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Abstract. In the context of Web of Things (WoT), embedded networks
have to face the challenge of getting ever more complex. The complexity
arises as the number of interchanging heterogeneous devices and different
hardware resource classes always increase. When it comes to the develop-
ment and the use of embedded networks in the WoT domain, Semantic
Web technologies are seen as one way to tackle this complexity. For exam-
ple, properties and capabilities of embedded devices may be semantically
described in order to enable an effective search over different classes of
devices, semantic data integration may be deployed to integrate data
produced by these devices, or embedded devices may be empowered to
reason about semantic data in the context of WoT applications. Despite
these possibilities, a wide adoption of Semantic Web or Linked Data
technologies in the domain of embedded networks has not been estab-
lished yet. One reason for this is an inefficient representation of semantic
data. Serialisation formats of RDF data, such as for instance a plain-text
XML, are not suitable for embedded devices. In this paper, we present
an approach that enables constrained devices, such as microcontrollers
with very limited hardware resources, to store and process semantic data.
Our approach is based on the W3C Efficient XML Interchange (EXI) for-
mat. To show the applicability of the approach, we provide an EXI-based
µRDF Store and show associated evaluation results.

Keywords: Web of Things (WoT) · Microcontroller · RDF · EXI · RDF
store

1 Introduction

We are witnessing a new era of innovation which is taking place through the
convergence of the physical and cyber world. This era is characterised with an
emergence of technologies such as low-cost sensing, smart devices, advanced
computing, powerful analytics, and the new levels of connectivity permitted by
the Internet - all together often referred to as Internet of Things (IoT). Further
integration of physical devices and the data they produce with the Web is also
known as the Web of Things (WoT).

While it has a huge potential to change our lives in various aspects, WoT still
faces a number of challenges such as for example identification and discovery of
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WoT devices and services, machine interpretation and integration of WoT data,
automated interactions of WoT devices in a certain context and others.

Semantic Web (SW) technologies are seen as a good candidate to tackle these
and other challenges in the realm of WoT. The W3C Resource Description Frame-
work (RDF) [19] is a powerful data model that is used for conceptual descriptions
and modelling of information in the Web. RDF expressions, provided in a form of
subject-property-object triples, represent statements about (Web) resources. In
the context of WoT, resources are physical ‘things’ (e.g., sensors, actuators, etc.)
that are connected to the Web and can be in the same way described as a set of
RDF statements. RDF descriptions, written in accordance to a certain schema or
ontology, may later help in discovery of WoT devices with certain characteristics.
This can reduce the time of building new applications significantly, as for exam-
ple the semantic search can be used for this task. The data produced by selected
devices may be easier integrated and processed, thereby creating a new informa-
tion or an added-value service. A WoT device can also be easier integrated into a
running system if both the device and the contextual information of the system
are semantically described. Thanks to semantic reasoning, that enables the WoT
device to find its role in the system, it also enables the device to demonstrate a
plug&play functionality in an WoT environment.

Despite these few examples, a straight forward use of SW technologies in the
context of Web of Things applications is not possible. Typical devices, associ-
ated with physical ’things’, are very limited in terms of their capabilities (i.e.,
processing power, available memory, energy supply etc.). For example, WoT
devices, such as sensors and actuators run by microcontrollers with only few kilo
Bytes of RAM and ROM and have a slow processing unit (e.g., ARM Cortex-M3
microcontroller1), are not capable to store and process RDF triples serialized in
formats such as plain-text RDF/XML.

In the recent of years there has been many efforts to find a format to com-
press huge sets of RDF triples (e.g., HDT [7] and RDSZ [8]). Although the
compression results are respectful in terms of the decrease of the network traffic,
these approaches however do not target very constrained devices such as micro-
controllers. Two reasons hinder them in this goal, and those are memory usage
and processing constrains, imposed by tiny devices such as for example ARM
Cortex-M3 microcontroller.

Consequently, requirements related to an RDF serialization format for con-
strained devices, and at the same time, for the use of SW technologies in the
realm of WoT, should fulfil the following aspects:

– Low Memory Usage: the memory used for semantic descriptions should be
as small as possible and should always leave enough space for the actually run
time procedure.

– Small Message Size: in embedded networks the bandwidth usage can be
very critical, hence transferred messages should be kept small.

– Type Awareness: physical devices will mainly exchange physical values with
certain characteristics (unit of measure, precision, sampling rate etc.), hence

1 http://www.arm.com/products/processors/cortex-m/cortex-m3.php.

http://www.arm.com/products/processors/cortex-m/cortex-m3.php
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the data shall be represented in a type aware manner. Type awareness opti-
mizes the overall processing and reduces the memory usage.

– Simple Processing: small embedded devices shall be enabled to read the
content of semantic data in a high efficient and direct manner. For example,
the overhead of a transformation of data should be avoided before the actual
data content can be retrieved.

– A Standardized Solution: To avoid or reduce the development effort and
costs such as found in proprietary solutions, a standardized approach for
the use of semantics from powerful devices up to tiny constrained embedded
devices, should be pursued.

This paper addresses all the above mentioned requirements and proposes an
approach that relies on the technique of the standardized W3C’s Efficient XML
Interchange (EXI) format [17]. It makes the serialization of RDF data efficient
and applicable, even for very constrained embedded devices.

The paper presents the following contributions and is organised as follows.

– We start to give an overview about related work in Sect. 2 and discuss its
intricacy in terms of its applicability in the microcontroller environment.

– In Sect. 3 we introduce the W3C EXI format and our different proposals to
serialize RDF-based data in a efficient manner.

– To show the applicability of our approach in the embedded domain, we have
developed µRDF Store - a repository that stores and serializes semantic data
in the EXI format. This work is detailed in Sect. 4.

– Finally, we present evaluation results showing the effectiveness of our app-
roach to encode RDF with EXI. Further on, we prove its applicability to the
constrained embedded domain such as the one with microcontrollers (Sect. 5).

2 Related Work

The related work in this topic can be parted into two main subjects, namely
the effort of existing RDF compression approaches and the existing semantic
repositories.

2.1 RDF Compressions

HDT and SHDT. Header-Dictionary-Triples (HDT) [7] is a well known binary
format for publishing and exchanging of RDF data. The main idea behind the
approach is to decompose an RDF document into a Header-Dictionary-Triples
(HDT) format, and represent it in a compact manner, thereby decreasing the
redundancy in an RDF graph. The HDT format consists of: a Header, a Dic-
tionary, and Triples. The Header includes optional metadata that describes the
RDF dataset. The Dictionary provides a vocabulary of the RDF terms, i.e.,
a catalogue where for each distinct term, a unique ID is assigned. This way, the
dictionary contributes to the goal of compactness by replacing the long repeated
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strings in triples by short IDs. IDs can be used for indexing of RDF data too. The
triples component comprises the pure structure of the underlying RDF graph,
i.e., compactly encodes the set of triples while avoiding the noise produced by
long labels and repetitions. In this way an original RDF triple can be expressed
as three IDs, thereby replacing each element in a triple with the reference to the
dictionary. An experimental evaluation of a concrete implementation from [7]
shows that datasets in the HDT format can be compacted by more than fifteen
times as compared to a naive representation. Specific compression techniques
over HDT, such as for example Huffman [12] and PPM [3] encoding, may fur-
ther improve these compression rates. However, this is also implemented at the
expense of additional processing overhead which is not feasible to constrained
embedded devices with very limited memory and processing capability (e.g.,
microcontroller ARM Cortex-M3).

Streaming HDT (SHDT) [10] further extends the original HDT format toward
a format which is better suited for a streaming data. For big documents that
cannot fit into memory, SHDT avoids full assembling of the dictionary before
it starts writing triples, and does not need to collect all triples of a document
to create the graph encoding. Instead, a document is assembled on-the-fly as
a stream of chunks with sizes that depend on available memory. As such, the
SHDT approach would be also more suitable for an embedded environment, since
the implementation complexity and memory usage (no buffer for assembling the
dictionary is required any more) is lower than with the native HDT approach.
Unfortunately, HDT and SHDT are not compatible to each other. The incom-
patibility arises from the fact that SHDT can re-use IDs while encoding, and for
the HDT format this is not the case.

In general, both approaches are focusing on encoding of RDF data repre-
sented as strings, and do not provide potentials for an effective data-type aware
encoding. In our view, this is a very important issue. In embedded networks when
it comes to a direct machine to machine (M2M) interaction, physical values are
mostly typed (e.g., int, boolean, etc.). Using a string based representation of
data types (as in RDF) would always lead to an additional processing overhead
in type conversion on both sides, encoder’s and decoder’s side. In addition, there
is a missing clarification about the trade-off between the dynamic RAM size of
the directory and the message size.

