Skip to main content

Wiener Index on Lines of Unit Cells of the Body-Centered Cubic Grid

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9082))

Abstract

The Wiener Index of a graph, known as the “sum of distances” of a connected graph, is the first topological index used in chemistry to sum the distances between all unordered pairs of vertices of a graph. In this paper, the lines of unit cells of the body-centered cubic grid are used. These graphs contain center points of the unit cells and other vertices, called border vertices. Closed formulae are obtained to calculate the sum of shortest distances between pairs of border vertices, between border vertices and centers and between pairs of centers. Based on these formulae, their sum, the Wiener Index of body-centered cubic grid with unit cells connected in a row graph is computed. Some relationships between formulae and integer sequences are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Kandari, A., Manuel, P., Rajasingh, I.: Wiener Index of Sodium Chloride and Benzenoid Structures. The Journal of Combinatorial Mathematics and Combinatorial Computing 79, 33–42 (2011)

    MATH  MathSciNet  Google Scholar 

  2. Balaban, A.T., Mills, D., Ivanciuc, O., Basak, S.C.: Reverse Wiener indices. Croatica Chemica Acta 73, 923–941 (2000)

    Google Scholar 

  3. Bogdanov, B., Nikolić, S., Trinajstić, N.: On the three-dimensional Wiener number. Journal of Mathematical Chemistry 3, 299–309 (1989)

    Article  Google Scholar 

  4. Bollobás, B.: Graph Theory: An Introductory Course. Springer, New York (1979)

    Book  MATH  Google Scholar 

  5. Dobrynin, A.A., Gutman, I., Klavžar, S., Žigert, P.: Wiener index of hexagonal systems. Acta Appl. Math. 72, 247–294 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2004)

    Google Scholar 

  7. Klavzar, S., Gutman, I.: Wiener number of vertex-weighted graphs and a chemical application. Discrete Applied Mathematics 80, 73–81 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Klette, R., Rosenfeld, A.: Digital geometry – geometric methods for digital picture analysis. Morgan Kaufmann (2004)

    Google Scholar 

  9. Knor, M., Skrekovski, R.: Wiener Index of generalized 4-stars and of their quadratic line graphs. Australasian Journal of Combinatorics 58, 119–126 (2014)

    MATH  MathSciNet  Google Scholar 

  10. Manuel, P., Rajasingh, I., Arockiaraj, M.: Wiener and Szeged indices of Regular Tessellations. In: International Conference on Information and Network Technology (ICINT 2012). IPCSIT 37, pp. 210–214. IACSIT Press, Singapore (2012)

    Google Scholar 

  11. Mihalic, Z., Veljan, D., Amic, D., Nilkolic, S., Plavsic, D., Trianjstic, N.: The distance matrix in chemistry. J. Math. Chem. 11, 223–258 (1992)

    Article  Google Scholar 

  12. Mohar, B., Pisanski, T.: How to compute the Wiener index of a graph. J. Math. Chem. 2, 267–277 (1988)

    Article  MathSciNet  Google Scholar 

  13. Nagy, B., Strand, R.: Non-Traditional Grids Embedded in Zn. International Journal of Shape Modeling 14, 209–228 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. O’Keeffe, M.: Coordination sequences for lattices. Zeit. f. Krist. 210, 905–908 (1995)

    Article  Google Scholar 

  15. Sloane, N.: On-Line Encyclopedia of Integer Sequences (OEIS), http://oeis.org/

  16. Strand, R., Nagy, B.: Distances based on neighbourhood sequences in non-standard three-dimensional grids. Discrete Applied Mathematics 155, 548–557 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Strand, R., Nagy, B.: Path-based distance functions in n-dimensional generalizations of the face-and body-centered cubic grids. Discrete Applied Mathematics 157, 3386–3400 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Strand, R., Nagy, B., Borgefors, G.: Digital distance functions on three-dimensional grids. Theoretical Computer Science 412, 1350–1363 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wiener, H.: Structural determination of paraffin boiling points. Journal of American Chemical Society 69, 17–20 (1947)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mujahed, H., Nagy, B. (2015). Wiener Index on Lines of Unit Cells of the Body-Centered Cubic Grid. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_50

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics