Skip to main content

Fuzzy Natural Logic: Towards Mathematical Logic of Human Reasoning

  • Chapter
  • First Online:

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 325))

Abstract

One of the often repeated proclaims appearing in the papers on fuzzy sets and fuzzy logic is their ability to model semantics of some linguistic expressions so that the inherent vagueness of the former is also captured. Recall that this direction of research was initiated by L.A. Zadeh already in his early papers and since then, most of the applications of fuzzy sets emphasize presence of natural language, at least in hidden form. In this paper we argue that the potential of fuzzy set theory and fuzzy logic is strong enough to enable developing not only a working model of linguistic semantics but even more—to develop a model of natural human reasoning that proceeds in natural language. We bring forward the concept of fuzzy natural logic (FNL) that is a mathematical theory whose roots lay in the concept of natural logic developed by linguists and logicians. Of course, this cannot be realized without cooperation with linguists. On the other hand, it seems reasonable not to try to solve all the problems raised by the linguistic research but rather to develop a simplified model that would capture the main features of the semantics of natural language and thus made it possible to realize sophisticated technical applications. In the paper, we will show that basic formalism of FNL has already been established and has potential for further development. We also outline how model of the meaning of basic constituents of natural language (nouns, adjectives, adverbs, verbs) can be developed and the human-like reasoning can proceed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Cf. e.g., [60].

  2. 2.

    See, e.g., [39] where a well working mathematical model of the sorites paradox (a typical feature of vagueness) has been proposed. It is also proved in this paper that the developed model copes with the typical phenomenon of vagueness manifesting itself in the semantics of degree adjectives (adjectives such as “tall, small”, etc.).

  3. 3.

    See, e.g., [25, 58] and elsewhere.

  4. 4.

    [39]; see also [38].

  5. 5.

    In type theory, all syntactical objects including variables and connectives are taken as formulas.

  6. 6.

    By currying, we may consider only unary functions.

  7. 7.

    We speak about indefinite and specifying grammateme of a noun, respectively, cf. [33, 57].

  8. 8.

    The detailed presentation and an informal justification of \(TEV\) can be found in [39].

  9. 9.

    This is quite natural because the set of truth values is assumed to be MV-algebra, namely the Łukasiewicz one whose support set is \([0, 1]\).

  10. 10.

    This sentence is often discussed by L.A. Zadeh in his lectures.

  11. 11.

    More about this phenomenon can be found, e.g., in [14].

  12. 12.

    For simplicity, we consider only one variable in the antecedent.

  13. 13.

    See [38, 46] for the details.

  14. 14.

    Note that for specific elements assigned to \(x, y\), the intension (8.19) provides a truth value.

  15. 15.

    For the detailed linguistic analysis of these concepts, see, e.g., [14].

  16. 16.

    In fact, we only need the number of formulas to be finite and reasonably small.

  17. 17.

    For the details, see [45].

References

  1. Andrews, P.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Kluwer, Dordrecht (2002)

    Book  Google Scholar 

  2. Barker, C.: The dynamics of vagueness. Linguist. Philos. 25(1), 1–36 (2002)

    Article  Google Scholar 

  3. Beelsey, K.: Evaluative adjectives as one-place predicates in Montague grammar. J. Semant. 3–4, 195–249 (1982)

    Google Scholar 

  4. Cignoli, R.L.O., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  5. Davis, E., Morgenstern, L.: Introduction: progress in formal commonsense reasoning. Artif. Intell. 153, 1–12 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dowty, D.: Word Meaning and Montague Grammar: The Semantics of Verbs and Times in Generative Semantics and in Montague’s PTQ. Springer, Berlin (1979)

    Google Scholar 

  7. Duží, M., Jespersen, B., Materna, P.: Procedural Semantics for Hyperintensional Logic. Springer, Dordrecht (2010)

    Google Scholar 

  8. Dvořák, A., Novák, V.: Fuzzy logic deduction with crisp observations. Soft Comput. 8, 256–263 (2004)

    Article  MATH  Google Scholar 

  9. Dvořák, A., Holčapek, M.: L-fuzzy quantifiers of the type \(\langle 1\rangle \) determined by measures. Fuzzy Sets Syst. 160, 3425–3452 (2009)

    Article  MATH  Google Scholar 

  10. Dvořák, A., Novák, V.: Formal theories and linguistic descriptions. Fuzzy Sets Syst. 143, 169–188 (2004)

    Article  MATH  Google Scholar 

  11. Dvořák, A., Novák, V.: Towards automatic modeling of economic texts. Mathw. Soft Comput. XIV(3), 217–231 (2007)

    Google Scholar 

  12. Glöckner, I.: Fuzzy Quantifiers: A Computational Theory. Springer, Berlin (2006)

    Google Scholar 

  13. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  14. Hajičová, E., Partee, B.H., Sgall, P.: Topic-Focus Articulation, Tripartite Structures, and Semantics Content. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  15. Holčapek, M.: Monadic L-fuzzy quantifiers of the type \(\langle 1^n, 1\rangle \). Fuzzy Sets Syst. 159, 1811–1835 (2008)

    Article  MATH  Google Scholar 

  16. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, Chichester (1999)

    MATH  Google Scholar 

  17. Kacprzyk, J., Wilbik, A.: Zadrożny: linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets Syst. 159, 1485–1499 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Keenan, E., Westerstahl, D.: Quantifiers in formal and natural languages. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 837–893. Elsevier, Amsterdam (1997)

    Chapter  Google Scholar 

  19. Kennedy, C.: Vagueness and grammar: the semantics of relative and absolute gradable adjectives. Linguist. Philos. 30(3), 1–45 (2007)

    Article  Google Scholar 

  20. Kerre, E., De Cock, M.: Linguistic modifiers: an overview. In: Martinez, J. (ed.) Fuzzy Logic and Soft Computing, pp. 69–86. Kluwer Academic, Boston (1999)

    Chapter  Google Scholar 

  21. Lakoff, G.: Linguistics and natural logic. Synthese 22, 151–271 (1970)

    Article  MATH  Google Scholar 

  22. Lakoff, G.: Hedges: a study in meaning criteria and logic of fuzzy concepts. J. Philos. Log. 2, 458–508 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lawry, J., Qin, Z.: LFOIL: linguistic rule induction in the label semantics framework. Fuzzy Sets Syst. 159, 435–448 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 186–195 (1966)

    MATH  MathSciNet  Google Scholar 

  25. MacCartney, B., Manning, C.D.: An extended model of natural logic. In: IWCS-8’09 Proceedings of Eighth International Conference on Computational Semantics, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 140–156 (2009)

    Google Scholar 

  26. Martínez, L., Ruan, D., Herrera, F.: Computing with words in decision support systems: an overview on models and applications. Int. J. Comput. Intell. Syst. 3, 382–395 (2010)

    Article  Google Scholar 

  27. Materna, P.: Concepts and objects. Ada Phil. Fennica, vol. 63. Helsinki (1998)

    Google Scholar 

  28. Materna, P.: Conceptual Systems. Logos Verlag, Berlin (2004)

    MATH  Google Scholar 

  29. McCarthy, J.: Programs with common sense. In: Proceedings of the Teddington Conference on Mechanization of Thought Processes, pp. 75–91. Her Majesty’s Stationery Office, London (1959)