RDSZ. The RDF Differential Stream compressor based on Zlib (RDSZ) [8] app-
roach uses differential encoding to take compressional advantages of the structural
similarities in an RDF stream with the general purpose stream compressor Zlib
which implements the DEFLATE-algorithm [15]. The major focus is on avoidance
of redundancy in the stream. However, this is done at the expense of additional
data processing steps, that lead to the lost of the basic RDF triple structure of the
produced stream. In addition, the proposed Zlib library is not applicable to small
embedded devices such as microcontrollers.

ERI. Efficient RDF Interchange (ERI) [6] is based on RDSZ and an assumption
that the structure of the data of RDF streams is predetermined. This structure is
determined throughout Presets - an information set that identifies, among other
things, predicates producing massive data repetitions. The Presets have to be
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shared forehand by encoder and decoder in order to take advantage of streamed
repeated data. Further on, ERI produces an RDF stream as a continuous flow
of blocks of triples where each block is modularized into sets of structural and
value channels. For each channel standard compression approaches, such as Zlib,
can be applied.

ERI is mainly focused on the compression of the size of RDF data with the
goal of decreasing the network traffic. However, an implementation of this app-
roach in the constrained embedded domain would be hard due to the necessary
pre-determination of the Presets and their sharing by encoders and decoders,
as well as the usage of compression techniques such as Zlib. Furthermore, this
approach, similarly as previous approaches, also does not take the advantage of
the type aware encoding into account.

RDF Thrift. The open source project RDF Binary using Apache Thrift2 is
a binary format for RDF. The approach defines basic encoding for RDF terms,
and then builds formats for RDF graphs, RDF datasets and for SPARQL results.
The main goal of RDF Thrift is to enable efficient processing and transfer of
RDF data, using Apache Thrift3 as a non-human-readable data format designed
for efficient exchange of data between co-operating processes and interoperable
across different programming languages.

2.2 Semantic Repositories

Conventional Stores. There exists a number of RDF repository implementa-
tions such as Apache Jena4, Sesame5, YARS6 and many others7. For an extensive
survey, see also [5]. As mentioned in the introduction section, these implemen-
tations have not been suited to run on constrained embedded devices as found
in today’s IoT/WoT applications.

In the remaining part of this section we give an overview of few RDF repos-
itories that are working with various types of compact representations for RDF.

RDF HDT. An implementation of the earlier described HDT approach is avail-
able as an open source project8. It is a set of libraries that enable RDF data to
be represented, indexed and queried in the HDT format. The project provides
inplementations in both C++ and Java, as well as an HDT integration with
Apache Jena.

Wiselib TupleStore. An approach which addresses constrained devices is the
Wiselib TupleStore [11]. To handle the string-based data of RDF triples, the
Huffman compression [12] can be applied. This kind of RDF Store keeps a

2 http://afs.github.io/rdf-thrift/.
3 http://thrift.apache.org.
4 http://jena.apache.org/.
5 http://rdf4j.org/.
6 http://sw.deri.org/2004/06/yars/.
7 http://www.w3.org/wiki/SemanticWebTools#RDF Triple Store Systems.
8 http://www.rdfhdt.org.

http://afs.github.io/rdf-thrift/
http://thrift.apache.org
http://jena.apache.org/
http://rdf4j.org/
http://sw.deri.org/2004/06/yars/
http://www.w3.org/wiki/SemanticWebTools#RDF_Triple_Store_Systems
http://www.rdfhdt.org
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collection of quadruples: subject, predicate, object, and a bit mask which defines
to which RDF document the tuple belongs. In terms of serialization, TupleStore
supports the SHDT approach as the serialization format (described above).

3 The W3C EXI Format for RDF

Recently the World Wide Web Consortium (W3C), home of XML, was faced with
the drawbacks of plain-text XML representation, and hence created a working
group called XML Binary Characterization (XBC) [9] to analyze the condition
and possibilities of a binary XML format. This format was supposed to be com-
patible with the standardized plain-text XML format, as well as with the XML
Infoset. The outcome was the W3C’s Efficient XML Interchange (EXI) format,
which gained recommendation status at the beginning of 2011 [17]. The EXI
format uses a relatively simple grammar-driven approach that achieves very effi-
cient encodings (EXI streams) for a broad range of use-cases. According to [2]
the EXI representation is often over hundred times smaller than the one of XML.
Based on the high compression ratio and the opportunity to obtain the typed
data content directly from the EXI stream, XML-based messaging is feasible in
the embedded domain too, even for very constrained devices [14]. Based on EXI’s
beneficial characteristics w.r.t. the embedded domain and constrained resources
such as memory, processing capability, and bandwidth usage, EXI is getting
established more and more in embedded industry applications such as in the
domain of automotive industry (e.g., e-Mobility [13]) and smart grid application
(e.g., Smart Energy Profile 2 [21]).

As noted above, EXI uses a grammar-driven approach to represent XML-
based data in an efficient binary form and vice versa. Such a grammar is con-
structed according to a given XML Schema where each defined complex type is
represented as a deterministic finite automaton (DFA). Moreover, EXI also has
the capability to work schema-less, meaning that an EXI processor uses generic
grammars provided by the EXI standard.

In the case of RDF/XML representation, it makes sense to use the schema-
informed EXI mode given that we know the RDF schema and how RDF data
looks like [20]: each RDF document starts with the RDF root element and nests
the set of Description child elements to formulate triples. This enables one to
formulate various RDF schemas and EXI grammar respectively which can be
selected depending on the actual applications. Those kinds of variations will be
discussed in the next subsections.

3.1 Generic RDF EXI Grammar

Figure 1 shows an excerpt of a sample EXI grammar (set of automaton) G
that can be used for encoding and decoding generic RDF data. This grammar
reflects an XML Schema that represents the RDF framework with the RDF root
element and its embedded Description element for representing the triple infor-
mation. It is worth noting that the Root grammar is a predefined grammar
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RDF

Root Grammar

EV(00)

EV(0)

EV(1)

EV(-) Descr-
iption

RDF Grammar

EV(-) xsd:any

Description Grammar

about
EV(-) EV(0)

EV(1)

Fig. 1. Generic RDF EXI grammar

that occurs in each EXI grammar representation of arbitrary XML Schemas.
It contains all entry points to all root elements in a given schema. Here, we
highlight the context of the relevant RDF root element of the RDF XML frame-
work. In general, each DFA contains one start state and one end state, which
reflect the beginning and the end, respectively, of a complex type declaration.
Transitions to the next state represent the sequential order of element and/or
attribute declarations within a complex type. Optional definitions (e.g., choice,
minOccurs = ′0′, maxOccurs = ′unbounded′ etc.) are reflected by multiple
transitions and assigned an event code (EV). For instance, the Description ele-
ment is typically a reoccurring element in a RDF instance and consequently
defined as a ‘loop’ in the XML Schema by maxOccurs = ′unbounded′ and
reflected by the EXI grammar by the two transitions: one to the Description
state again and one to the end state. For the signalization, a one bit event code
is used and assigned to the transition (EV(1) for the Description; EV(0) for
no further Description). Generally, the number of bits used for m transitions is
determined by �log2m�. EV(-) on transitions indicates, no event code is required.

The xsd:any state represents the predicate and object description. This state
indicates the generic part since the name of the predicate elements as well as
the object values are application dependent.

An example RDF-XML snippet such as the following one:

<RDF>

<Description about= ‘temperature’>

<type resource=’sensor’/>

<value>8.4</value>

</Description>

<Description about= ’humidity’>

<type resource=’sensor’/>

<value>79.2</value>

...

would be transformed into an:

00 ’temperature’ type resource ’sensor’ value ’8.4’ 0 1 ’humidity’ 0 1 0 3 ’79.2’...
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RDF

Root Grammar

EV(00)

EV(0)

EV(1)

EV(-) Descr-
iption

RDF Grammar

EV(-)
value

Description Grammar

about

EV(-) EV(-)

EV(-)EV(-) resour-
ce

type Grammar

type
EV(-)

Fig. 2. Application specific RDF EXI grammar

EXI stream9. This sketches already how compact an EXI can become com-
pared to the XML counterpart. Blue color indicates the bit-based event codes
to navigate the EXI grammar for encoding (and decoding). Green indicates the
values of the attributes (e.g., about attribute with ’temperature’ and ’humidity’)
and elements (e.g., value element with ’8.4’ and ’9’). Generally, EXI is a type-
aware coder that provides efficient coding mechanisms for the most common
data types (e.g., int, float, enumerations, etc.). For the sake of simplicity, the
values are shown in human readable form in the sample EXI stream. Neverthe-
less, in the case of the float-based value of the temperature context, EXI would
only spend two bytes to represent the value ’8.4’. The orange content represents
the predicate elements which are not schema known and covered by the xsd:any
deceleration. The EXI coding mechanism for that case is based on the following
idea: by the first occurrence of an unknown element or attribute the name is
provided in the EXI stream (e.g., value). Internally, the string-based name is
memorized and an associated unique ID is assigned. That said, for any other
appearance of the same string this ID is used instead.

3.2 Application-Specific RDF EXI Grammar

To avoid the usage of such a generic approach that associates, e.g., unknown
predicate element names, one can define an XML Schema or EXI grammar
respectively. It make sense to follow this approach if the ontology and the context
of the semantic description is already known and can be reflected in a schema
definition. This can include, e.g., all data and object properties, classes, and
possible data value ranges. For example, let us assume there is an ontology for an
embedded device that is only intended to serve temperature and humidity values
as conducted in the XML snippet above. To represent this semantic requirement,
the EXI grammar which is shown in Fig. 2 can be derived. Compared to the
grammar shown in Fig. 1 the Description automaton is more concrete by the

9 For the sake of convenience, namespaces will be omitted in the paper.
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type and a value state between the about attribute state and the end state.
Applying this to the XML snippet above we would get

00 ’temperature’ 0 ’8.4’ 1 ’humidity’ 0 ’79.2’..

as EXI stream. It can be immediately seen, this results in a more compact rep-
resentation since the knowledge about the type, resource, and the value element
is already mapped to the grammar, and does not need to be represented in the
EXI stream any longer. In addition, since the ontology provides the definition
of all classes relevant for the stream, we can define an enumeration list of all
class names within the XML Schema. EXI will only use the enumeration value
for association, as previously shown for the red 0 (=’sensor’).

Asmentionedbefore, embeddeddevices from the industrial automation domain
will mainly exchange physical values. String-based values are rare. Therefore we
propose to use the W3C EXI Profile for limiting the usage of dynamic memory [4].
This enables us to operate without value string tables. In the case of reoccurring
value strings (e.g., ’temperature’ and ’humidity’), those strings will be simply han-
dled as new strings (given that the possible number of string entries is set to zero).

4 µRDF Store with EXI

In this section we will explain the use of different EXI grammar approaches
to efficiently represent and store RDF data in a semantic repository. For this
purpose we have implemented a triple store called µRDF Store. To interact
and to operate with the µRDF Store, we use a REST-based interface based on
the IETF Constrained Application Protocol (CoAP) [18]. Our approach can be
compared to RDF Provider of the Wiselib TupleStore [11] (see also Sect. 2.2). In
contrast to this, our approach is based on the standardized coding mechanism
inherited from the W3C EXI format. The mechanism and the format are used
both, to efficiently serialize and to store the data in the RDF repository.

The fundamental concept and the use of the two different grammar variants
of our µRDF store are shown in Fig. 3. They both use the same REST-based
communication component, implemented with the IETF CoAP approach. So
far, we have implemented three CoAP resources to manipulatable data in the
µRDF store: addTriples to add new or update existing triples, searchTriples to
enable graph pattern matching, and deleteTriples to remove triples from the
semantic repository. To serialize the full content of the µRDF store, one can use
the searchTriples resource with the search pattern (*,*,*). All requested patterns
will be answered by an RDF/XML-based document, which is encoded by the
EXI format and the underlying EXI grammar, respectively.

The use of the generic grammar and concrete grammar approach in the µRDF
store will be explained in the following subsections.

4.1 µRDF Store with Generic Grammar

Apart from the used generic grammar, different string tables can be used to man-
age unknown element/attributes names (from properties) and string-based values
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ID String

...

0 temperature

1 sensor
...

RDF

Root Grammar

EV(00)

EV(0)

EV(1)

EV(-) Descr-
iption

RDF Grammar

EV(-) xsd:any

Description Grammar

about
EV(-) EV(0)

EV(1)

Generic Grammar with String Tables

S P O (TA)
0 (vt) 0 (et)

- 1 (et)

1 (vt)

8.4 (float)
... ... ...

Semantic Repository

ID Manager
Value Table

Elemtent Table
ID String

...

0 type

1 value
...

REST with CoAP 
(Resources: addTriples, searchTriples, deleteTriples)

(a)

Semantic Repository

REST with CoAP 
(Resources: addTriples, searchTriples, deleteTriples)

RDF

Root Grammar

EV(00)

EV(0)

EV(1)

EV(-) Descr-
iption

RDF Grammar

EV(-)
value

Description Grammar

about

EV(-) EV(-)

EV(-)EV(-) resour-
ce

type Grammar

type
EV(-)

Concrete Grammar

S P O (TA)
temperature 3

- 5

0 (enum)

8.4 (float)
... ... ...

(b)

Fig. 3. µRDF using the (a) generic grammar approach with a value table (vt) and an
element table (et) and (b) the concrete grammar approach.

(see Sect. 3.1). More precisely, if there is a PUT request on the addTriples resource,
with a payload of an RDF-based message encoded by EXI (mime-type=EXI), the
encoded subject names (provided by the about attribute withing the Description
element) and string-based values of the objects will be affiliated in the value table.
Property element names (nested in the RDF Description element) will be man-
aged in the element table. For instance, the EXI snippet below

00 ’temperature’ type resource ’sensor’ ...

identifies the triple with the subject ’temperature’ and assigns the ID value 0
throw the value table, predicate ’type’ that is assigned by the ID 0 throw the
element table, and the object ’sensor’ by the ID 1 throw the value table (see also
Sect. 3.1). These IDs are used in the semantic repository to represent the triple’s
subject, property, and object. Based on our running example, the IDs (0,0,1) in
the repository corresponds to (temperature, type, sensor).

The ID Manager component is mainly used to achieve consistency between
the string tables and the repository. This is necessary when triples are deleted
from the repository (via the deleteTriples resource).

The great advantage of the generic approach is that no requester (e.g., a
client) of the µRDF Store service needs to have a pre-knowledge of the content
of the semantic repository in order to decode the (result) of an RDF graph. This
is possible thanks to the relative generic EXI grammar approach, combined
with the EXI’s default coding mechanism [17]. The downside of this, is that
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(Device) Ontology Defination Concrete EXI Grammar

RDF

Root Grammar

EV(00)

EV(0)

EV(1)

EV(-) Descr-
iption

RDF Grammar

EV(-)
value

Description Grammar

about

EV(-) EV(-)

EV(-)EV(-) resour-
ce

type Grammar

type
EV(-)

...    
<Class about="sensor">
        <subClassOf resource="device"/>
</Class>
...

derive

XML Schema Defination
...
<xs:element name="Description">
  <xs:complexType><xs:sequence>
   <element name="type" type="ClassTypes"/>    
...
<complexType name="ClassTypes">
 <attribute ref="resource" type="classes"/>
 </complexType>
...
 <simpleType name="classes">
  <restriction base="string">
   <enumeration value="sensor"/>
   <enumeration value="device"/>
...

construct

Fig. 4. Grammar construction based on an ontology and XML Schema definition.

more memory has to be available to handle the string based values within the
string-tables, as well as to have relatively higher number of string representations
within the RDF-based serialized messages (see Sect. 3.1). The next subsection
explains how we can overcome this issue by using a concrete EXI grammar.

4.2 µRDF Store with Concrete Grammar

String tables, as used in the generic approach, are not necessary in the concrete
grammar approach. This is justified by the fact that almost all triple graph
structures are known from a defined ontology (see Sect. 3.2) and can be reflected
within the EXI grammar. To create such a grammar, we follow processing steps
shown in Fig. 4. That is, we assume a WoT device operates in a concrete context
that is described by an ontology. Based on its content, an XML Schema definition
is constructed. The schema reflects the RDF/XML basic structure, as well as
possible property structures with data type definitions. Following our running
example, we will have a class sensor in the ontology. A typical individual triple
can be (temperature, type, sensor). Thus, the RDF/XML Schema definition will
embed and define the type element within the Description declaration. This,
in turn, via the complexType ClassType, will declare a list of possible object
value assignments for the attribute resource (see type classes) that are based on
all known classes of the (device) ontology (sensor, device, etc.). Based on such
an XML Schema definition, an EXI grammar is constructed. The encoding and
decoding mechanism of the grammar is described by the EXI standard [17]. The
grammar includes an ID resolution (an integer value) of all element/attribute
names and possible object value assignments (e.g., sensor). More precisely, each
state will have a unique EXI ID representation, which can be used to identify
particular elements/attributes. Thus the usage of the string-based representation
is not further required.

The semantic repository will use these IDs to represent triples. This will be
true for the properties and, if so, string-based values. E.g., the EXI snipped

00 ’temperature’ 0 ...

will be represented as (temperature, 3, 0) in the repository (see Fig. 3 and
Sect. 3.2). Thereby, the temperature value will be saved as a string, the property
entry type is represented by the EXI ID 3, and the object value is represented as
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the EXI enumeration value 0. Note that an unknown subject value will be only
saved once in the repository. For a triple with a known subject, it will be only
required to save its new property and the value. The subject itself will be linked
to an existing subject entry.

An ID manager as used in the generic approach is not necessary since we do
not have to put the effort in synchronization of string tables with the semantic
repository (to prevent inconsistency to occur when a deletion is requested). This
is the benefit of having EXI IDs, that are fixed by the pre-determination of the
EXI grammar and based on the XML Schema which was structured based on a
(device) ontology. Consequently, this will also reduce the number of strings in
the RDF-based serialized messages. The downside of this approach is that the
requester of the uRDF Store service needs the same EXI grammar to read the
(result) RDF graph message.

It should be also noted that a complex ontology can, at the same time,
lead to complex XML Schema, and respectively to complex EXI grammars. To
tackle this challenge, in [14] we have presented an approach where we can further
optimize the EXI grammar. The technique is called the context-based grammar
optimization. It removes EXI grammar fragments (states and transitions) that
are not needed for a particular context implementation. For example, an ontology
that is defined for building automation scenarios will contain information, among
others, such as for sensors and actuators. A constrained embedded device, that
operates only a temperature and a humidity sensor, do not really need the EXI
grammar definition that is intended to actuator-based devices. Consequentially,
these grammar fragments can be omitted then.

5 Evaluation

EXI is known to reach a high compression rate and to be a very fast coding
mechanism at the same time (see e.g., [2] and [14]). In this section we will
evaluate the applicability of the presented µRDF Store. An RDF/XML-based
serialization/de-serialization with the standardized EXI format will be presented.
Tests are run in the embedded domain. We will focus on the compactness of
representation of RDF-based documents, and required memory. Both generic
and concrete grammars will be considered.

5.1 Dataset, Target Platform, and Implementation

As a dataset we use an ontology which was motivated by scenarios from a public-
funded ITEA Project, called ’Building as a Service’ (BaaS)10. Among others,
this ontology defines concepts related to sensors in a building (extended from
the W3C Semantic Sensor Network (SSN) ontology [16]), as well as concepts
related to locations (e.g., location of a sensor in a building). Our triple sets are
relatively small (20, 40, 60, 80, and 100 triples). This is justified with the fact
that a tiny device such as a temperature sensor can be described with such a
moderate semantic description, and has no resources to store more triples.
10 http://www.baas-itea2.eu.

http://www.baas-itea2.eu
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As a target platform we have selected the well known ARM Cortex-M3 micro-
controller with following specification: 72 MHz CPU, 64 kBytes of RAM, and
256 kBytes of Flash memory.

Our generic µRDF Store implementation is written in C and uses a CoAP-
based Web service interface for interaction with the store. For our µRDF Store
that operates on concrete grammars, we have used our code generation approach
[14]. To evaluate the alternative serialization formats, we have used implemen-
tations from the HDT and Thrift approaches (see Sect. 2).

5.2 Compactness

Figure 5 shows the resulting size as a percentage of the original plain-text RDF/
XML document size (= 100%). The diagram compares the RDF serialization
in following formats: EXI generic, EXI concrete, HDT, and Thrift. The X-axis
represents the number of triples that were serialized, and shows the document
size (in bytes) when the triples are represented in a plain-text RDF/XML for-
mat. As can be seen, EXI serializations reach the best compactness results in all
test cases. Especially, the approach is very effective if we use the concrete gram-
mar for the RDF serialization. For this case, we have achieved results which are
up to 15 times smaller than the equivalent RDF/XML representation. This is
one of the key strengths of the EXI-based approach, which also in a concrete
deployment leads to a less network traffic. Furthermore, the opportunity arises
to pack a complete message in one or only few data packages that are provided
by a constrained network protocol. For instance, the IETF IPv6 over Low power
Wireless Personal Area Networks (6LoWPAN) [1] protocol provides only a pay-
load between 81 and 102 bytes (depending on the configuration). Consequently,
to transport 20 triples the equivalent concrete EXI representation (=78 bytes)
would need only one 6LoWPAN package.

Fig. 5. RDF serialization size
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Table 1. Memory usage on ARM Cortex-M3 (in Bytes)

Generic Concrete

#Triples ROM RAM ROM RAM

20 36521 3422 31957 2398

40 36521 4958 31957 2654

60 36521 6366 31957 2910

80 36521 7902 31957 3294

100 36521 9310 31957 3550

Because of the dictionary that is carried in each RDF document (see Sect. 2),
HDT will perform better than RDF/XML when the number of triples is (rela-
tively) big. In our case this is true starting with the triple set of 60. Comparing
the 100 triple test set, HDT is still 3 times bigger compared to the generic app-
roach and 7 times bigger compared to the concrete variant. The serialization
results of Thrift are always better then RDF/XML and better than HDT in
cases of data sets with 20 and 40 triple. However, they are still not as good as
results with the EXI serializations (in average 7 times bigger compared to the
generic, and 12 times bigger compared to the concrete EXI approach).

5.3 Code Footprint

An important property in order to successfully realize a semantic repository is
the memory usage. As already mentioned, constrained embedded devices such
as microcontrollers are heavily restricted in this issue.

For evaluating the memory usage we compiled the µRDF Store as presented
in Sect. 4 for an ARM Cortex-M3 microcontroller. Table 1 shows the result of
the ROM and RAM usage compiled for the different amount of triples (20, 40,
60, 80, and 100) and µRDF Store variants (basic and concrete). Even though the
generic µRDF Store variant is able to keep as many triples as RAM is available
on the microcontroller, we defined an upper limit of triples which are to be
expected (or really needed) for a particular use case. This makes it also easier
to compare both variants in terms of memory usage.

The code footprint (ROM) of the concrete variant is around 5 KBytes less
compared to the generic variant. This is the advantage of not having implemented
an ID manager and the string tables that are needed by the generic variants.
Here, the code footprint (ROM) of the generic and concrete µRDF Store is for
all triple test cases the same. This is based on the fact that both operate always
on their same EXI grammar: The generic one operates on the generic RDF
framework grammar and the concrete variant on the grammar that was derived
from the ontology and XML Schema respectively (see Sect. 4.2).

The main difference is in the RAM size. The most impact can be seen at
the generic approach where the used RAM usage increases rapidly in relation to
the number of used triples. This is justified by the needed string tables that are
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used by EXI to keep unknown element/attribute names and string-based object
values to assign an EXI ID which is then used in the semantic repository. The
concrete µRDF Store is able to use and operate directly on the EXI IDs since all
possible variants are already pre-determined at the time of grammar generation.
Consequently, less RAM has to be used, e.g., to save 100 triple in the repository.
Compared to the generic variant, almost 3 times more RAM usage is needed to
manage the same triple set.

5.4 Summary

The evaluation results showed that we can significantly reduce the RDF repre-
sentation size by applying the EXI format as serialization format. Furthermore,
this approach is also efficiently applicable to constrained devices such as micro-
controllers for implementing, e.g., a semantic repository.

6 Conclusion and Future Work

The W3C standard RDF serialization formats incur high cost in parsing, process-
ing and storing RDF data. This issue becomes especially apparent when RDF
data needs to be handled by constrained embedded devices, and it significantly
hinders usage of Semantic Technologies in the domain of Web of Things appli-
cations. In this paper we have proposed an approach to tackle this issue. The
approach is based on the Efficient XML Interchange (EXI) Format – a W3C
standard binary format for XML. We have adapted the EXI approach to make
it applicable for RDF too. We have proposed a generic RDF EXI grammar, as
well as an application specific one. We have implemented the proposed gram-
mars and compared our implementation to state of the art implementations.
It is worth noting that our approach is not only efficient but also established on
a W3C standard, which is an important feature when it comes to the deployment
of the technology in industry settings.

In the future, we will enable RDF EXI data to be queried with a SPARQL-
like language and reasoned with an inference engine, adapted for the embedded
domain.
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