple mod-
ification of the best pruning identified in the previous section: qu%AR*SE . We
evaluated the performances of the pruning based on the following criterion:

1

a

0= X (12~ Zall/1Zall )" |+ (14)
R

i, jER

The results in terms of precision and recall are shown in Fig. 6 for four values
of the o parameter. As can be seen, the classical additive approach (o = 1)
gives the best results in the sense that it allows to get closer to the ideal point
of Precision=1 and Recall=1. However, a values lower than one seem to give
better results for coarse partitions (large A values implying a cut close to the
root node). This is an interesting result that suggests that the use of Minkowski
norms has to be further investigated at least for PolSAR data.

7 Conclusions

This paper has discussed the interest of Binary Partition Trees (BPTs) for Pol-
SAR images and highlighted the usefulness of a particular type of graph cut
called pruning to extract partitions from the BPT. Four specific pruning tech-
niques involving the global optimization of a criterion related the region homo-
geneity have been evaluated. The best pruning strategy relies on a normalized
version of squared error where the normalization takes into account the specific
multiplicative nature of the speckle noise. Finally, preliminary results suggest
that the use of Minkowski norms has to be further investigated as it proved to
provide good results for pruning close to the root of the tree.
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