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Abstract. In 1991 I described a particularly simple and elegant water-
shed algorithm, where the �ooding a topographic surface was scheduled
by a hierarchical queue. In 2004 the watershed line has been described
as the skeleton by zone of in�uence for the topographic distance. The
same algorithm still applies. In 2012 I de�ned a new distance based on
a lexicographic ordering of the downstream paths leading each node to
a regional minimum. Without changing a iota, the same algorithm does
the job..
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1 Introduction

This paper is singular as it analyses a paper published in 1991 [5], known and
used by many, describing an algorithm for constructing watershed partitions
(for a literature review on the watershed, see [9]). The title of this paper was
rather presomptuous "un algorithme optimal de ligne de partage des eaux",
which means "an optimal watershed algorithm". In the sequel we refer to it as
the "HQ algo."

Classically considering a grey tone function as a topographic surface, the
algorithm constructs a watershed partition by �ooding this surface, the darker
levels being �ooded before the brighter levels. At the same time it provides a
correct treatment of the plateaus of uniform grey tone: the �ooding starts at its
downward boundary and progresses inwards with uniform speed. The �ooding
is controlled by a hierarchical queue, i.e. a series of hierarchical FIFO queues.
Each queue is devoted to the �ooding of a particular level. The FIFO structure
cares for the �ooding of the plateaus.

If one considers by which other pixel each pixel is �ooded, one obtains a
�ooding trajectory. A pixel is assigned to the catchment basin of a particular
minimum m if there exists a �ooding trajectory between this pixel and m. A
pixel may be linked to several minima by distinct �ooding trajectories. The hier-
archical queues selects a particular �ooding trajectory for each pixel and assigns
this pixel to the minimum at the beginning of the trajectory. The quality of the
�nal watershed partition entirely relies on the choice of the best trajectories.



The algorithm has been developed for a lexicographic order of �ooding: be-
tween two pixels, the �rst to be �ooded is the lowest ; and if they have the
same gray tone, the �rst to be �ooded is the nearest to the lower boundary of a
plateau.

Later the topographic distance has been developed and a more selective order
relation de�ned. If a node has lower neighbors, it may be �ooded only by one of
the lowest of them. The behaviour on plateaus remains identical. The "HQ algo".
remains valid for this new lexicographic distance derived from the topographic
distance [8,6].

Finally, in 2012, I introduced a new distance for which the geodesics are the
steepest possible [7]. The steepest paths are chosen among the smallest for a
lexicographic order relation based on the gray tone values of all pixels along
the path. It was a real surprise to discover that, again, without the slightest
modi�cation, the algorithm of 1991 does the job.

The paper explains why the HQ algorithm remains valid for these 3 types
of very di�erent distances. A slight modi�cation of the HQ algorithm permits
to prune the graph in order to keep only the in�nitely steep �ooding paths. We
conclude by some applications using these paths.

We conclude, recognizing that the HQ algorithm was, indeed, in more senses
than suspected, optimal.

2 The early days of the watershed

2.1 The geodesic distance and the skeleton by zones of in�uence

Christian Lantuejoul, in order to model a polycrystalline alloy, de�ned and stud-
ied the skeleton by zones of in�uence of a binary collection of grains in his thesis
[3] ; he studied the geodesic metric used for constructing a SKIZ in [4]. The short-
est distance dZ(x, y) between two pixels x and y in a domain Z is the length of
the shortest path linking both pixels within the domain. If X is a subset of Z,
we likewise de�ne the geodesic distance between a point x ∈ Z and the set X,
as the shortest path between x and a pixel belonging to X.

Consider now a set X ⊂ Z, union of a family of connected components
Xi. The skeleton by zone of in�uence of X, or skiz(X,Z) assigns to each con-
nected component Xi the pixels which are closer to Xi than to any other set Xj

for the geodesic distance dZ .

The �rst implementation of the SKIZ was made on the TAS, a hardwired
processor developed at the CMM and used homotopic thickenings for construct-
ing the SKIZ. With the advent of cheaper memories and the personal computer,
it was possible to represent images on random access memories (whereas the
TAS permitted only raster scan access to the images). Luc Vincent proposed a
very e�cient implementation of a SKIZ [10]; the growing of the various germs
being governed by a FIFO. The algorithm for constructing the SKIZ skiz(X,Z)
of a family of particles X = (Xi) within a domain Z is the algorithm 1.



Algorithme 1: A �fo based algorithm for constructing the geodesic SKIZ

Input : A family of seeds (Ki)i∈I within a domain Z

Result : The geodesic SKIZ of the of seeds (Ki)i∈I within Z

1 Initialisation: Create a FIFO Q
Introduce the inside boundary pixels of the seeds Ki in Q

2 while Q not empty do

3 extract the node j with the highest priority from Q
for each unlabeled neighboring node i ∈ Z of j do

4 label(i) = label(j)
put i in the queue Q

2.2 The level by level construction of the watershed

The watershed partition πf of a grey tone image represented by a function f,
de�ned on a domain D and taking its value in the interval [0, N ] is then easily
obtained with the algorithm 2, by iteratively constructing a series of SKIZ in
increasing domains depending on the successive thresholds of f [1]. In algorithm
2, the notation {f = λ} means the set of pixels of D for which f takes the value
λ

Algorithme 2: A level by level watershed algorithm

Input : A function f

Result : the watershed partition πf of f

1 Initialisation: Initialize the set πf with the regional minima of f

2 for each gray level λ = 1, N do

3 πf = skiz(πf , πf ∪ {f = λ})

One gets the watershed algorithm by introducing the algorithm for the SKIZ
into the algorithm of C. Lantuéjoul. L. Vincent and P.Soille completed the al-
gorithm by adding a clever mechanism for �nding the successive thresholds of a
grey tone function [10].

2.3 A hierarchical queue algorithm for the watershed

The algorithm 2 repeats the SKIZ construction for all successive levels of the
grey tone function sequentially. For each level it uses the algorithm 1. When a
pixel is dequeued from the FIFO, its neighbors are labeled if they belong to the



same level set, and discarded if not. They will be processed later, when the level
set corresponding to their greytone value is processed. The principal innovation
of the "HQ algo" [5] is to create all FIFOs at once, each being devoted to a
distinct grey tone, with the advantage to to put all pixels which are met in a
waiting position before they �ood neighboring pixels. When a node x is dequeued
all its neighbors may be processed: the neighbors with the same grey tone as x
are put in the same FIFO as x, the others are put in the FIFOs corresponding
to their grey tone. The resulting algorithm 3 is particularly simple.

Algorithme 3: The hierarchical queue based watershed algorithm

Input : A gray tone function

Result : A partition of labeled catchment basins

1 Initialisation: Detect and label the regional minima
Create a hierarchical queue HQ
Introduce the inside boundary pixels of the minima in the HQ

2 while HQ not empty do

3 extract the node j with the highest priority from the HQ
for each unlabeled neighboring node i of j do

4 label(i) = label(j)
put i in the queue with priority fi

Analysis of the algorithm The nodes are processed according to a dual order:
nodes with a lower altitude are �ooded before nodes with a higher altitude. And
nodes within a plateau are processed in an order proportional to the distance to
the lower border of the plateau.

3 The watershed as the SKIZ for the topographic

distance

Each image de�ned on a grid may be considered as a particular graph. The
pixels are the nodes of the graph ; neighboring pixels are linked by a node. All
algorithms de�ned so far immediately to node weighted graphs. We now give a
few reminders on graphs

3.1 Reminders on node weighted graphs

A non oriented graph G = [N,E] contains a set N of vertices or nodes and a
set E of edges ; an edge being a pair of vertices. The nodes are designated with
small letters: p, q, r...The edge linking the nodes p and q is designated by epq.



A path, π, is a sequence of vertices and edges, interweaved in the following
way: π starts with a vertex, say p, followed by an edge epq, incident to p, followed
by the other endpoint q of epq, and so on.

Denote by Fn the sets of non negative weight functions on the nodes. The
function ν ∈ Fn takes the weight νp on the node p.

A subgraph G′ of a node weighted graph G is a �at zone, if any two nodes of
G′ are connected by a path along which all nodes have the same weight. If fur-
thermore all neighboring nodes have a higher altitude, it is a regional minimum.
A �ooding path is a path along which the node weights is never increasing.

De�nition 1. The catchment zone of a minimum m is the set of nodes linked

by a �ooding path with a minimum.

Obviously, a node may be linked with several regional minima through dis-
tinct �ooding paths. The catchment zones may overlap and do not necessarily
form a partition. They form a partition if each node is linked with one and only
one basin through a �ooding path. As there may be several paths towards dis-
tinct minima, the "HQ algo." selects for each node a particular �ooding path
linking this node with are regional minimum. The next section shows how to
restrict even more the admissible �ooding paths.

3.2 The topographic distance

Consider an arbitrary path π = (x1, x2, ..., xp) of the node weighted graph G
between two nodes x1 and xn. The weight νp at node xp can be written:

νp = νp − νp−1 + νp−1 − νp−2 + νp−2 − νp−3 + ....+ ν2 − ν1 + ν1
The node k−1 is not necessarily the lowest node of node k, therefore νk−1 ≥

εnνk and νk − νk−1 ≤ νk − εnνk.
Replacing each increment νk − νk−1 by νk − εnνk will produce a sum νp −

εnνp + νp−1 − εnνp−1 + ....+ ν2 − εnν2 + ν1 which is larger than νp. It is called
the topographic length of the path π = (x1, x2, ..., xp).

The path with the shortest topographic length between two nodes is called
the topographic distance between these nodes. It will be equal to νp if and only if
the path (x1, x2, ..., xp) precisely is a path of steepest descent, from each node to
its lowest neighbor. The topographic distance has been introduced independantly
in [8,6].

Consider again the "HQ algo". The regional minima are labeled. During the
execution of the algorithm, each node p, when dequeued, assigns its label to its
neighbors without label. If a node q has no label when its neighboring node p
is dequeued, it means that q has no other neighbor which has been dequeued
before. If the nodes p and q have distinct weights, it means that p is one of its
lowest neighbors: between nodes with distinct grey tones, it is the topographic
distance which prevails. If the nodes p and q have the same weight, it means that
p and q both belong to the same plateau and p is closer to the lower border of
the plateau than q.We obtain like that a more restrictive lexicographic distance,
where the �rst term is the topographic distance and the second term the distance
to the lower boundaries of the plateaus.



Fig. 1. The hierarchical queue algorithm constructing the watershed partition of a
node weighted graph

3.3 Illustration of the HQ algorithm applied to node weighted

graphs.

Fig.1 shows how the hierarchical queue algorithm constructs the watershed par-
tition of a node weighted graphs.

A hierarchical queue is created. The regional minima, the nodes a, b and c
are detected and labeled each with a distinct colour ; having the grey tone 1,
they are put into the FIFO of priority 1.

The �rst node to be extracted is a. Its neighboring node d, has no label ; d
gets the label of a and is introduced in the FIFO of priority 2.

The node b is extracted. It has no neighbor. The node c propagates its label
to e, which is introduced in the FIFO of priority 2.

The node d gives its labels to its unlabeled neighbors f , g and i. The nodes
f and g are introduced in the FIFO of priority 3 and the node i in the FIFO of
priority 4.

The node f has no unlabeled neighbor. The node g gives its label to the
node j ; the node j is introduced in the FIFO with a priority 5 as shown in the
last con�guration of the HQ in �g.1. All nodes of the graph are now labeled and
constitute the watershed partition of the graph. The last nodes are extracted
from the HQ without introducing new nodes in the HQ. When the HQ is empty,
the algorithm stops.



4 The watershed as the SKIZ for in�nitely steep

lexicographic distance

The hierarchical queue algorithm presented so far makes 2 jobs. The �rst job
is selecting a family of �ooding paths which are all geodesics of the same dis-
tance function. If several geodesics link a node to several regional minima, it
furthermore selects one of them, the �rst which is able to label a node without
label.

We now establish, that in fact the HQ algorithm makes a much more severe
selection between �ooding paths as it appears so far. It does in fact implement a
much more selective distance function, based on an in�nite lexicographic order.

4.1 A lexicographic preorder relation between steepest path

Consider now a �ooding path, i.e. a path along which the node weights are
never increasing, ending at a node m belonging to a regional minimum. If m is
an isolated regional minimum node, we arti�cially add a loop edge linking the
node m with itself. Like that the �ooding path, as it reaches the node m may be
prolongated into a path of in�nite length ; if m is an isolated regional minimum
node, the cycles around in the added loop edge ; if m has a neighboring node p
belonging to the same regional minimum, the path oscillates between m and p.

A lexicographic preorder relation compares the in�nite paths
π = (p1, p2, ...pk, ...) and χ = (q1, q2, ...qk, ...):

* π ≺ χ if νp1 < νq1 or there exists t such that
∀l < t : νpl

= νql
νpt < νqt

* π � χ if π ≺ χ or if ∀l : νpl
= νql .

The preorder relation � is total, as it permits to compare all paths with the
same origin p. The lowest of them are called the steepest paths of origin p. It
is obvious that if π is a steepest path of origin p towards a regional minimum
m, then any subpass obtained by suppressing a given number of nodes at the
beginning of the path also is a steepest path.

A node may be linked by �ooding paths with 2 or more distinct regional
minima. In this case the watershed zones overlap. If one considers only the
steepest paths, this will rarely happen, as the weights all along the paths should
be absolutely identical. In particular, steepest paths reaching regional minima
with di�erent altitude necessarily have a distinct steepness. One obtains like that
highly accurate watershed partitions, whereas the classical algorithms, being
myopic as they use only the adjacent edges of each node, pick one solution out
of many.

4.2 The in�nitely steep lexicographic distance

We de�ne the in�nitely steep lexicographic distances (in short ∞sld) between
nodes and regional minima as follows. The distance χ(p,m) between a node
p and a regional minimum m is equal to ∞ if there exists no steepest path



between p and a node belonging to m. Otherwise it is equal to the sequence of
never increasing weights of the nodes along a steepest path linking p and a node
belonging to m.

The in�nitely steep skeleton by in�uence is the SKIZ associated to this dis-
tance [7]. Surprisingly enough, the HQ algo.precisely implements the in�nitely
steep lexicographic distance.

We write χp for the ∞sld of each node. It is an in�nite series of weights, the
�rst in the series being the weight of the node p itself.

For a regional minimum node m, this weight is equal to an in�nite series of
identical values νm. As the regional minima nodes are introduced in the FIFO
with the same priority as their weights, they are also ranked according to their
distances χm.

Suppose now that when a node p is extracted from the HQ, all nodes labeled
so far have got their correct ∞sld distance. The ∞sld distance of p is χp and
has been correctly estimated. If q is a neighboring node of q without label, this
means that p is the neighbor of q with the lowest ∞sld distance. The ∞sld
distance of q is then obtained by appending the weight νq of q at the beginning
of the ∞sld distance of p : χp = νq B χp. The node q gets the same label as
the node p, and is introduced in the FIFO with the priority equal to its weight
νq. It takes a place in this FIFO after all nodes with the same weight but with
lower∞sld distances and before all nodes with the same weight but with higher
∞sld distances.

The order in which each node �oods its neighbors is much more subtle as
imagined in 1991: the nodes �ood their neighbors according to their ∞sld dis-
tances. The order in which the plateaus are �ooded is only a particular case.
When a plateau is �ooded, its lower boundary pixels are not equivalent, but
enter into play according to their own ∞sld distances.

4.3 The watershed for edge weighted graphs

There are situations where one desires obtaining the watershed partition as-
sociated to an edge weighted graph. For instance, the relations between the
catchment basins of a topographic surface also may be modelled as a graph. The
catchment basins are the nodes of the graph : neighboring basins are linked by
an edge, which is weighted by the altitude of the pass point leading from one
basin to the other.

The de�nition of regional minima, �ooding paths and catchment basins are
similar to those de�ned for node weighted graphs.

Denote by Fe the sets of non negative weight functions on the edges. The
function η ∈ Fe takes the value ηpq on the edge epq, and the graph holding only
edge weights is designated by G(η, nil).

A subgraph G′ of an edge weighted graph G is a �at zone, if any two nodes
of G′ are connected by a path with uniform edge weights. If in addition, all
edges in its cocycle have a higher altitude, it is a regional minimum. A path
π = {v1.e12.v2.e23.v3 · · · } is a �ooding path, if each edge ek = (vk, vk+1) is one



Fig. 2. A: an edge weighted graph
B: each edge which is not the lowest edge of one of its extremities has been suppressed.
Each node is assigned a weight equal to the weight of its lowest adjacent edge.
C: The edge weights have been dropped and the regional minima detected and labeled.

of the lowest edges of its extremity vk, and if along the path the edge
weights are never increasing.

De�nition 2. The catchment zone of a regional minimum m is the set of nodes

linked by a �ooding path having its end-node within m.

Jean Cousty et al. studied the watershed on edge weighted graphs, calling it
watershed cuts, as each catchment basins is represented by a connected subgraph
or a tree [2]. Cousty found that in some respects, the watershed on edge weighted
graphs is superior that the watershed on node weighted graphs.

In fact, there is no such superiority and I established in [7] the perfect equiv-
alence of node or edge weighted graphs with respect to the watershed. Figure
2 shows how to transform an edge weighted graph into a node weighted graph
having the same regional minima, �ooding paths and catchment zones as the
initial edge weighted graph. Figure 2A presents an edge weighted graph. The
edges which are not the lowest of one of their extremities do not belong to any
�ooding path. In �gure 2B, each edge which is not the lowest edge of one of its
extremities has been suppressed. Each node is assigned a weight equal to the
weight of its lowest adjacent edge. Finally in �gure 2C, the edge weights have
been dropped and the regional minima detected and labeled. The HQ algorithm
for node weighted graphs may be applied on this graph, yielding the correct
watershed partition for the initial edge weighted graph.

4.4 Constructing the steepest subgraph of a node or edge weighted

graph

We have established that the HQ algorithm choses among al �ooding paths the
steepest. If there are 2 paths with identical weights leading to 2 distinct minima,
it does an arbitrary choice between both for constructing a watershed partition.

It is possible to slightly modify the HQ algorithm for constructing a sub-
graph G̃ with the same nodes as the initial graph but without any edge which
does not belong to a steepest path. We have seen that all nodes with the same



Algorithme 4: Construction of the steepest partial subgraph of G

Input : G = [N,E], a node weighted graph

Result : G̃ = [N, Ẽ], the steepest partial graph of G

1 Initialisation: HQ = hierarchical queue
Create a set S containing the regional minima of G
Put the inside boundaries of the regional minima in HQ
Create G̃ = [N,∅]
Close the FIFOs

2 while HQ not empty do

3 extract all nodes up to the �rst tag into a set P
Suppress this tag
for each q ∈ ∂+P ∩ S do

4 for each p ∈ P, such that (p, q) neighbors do

5 Ẽ = Ẽ ∪ eqp
6 S = S ∪ {q}

put q in the queue with a priority equal to its weight

7 Close all FIFOs

Fig. 3. A hierarchical queue algorithm for constructing the steepest paths (bold red
edges) in a node weighted graph.



lexicographic distance to a minimum are regrouped in the same FIFO before
they �ood their un�ooded neighbors. We will introduce tags in the FIFOs of the
HQ in order to separate between 2 tags all nodes with the same ∞sld distance.
In algorithm 4, the expression "close the FIFOs" means introduce a tag in all
non empty FIFOs which are without a tag on top.

At initialization a HQ is created. The boundary nodes of the regional minima
are introduced in a set S and in the FIFOs corresponding to their weight and all
non empty FIFOs are closed. The set S will contain the union of all nodes which
are or have been in the HQ. The algorithm stops when S contains all nodes of
N.

As long as the hierarchical queue is not empty, all nodes with the same highest
prioriry are extracted, including the tag itself. They are put into a set P.We call
∂+P the set of nodes which are not in P but have a neighbor in P. The set ∂+P
∩S represents the nodes of ∂+P which are not yet in the set S. For each couple
of nodes (p, q), p ∈ ∂+P ∩S and q /∈ S, the edge epq is added to the edges Ẽ of

the graph G̃ (these edges are indicated in red in �g.3) . The complete algorithm
is described in algorithm 4.

Ilustration of the algorithm (�g.3):
A hierarchical queue is created. The boundary nodes of the regional minima,

here the nodes a, b and c are put in the HQ. A tag (red line) is added to the
FIFO.

The �rst set of most priority nodes (a, b, c) are extracted from the HQ in-
cluding the tag in top of them. The node d is neighbor of a and of b. The edges
ead and ebd are created in Ẽ. The node e is neighbor of the node c. An edge ece
is created in Ẽ. The nodes d and e are put in the FIFO of priority 2 and in the
set S; this FIFO is then closed, by adding a tag (second �gure in �g.3). The next
group of nodes below a tag to be extracted are the nodes d and e. The node d
has three neighbors (f, i, g). The node g is also neighbor of the node e. The node

h is a second neighbor of e. The edges edf , edi, edg and eeg, eeh are created in Ẽ,
the nodes f, i, g, h are introduced in the HQ in their corresponding FIFOs and
in the set S. The open FIFOs are then closed (third �gure in �g.3). The next
group of nodes are (f, g, h). The nodes g and h have a neighbor outside S, the

node j The edges egj , ehj are created in Ẽ, and the node j introduced in the HQ
and in S. The node i has no neighbor outside S. At this point all nodes of N
are inside S. The algorithm will stop when the last nodes are extracted without
sending new nodes in the HQ.

Application: Fig.4A represents a digital elevation model. In Fig.4B a number
of points have been hand marked. Following the ∞ − steepest paths starting
from these points creates the upstream of the rivers. It is important for this
application that all steepest paths are detected, in order to avoid any bias.

5 Conclusion

The HQ algorithm has been developed with a given de�nition of the watershed
in mind and revealed to be still valid for two di�erent mathematical formulations



Fig. 4. Left : a digital elevation model
Center: Hand marked extremities of rivers
Right: The union of the steepest paths having these nodes as extremities.

of the watershed. This paper illustrates the major and often ignored role of the
data structure used for implementing a mathematical concept: among all possible
solutions compatible with a particular de�nition, it does a hidden sampling.
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