    Google Scholar 

  30. Morenberg, M.: Doing Grammar. Oxford University Press, Oxford (1997)

    Google Scholar 

  31. Mostowski, A.: On a generalization of quantifiers. Fundam. Math. 44, 12–36 (1957)

    MATH  MathSciNet  Google Scholar 

  32. Murinová, P., Novák, V.: A formal theory of generalized intermediate syllogisms. Fuzzy Sets Syst. 186, 47–80 (2012)

    Article  MATH  Google Scholar 

  33. Novák, V.: The Alternative Mathematical Model of Linguistic Semantics and Pragmatics. Plenum, New York (1992)

    Book  MATH  Google Scholar 

  34. Novák, V.: Fuzzy logic deduction with words applied to ancient sea level estimation. In: Demicco, R., Klir, G. (eds.) Fuzzy Logic in Geology, pp. 301–336. Academic Press, Amsterdam (2003)

    Google Scholar 

  35. Novák, V.: On fuzzy type theory. Fuzzy Sets Syst. 149, 235–273 (2005)

    Article  MATH  Google Scholar 

  36. Novák, V.: Perception-based logical deduction. In: Reusch, B. (ed.) Computational Intelligence, Theory and Applications, pp. 237–250. Springer, Berlin (2005)

    Chapter  Google Scholar 

  37. Novák, V.: Fuzzy logic theory of evaluating expressions and comparative quantifiers. In: Proceedings of 11th International Conference IPMU, Paris, July, vol. 2, pp. 1572–1579. Éditions EDK, Les Cordeliers, Paris (2006)

    Google Scholar 

  38. Novák, V.: Mathematical fuzzy logic in modeling of natural language semantics. In: Wang, P., Ruan, D., Kerre, E. (eds.) Fuzzy Logic—A Spectrum of Theoretical & Practical Issues, pp. 145–182. Elsevier, Berlin (2007)

    Google Scholar 

  39. Novák, V.: A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets Syst. 159(22), 2939–2969 (2008)

    Article  MATH  Google Scholar 

  40. Novák, V.: A formal theory of intermediate quantifiers. Fuzzy Sets Syst. 159(10), 1229–1246 (2008)

    Article  MATH  Google Scholar 

  41. Novák, V.: Genuine linguistic fuzzy logic control: powerful and successful control method. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) Computational Intelligence for Knowledge-Based Systems Design. LNAI, vol. 6178, pp. 634–644. Springer, Berlin (2010)

    Google Scholar 

  42. Novák, V.: On virtues of many-valued (fuzzy) type theories. In: Cau, B., Wang, G., Chen, S., Guo, S. (eds.) Quantitative Logic and Soft Computing, vol. 2, pp. 53–69. Springer, Berlin (2010)

    Google Scholar 

  43. Novák, V.: EQ-algebra-based fuzzy type theory and its extensions. Log. J. IGPL 19, 512–542 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Novák, V.: On modelling with words. Int. J. Gen. Syst. 42, 21–40 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  45. Novák, V., Dvořák, A.: Formalization of commonsense reasoning in fuzzy logic in broader sense. J. Appl. Comput. Math. 10, 106–121 (2011)

    MATH  Google Scholar 

  46. Novák, V., Lehmke, S.: Logical structure of fuzzy IF-THEN rules. Fuzzy Sets Syst. 157, 2003–2029 (2006)

    Article  MATH  Google Scholar 

  47. Novák, V., Perfilieva, I.: On the semantics of perception-based fuzzy logic deduction. Int. J. Intell. Syst. 19, 1007–1031 (2004)

    Article  MATH  Google Scholar 

  48. Novák, V., Perfilieva, I., Jarushkina, N.G.: A general methodology for managerial decision making using intelligent techniques. In: Rakus-Anderson, E., Yager, R., Ichalkaranje, N., Jain, L. (eds.) Recent Advances in Fuzzy Decision-Making, pp. 103–120. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  49. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)

    Book  MATH  Google Scholar 

  50. Novák, V., Štěpnička, M., Dvořák, A., Perfilieva, I., Pavliska, V., Vavříčková, L.: Analysis of seasonal time series using fuzzy approach. Int. J. Gen. Syst. 39, 305–328 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  51. Novák, V., Štěpnička, M., Kupka, J.: Linguistic descriptions: their structure and applications. In: Proceedings of International Conference FQAS 2013, Granada, Spain (2013)

    Google Scholar 

  52. Novák, V., Štěpnička, M., Perfilieva, I., Pavliska, V.: Analysis of periodical time series using soft computing methods. In: Ruan, D., Montero, J., Lu, J., Martínez, L., D’hondt, P., Kerre, E. (eds.) Computational Intelligence in Decision and Control, pp. 55–60. World Scientific, New Jersey (2008)

    Google Scholar 

  53. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets Syst. 157, 993–1023 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  54. Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Clarendon Press, Oxford (2006)

    Google Scholar 

  55. Peterson, P.: Intermediate Quantifiers. Logic, linguistics, and Aristotelian Semantics. Ashgate, Aldershot (2000)

    Google Scholar 

  56. Rotstein, C., Winter, Y.: Total adjectives vs. partial adjectives: scale structure and higher-order modifiers. Nat. Lang. Semant. 12, 259–288 (2004)

    Article  Google Scholar 

  57. Sgall, P., Hajičová, E., Panevová, J.: The Meaning of the Sentence in Its Syntactic and Pragmatic Aspects. D. Reidel, Dordrecht (1986)

    Google Scholar 

  58. van Benthem, J.: A brief history of natural logic. In: Chakraborty, M., Löwe, B., Nath Mitra, M., Sarukkai, S. (eds.) Logic, Navya-Nyaya and Applications, Homage to Bimal Krishna Matilal. College Publications, London (2008)

    Google Scholar 

  59. van Deemter, K.: Generating referring expressions that involve gradable properties. Comput. Linguist. 32(2), 195–222 (2006)

    Article  MATH  Google Scholar 

  60. van Rooij, R.: Vagueness and linguistics. In: Ronzitti, G. (ed.) Vagueness: A Guide, pp. 123–170. Springer, Berlin (2011)

    Google Scholar 

  61. Westerståhl, D.: Quantifiers in formal and natural languages. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. IV, pp. 1–131. D. Reidel, Dordrecht (1989)

    Chapter  Google Scholar 

  62. Ying, M., Bouchon-Meunier, B.: Quantifiers, modifiers and qualifiers in fuzzy logic. J. Appl. Non-Class. Log. 7, 335–342 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  63. Zadeh, L.: Test-score semantics for natural languages. In: COLING’82, Prague, pp. 425–430 (1982)

    Google Scholar 

  64. Zadeh, L., Kacprzyk, J.E. (eds.): Computing with Words in Information/Intelligent Systems, vol. 1. Springer, Heidelberg (1999)

    Google Scholar 

  65. Zadeh, L.A.: Quantitative fuzzy semantics. Inf. Sci. 3, 159–176 (1973)

    Article  MathSciNet  Google Scholar 

  66. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning I, II, III. Inf. Sci. 8–9, 199–257, 301–357, 43–80 (1975)

    Google Scholar 

  67. Zadeh, L.A.: Commonsense knowledge representation based on fuzzy logic. IEEE Comput. Mag. 16, 61–65 (1983)

    Article  Google Scholar 

  68. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. 9, 149–184 (1983)

    MATH  MathSciNet  Google Scholar 

  69. Zadeh, L.A.: Fuzzy logic \(=\) computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)

    Article  Google Scholar 

  70. Zadeh, L.A.: Precisiated natural language. AI Mag. 25, 74–91 (2004)

    Google Scholar 

Download references

Acknowledgments

The research was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilém Novák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Novák, V. (2015). Fuzzy Natural Logic: Towards Mathematical Logic of Human Reasoning. In: Seising, R., Trillas, E., Kacprzyk, J. (eds) Towards the Future of Fuzzy Logic. Studies in Fuzziness and Soft Computing, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-319-18750-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18750-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18749-5

  • Online ISBN: 978-3-319-18750-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics