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Abstract. Graph aggregation is an important operation when study-
ing graphs and has been applied in many fields. The heterogeneity,
fine-granularity and semantic richness of RDF graphs introduce unique
requirements when aggregating the data. In this work, we propose Gagg,
an RDF graph aggregation operator that is both expressive and flexible.
We provide a formal definition of Gagg on top of SPARQL Algebra, define
its operational semantics and describe an algorithm to answer graph
aggregation queries. Our evaluation results show significant improve-
ments in performance compared to plain-SPARQL graph aggregation.

1 Introduction

With the increasing adoption of graph data in various domains, the importance of
graph measures and algorithms is growing. Graph traversal, centrality measures,
and graph aggregation are being used to analyse social [31], transportation [2]
and biological networks [23,27]. This paper focuses on graph aggregation.

Graph aggregation condenses a large graph into a structurally similar but
smaller graph by collapsing vertices and edges. Graph aggregation was applied
to the Web graph to group Web pages by their domains in order to efficiently
compute PageRank scores [6]. Similarly, [11] proposed ranking RDF datasets
by aggregating their resources. In biological network studies, example usages of
graph aggregation include enhancing data visualisation [19] and studying tran-
scriptional regulatory networks [12]. Graph aggregation is also used to provide
business intelligence on top of graph data [5,8,28,33]. Furthermore, many mea-
sures in social network analysis [14] and in bibliometrics [15,17] are also based
on aggregating the underlying graphs.

RDF, the data model underlying the Semantic Web, is a graph data model
that is used in bio-informatics1, social networks [24], bibliography [13,26], etc.
Therefore, graph aggregation is one of the tools used to analyse RDF data. In
addition to the examples mentioned before, aggregating RDF graphs has been
also used to induce schemas [7,20,21], produce descriptive statistics [1,3,22] and
build indices [18,25].

While there exists a number of systems to aggregate graph data [8,30,32,33],
these systems do not provide the expressivity necessary to handle RDF data. The
heterogeneity, fine-granularity and semantic richness of RDF graphs introduce

1 http://www.ebi.ac.uk/about/news/press-releases/RDF-platform.
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unique requirements when aggregating the data. For instance, Fig. 2 shows an
example bibliographic RDF data describing some papers and their authors. One
might be interested in studying co-authorship structure between authors or at a
more coarse-grained level, between organisations (Fig. 3a). Similarly, one might
choose to aggregate the data to study the structure of citation between authors,
organisations or conferences (Fig. 3c). Such expressivity cannot be achieved by
existing tools, proposed mainly in the field of graph databases, because the
dimensions of aggregation and the relationship (e.g., co-authorship) is not explic-
itly defined in the original data.

Furthermore, all graph aggregation operators have been defined as separate
operators. Hence, these operators cannot make use of the expressivity and opti-
misation techniques already built in existing data models such as relational or
SPARQL algebra. Moreover, this necessitates transforming the data and loading
it into different systems.

In this paper, we define Gagg, an RDF graph aggregation operator for RDF
data that is both expressive and flexible. We provide a formal definition of Gagg
based on existing SPARQL operators (Sect. 3) and devise an algorithm for effi-
cient evaluation of Gagg expressions (Sect. 4). Furthermore, we demonstrate the
expressivity and efficiency of Gagg in our evaluation (Sect. 5).

Aggregation of RDF graphs can be achieved using existing SPARQL 1.1 [16]
operators. An aggregated graph requires a complicated single SPARQL query
(a combination of sub-queries, CONSTRUCT and GROUP BY operators) or
a series of SPARQL queries to aggregate nodes and edges (as done in [22] for
instance). Such queries become complicated and verbose and therefore hard to
write, debug and optimise. Having graph aggregation as a first-class operator
simplifies query writing and optimisation. Moreover, our evaluation results show
that Gagg can run up to orders of magnitudes faster than a monolithic SPARQL
query and about 3 times faster than a series of fine tuned queries.

2 Related Work

On-Line Analytical Processing [9] (OLAP) has been first proposed as a way
for people to analyse multi-dimensional data. Several works aim at analysing
graph data using the OLAP paradigm. The Graph Cube [33] paper considers
only simple graphs, while we target more complex graphs that are possible with
the RDF graph model. The work in [8] proposes the aggregation of graph which
changes the topology of the graph. However, we allow a more flexible definition of
the aggregation dimensions in our approach. In this work, we introduce the graph
aggregation as a graph operator that is anchored into graph algebra, allowing
the graph aggregation to be part of a wider graph analysis flow.

The challenge of graph analysis has been studied within the Semantic Web
community as well. The RDF Analytics [10] paper introduces an analytical schema
over the data. This schema allows then to write analytical queries over the data,
abstracting from the actual structure of the data. However, unlike Gagg this app-
roach does not generate a graph as the analytical query output, thus preventing
the use of the aggregated graph as the input of other graph operations.
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The analysis of graph data under an aggregated form is investigated in several
works [5,28] with an application oriented towards business logic.

The process of graph summarisation which represents a graph with a smaller
graph that is homomorphic to the original graph is investigated in [7,30,32]. Such
works apply a Gagg-like operation over the data. Therefore, the Gagg operator
can be used to alleviate the cost of performing such operations.

3 Model

Gagg is defined in two-steps as shown in Fig. 1. Firstly, nodes and edges in the
original graph G are grouped together in an intermediate graph that we call the
grouped graph. Secondly, the grouped graph is reduced into an aggregated graph.

The first step is based on a set of dimensions that defines how nodes and
edges are grouped together. For example, in Fig. 2 the resources :a1 and :a2 are
grouped together when aggregating authors by the organisation they are member
of. As we detail later, we use SPARQL operators as a flexible and powerful way
to define grouping criteria.

The second step condenses the grouped graph into the final aggregated graph.
This operation is done by what we call a graph reduce function. A template
similar to that of SPARQL construct is used by the graph reduce function to
structure the final results. In this template, typical aggregate functions such as
sum and count, can be applied to the nodes and edges in the grouped graph.
It is worth pointing out that the grouped graph is not an RDF graph as its
nodes represent sets of resources, while the aggregated graph is an RDF graph
that can be used as input for further processing.

G

Graph

G
Grouped Graph

H

Aggregated Graph

Group Reduce

Fig. 1. Operational flow of the graph aggregation

3.1 Preliminaries

We present in this section the fundamental concepts used throughout the paper.

Definition 1 (Data Graph). A data graph G defined over a set of terms T
is a tuple G = 〈V,A, lV 〉, where V is a set of nodes, A ⊆ V × T × V is the set
of labelled edges, and lV : V �→ T is a node labelling function. The lV function
is an injection, meaning that each node has a unique label.

We assume the existence of a set of variables X which symbols are not part of
the set of labels T , i.e., X ∩ T = ∅. A query is expressed as a set of patterns
that are matched against the graph data. A triple pattern is the atomic element
for building a graph query, which matches an edge of the graph.
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Fig. 2. Bibliographic network inspired from [29]. Dashed nodes represent papers, and
dotted nodes the authors.

Definition 2 (Triple Pattern). A triple pattern (s, p, o) is a triple where any
of the three components can be either a variable or a term, i.e., the triplet
(s, p, o) ∈ (T

⋃
X ) × (T

⋃
X ) × (T

⋃
X ).

Definition 3 (Basic Graph Pattern). A basic graph pattern (BGP) is a set
of triple patterns.

Basic graph patterns in SPARQL represent conjunctive queries. From hencefor-
ward, we use the conjunctive query notation2 q(x̄) := t1, · · · , tn where t1, · · · ,
tn are triple patterns and therefore {t1, · · · , tn} is a BGP.

We denote by V ar(q) the set of variables occurring in the query q. The
query head variables x̄ are called distinguished variables, and are a subset of the
variables occurring in t1, · · · , tn, i.e., we have x̄ ⊆ V ar(q).

We denote with q(G) the set of solutions of q on G. For the evaluation of a
query q against a graph G, we refer the reader to the W3C Recommendation [16].

Definition 4 (Join Query). Let q1, · · · , qn be basic graph patterns which non-
distinguished variables are pairwise disjoints. We call the query q(x̄) := q1(x̄1)∧
· · · ∧ qn(x̄n) a join query of q1, · · · , qn, where x̄ ⊆ x̄1 ∪ · · · ∪ x̄n.

A join query combines multiple BGPs and joins them based on their shared
distinguished variables.

2 We reuse here some of the notations and definitions from [10].
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:org1

:o1 (2)

:org2

:o2 (2)

:organisation

:co-authorship
:co-authorship

:organisation

(a) Aggregation of people by the organisation, counting the number of papers authored
by the organisation. The edges :co-authorship link organisations by the papers they
authored.

:org1 :student :org1 :senior

:op1 (1) :op2 (2)

:org2 :op3 (2) :student

:organisation

:position

:citation
:citation

:organisation

:position

:organisation :position

:citation (2)

:citation (3)

:citation

(b) Aggregation of people by their organisation and position, counting the number of
their papers. The edge :citation represents an author citing an other via a paper.

:org1 :oc1 (2) :oc2 (1) :eswc2013

:org2 :oc3 (1) :oc4 (2) :eswc2014

:organisation :citation :publishedIn

:organisation

:citation (2)

:citation :publishedIn

(c) Aggregation of people by their organisation and papers by their conference. We
count the number of authors in an organisation, and the number of papers in a
conference. The edge :citation represents a link from an organisation to a confer-
ence, where an author cited a paper from a particular conference.

Fig. 3. Summary graphs of the data in Fig. 2. The number within parenthesis report
a count statistics of the aggregated data.

3.2 Graph Aggregation Operator

We build on the definitions introduced before to define a graph aggregation
operator. In particular, dimensions used for aggregation, measures that are to
be aggregated, and the relations between nodes in the graph are all expressed as
queries. A dimension is a query with two distinguished variables q(x, v) that
defines how resources (bound to x) are grouped based on associated values
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H1 H2

H3

e1
e4

e3
e2

e5

Dimensions

H1 → ( :org1, :student )
H2 → ( :org2, :student )
H3 → ( :org1, :senior )

Measures

H1 → ( :p1 )
H2 → ( :p2, :p3 )
H3 → ( :p2, :p3 )
e1 → ( :p2 )
e2 → ( :p2, :p3, :p3 )
e3 → ( :p2, :p3 )
e4 → ( :p2 )
e5 → ( :p3 )

Fig. 4. The grouped graph that corresponds to the aggregated graph in Fig. 3b. This
graph aggregate authors in Fig. 2 by their organisation and position.

(bound to v). Similarly, a measure is also a query with two distinguished variables
q(x,m) that associates with each resource (bound to x) a value to be measured
and later aggregated (bound to m). In Fig. 3b, q(x, org) := (x, :member, org) is
one of the dimensions used to group authors while q(x, p) := (p, :creator, x) is
the measure associated with each node as we are counting the papers written by
each author.

A relation query is a query with four distinguished variables q(x, p, y,m) that
defines related resources (bound to x and y, respectively), labels the relation (via
the value bound to p), and determines the measure associated with this relation
(bound to m). In Fig. 3b, the relation query used is:

q(x, :cite, y, p1) := (p1, :creator, x) ∧
(p2, :creator, y) ∧
(p1, :references, refs) ∧
(refs, :ref, p2)

Notice that p1 is used as a measure since we are interested in counting the
papers. Additionally, the relation is bound to the constant value :cite to give
it a readable name3.

Definition 5 (Grouped Graph). A grouped graph is a graph (V,A, lV) with
two associated functions: dimensions : V → 2T and measures : V ∪ A → 2T.

Figure 4 shows an example grouped graph with its associated dimensions and
measures functions.

3 For the sake of simplicity, we slightly violated conjunctive query notation by using
a constant in the header.
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Definition 6 (Graph Reduce Function). A graph reduce function f is a
function that maps a grouped graph into a data graph.

We are now ready to provide a definition of the Graph Aggregation Query.

Definition 7 (Graph Aggregation Query). A graph aggregation query is a
tuple Q = (D,M,E,N,R, f) such that:

– R is a relation query with distinguished variables x, p, y, o;
– D is a set of dimensions such that for each dimension d ∈ D the distinguished

variables of d are x, vd for some unique variable vd;
– E is a set of dimensions such that for each dimension c ∈ E the distinguished

variables of c are y, vc for some unique variable vc;
– two measure queries M and N with distinguished variables x,m and y, n,

respectively;
– a graph reduce function f .

In the definition above, R is meant to define related nodes in the typical form of
(subject, predicate, object) with an associated measure. D and E are the set of
dimensions to group the subjects and objects defined by R. While the dimensions
for subjects and objects can be the same, Fig. 3c depicts an example where it is
beneficial to group subjects and object by different dimensions. Finally, M and
N are the measures for subject and object nodes.

3.3 Operational Semantics

A grouped graph G = (V,A, lV) is the result of grouping a data graph G =
(V,A, lV ) according to the graph aggregation query Q = (D,M,E,N,R, f) if
the following holds:

1. w ∈ V and dimensions(w) = d iff ∃(r, d) ∈ D(G) or (r, d) ∈ E(G)4. In this
case we say that the node r in the original graph maps to the node w in the
grouped graph and denote this as r �→ w;

2. (u, p, v) ∈ A and o ∈ measures((u, p, v)) iff ∃(r, p, s, o) ∈ R(G) such that
r �→ u and s �→ v;

3. For all u ∈ V; a ∈ measures(u) iff (r, a) ∈ M(G) or (r, a) ∈ N(G) and r �→ u.

4 Answering Graph Aggregation Queries

The evaluation of a graph aggregation query is performed in three steps:
(1) building a binding table that is the solution of the queries defined by the
dimensions, relation and measures; (2) building a grouped graph from the bind-
ing table; and (3) applying the reduce function over the grouped graph to achieve
the final results.

4 q(G) is the solution of query q against graph G. We extend the notion here to a set
of queries where the result is the join query as defined before.
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4.1 Binding Table

Evaluating a query in SPARQL results in a binding table as detailed in [16].
The first step to answer a graph aggregation query Q is to combine and evaluate
the query:

q(x, p, y, o, vD,m, vE , n) := qR(x, p, y, o) ∧ qD(x, vD) ∧
qM (x,m) ∧ qE(y, vE) ∧ qN (y, n)

The result is a binding table B which is a set of rows. If r is a row in B and
x is a variable, we use r[x] to refer to the value bound with the variable x in r.
Delegating the evaluation of the binding table exploits the best practices and
optimisation techniques already built in existing SPARQL engines.

4.2 Building the Grouped Graph

Algorithm 1 describes how starting from the binding table resulting from the
previous step, a grouped graph compatible with the defined operational seman-
tics can be built. The function GetGroupNode(v) creates a node corresponding
to the dimensions values v, updates the dimensions mapping of G and adds
the created node to V. If a node corresponding to the dimension values already
exists in V, the function just returns the node. The GetGroupNode function needs
some hash structure that maps dimension values to nodes and keeps the mea-
sures associated with each node and edge. Assuming that this data structure fits
in memory, the complexity of GetGroupNode is O(1). Consequently, Algorithm 1
has a complexity of O(|B|) as it scans the binding table only once.

4.3 Applying the Graph Reduce Function

The graph reduce function applies an aggregate function on the set of measures
and restructure the grouped graph. One possible way to express a graph reduce
function is to base it on a template similar to the one used in CONSTRUCT
queries in SPARQL.

5 Evaluation

In this section, we discuss the expressivity of the Gagg operator and present an
experimental performance comparison with plain SPARQL queries.

5.1 Expressivity

We have used Gagg to express type summary as defined in [7] and to repro-
duce VoID statistics similar to the results provided by previous systems [1,22].
Furthermore, Gagg was applied to bibliographic data to compute a number of
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Algorithm 1. Aggregated graph creation from the table of bindings
Data: The binding table B and the graph aggregation query

(D, qM (x,m), E, qN (x, n), qR(x, p, y, o), f)
Result: The grouped graph G = 〈V,A, lV , dimensions,measures〉.

1 for r ∈ B do // For each row in the binding table

// Retrieve grouped nodes corresponding to the dimensions

2 u ← GetGroupNode(r[D])
3 v ← GetGroupNode(r[E])

// create an edge

4 e ← (u, r[p], v)

5 A ∪← e
// Add measures

6 measures(u)
∪← r[m]

7 measures(v)
∪← r[n]

8 measures(e)
∪← r[o]

9 end

bibliometrics as shown in the next subsection. Finally, we have used Gagg to
aggregate the LOD Cloud5. As this data is available in RDF6 we were able to
generate different versions of the LOD diagram by aggregating datasets by their
topic, license, publisher, etc. Gagg is expressive enough to aggregate datasets
and count them or sum their triples counts7. Similarly, it can count the number
of linksets and sum the number of interlinking triples. This provided views over
the LOD cloud from a variety of perspectives.

5.2 Performance Evaluation

We extended the query algebra in Apache Jena8 with the Gagg operator. The
implementation builds the intermediate graph and then apply aggregate func-
tions whose implementations are re-used from Jena. We compare the perfor-
mance of the usage of Gagg to that of standard SPARQL. In particular, we
report the average running time of four approaches9:

reduced provides incomplete results as it aggregates only the relationships and
not the subjects and objects. This is included as a baseline to quantify the
extra time needed by the other approaches to get the full results.

5 http://lod-cloud.net/.
6 http://lod-cloud.net/data/void.ttl.
7 The scripts to generate the aggregated graphs of the LOD Cloud diagram are avail-

able at https://github.com/fadmaa/rdf-graph-aggregation.
8 https://jena.apache.org/ version 2.12.0.
9 We report the SPARQL queries of the approaches at https://github.com/fadmaa/

rdf-graph-aggregation.

http://lod-cloud.net/
http://lod-cloud.net/data/void.ttl
https://github.com/fadmaa/rdf-graph-aggregation
https://jena.apache.org/
https://github.com/fadmaa/rdf-graph-aggregation
https://github.com/fadmaa/rdf-graph-aggregation
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fullSparql builds the aggregated graph using one CONSTRUCT SPARQL query.
This query contains three sub-queries such that the first one defines the rela-
tionship, the second aggregates and counts subjects and the final one aggre-
gates and counts objects.

3Sparqls uses three separate CONSTRUCT SPARQL queries to build the
aggregated graph. Similar to the fullSPARQL approach, one query defines
the relationship and the other two queries aggregate subjects and objects.
Notice that these queries need to rely to some characteristics of the data or
some hashing function to assure that the results of the three queries use the
same identifiers for the aggregated nodes. Therefore, writing these queries
was relatively hard. The final result is the union of the three graphs resulted
from the queries, however, to prevent introducing extra penalty on the run-
ning time, the values we report do not include the time needed to union the
three results.

Gagg uses the Gagg operator.

We used JUnitBenchmarks10 to run the evaluation. JUnitBenchmarks per-
forms JVM warm-up phases and repeat the execution multiple times to enhance
the reliability of the reported times. The evaluation was run on a 4 core machine
running Linux (3.18.1-3) at 2.60 GHz with 8 Gb of RAM. The JAVA version is
1.7.0 71.

We experimented with BSBM [4] and SP2B [29] datasets, varying the sizes of
data. Two set of queries are used to perform two tasks: building a type summary
and calculating some bibliometrics-based summary.

Type Summary. For this graph aggregation query, all resources in the RDF data
are grouped by their types (i.e., the values of rdf:type) and all relations between
resources are grouped. The summary reports the number of instances per type and
the number of relations of each type that exists between instances of two classes.
This type of statistics are the ones reported in VoID statistics and in the RDF
graph summary in [7].

In the corresponding Gagg operators, the set of dimensions of subjects and
objects is (?x,rdf:type, ?t) and the relation ship query is (?x, ?p, ?y).

Bibliometrics. We report on three graph aggregation queries that were evalu-
ated on top of SP2B data:

co-authorship gets the graph structure of co-authorship. Nodes in the summary
graph represent authors along with the number of papers they published
while edges represent co-authorship between them along with the counts.

citation gets the graph structure of author citation. Nodes in the summary
graph represent authors along with the number of papers they authored
while edges represent citation across authors along with their counts.

10 http://labs.carrotsearch.com/junit-benchmarks.html.

http://labs.carrotsearch.com/junit-benchmarks.html
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conf-citation gets the graph structure of citation among papers grouped by
the conference they are published in. Nodes in the summary graph represent
conferences along with the number of papers published in each while edges
represent citation across conferences along with their counts.

5.3 Discussion

The average running times to compute the Type Summary queries are reported
in Table 1 while the average running times of the bibliometrics queries are shown
in Table 2. Entries marked with N/A failed to finish as the machine ran out of
memory or the execution took too long.

In general fullSparql approach showed the worst performance among the
tested approaches. This is not surprising giving that dimensions and measures
are evaluated three times in the fullSparql because results need to be aggre-
gated along different dimensions each time, i.e., for subject, object and relation.
Results of the three sub-queries of fullSparql also need to be joined together. In
particular, the dramatic growth in the TypeSummary queries is due to the need
for joining the results of the three sub-queries before aggregation. Because we are
interested in aggregating all relations in the graph to compute a type summary,
the sub-queries are not selective and produce large intermediary results. This is
an extra overhead cost that both Gagg and 3Sparqls approaches avoid. In com-
parison to fullSparql, Gagg achieved up to two orders of magnitude improvement
in response time.

The performance improvement of Gagg of about a 2.5 factor in comparison
to 3Sparqls is reasonable. Gagg builds and scans the binding table once instead
of three times. Nonetheless, it still performs the three aggregations.

Finally, in comparison to the reduced approach, the overhead that Gagg adds
to achieve the full aggregated graphs is small. We remind that this approach gives
incomplete results, since it does not aggregate the subject and object resources.

Table 1. Average running times of type summary queries.

dataset-size (# triples) fullSparql (s) 3Sparqls (s) reduced (s) Gagg (s)

bsbm-5K 0.08 0.06 0.01 0.03

bsbm-190K 9.84 1.25 0.42 0.55

bsbm-370K 31.88 2.82 1.00 1.13

bsbm-1.8M 454.07 13.48 4.37 5.61

(a) BSBM

dataset-size (# triples) fullSparql (s) 3Sparqls (s) reduced (s) Gagg (s)

sp2b-50K 0.42 0.22 0.08 0.09

sp2b-100K 0.84 0.44 0.15 0.16

sp2b-500K 4.75 2.19 0.75 0.84

sp2b-1M 10.32 4.84 1.56 1.8

(b) SP2B
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Table 2. Average running times of bibliometrics queries on the SP2B data.

dataset-size (# triples) fullSparql (s) 3Sparqls (s) reduced (s) Gagg (s)

sp2b-50K 3.93 0.18 0.053 0.09

sp2b-100K 4.05 0.20 0.05 0.08

sp2b-500K 4.02 0.18 0.05 0.08

sp2b-1M N/A 6.80 1.04 2.62

(a) Co-authorship

dataset-size (# triples) fullSparql (s) 3Sparqls (s) reduced (s) Gagg (s)

sp2b-50K 1.15 1.02 0.32 0.07

sp2b-100K 4.89 4.29 1.44 0.09

sp2b-500K 94.06 86.39 29.41 0.18

(b) Citation

dataset-size (# triples) fullSparql (s) 3Sparqls (s) reduced (s) Gagg (s)

sp2b-50K 0.14 0.17 0.05 0.06

sp2b-100K 0.67 0.68 0.22 0.23

sp2b-500K N/A 29.31 9.7814 9.8091

(c) Conf-citation

6 Conclusion

We introduce in this work an operator called Gagg for aggregating graph data.
We defined the operator as a two-steps processing, where the graph is first
grouped based on some dimensions, which is then reduced into an aggregated
graph. The aggregated graph exhibits groups of dimensions and relations between
such groups, as well as statistics associated to the groups and links. Our defini-
tion of the operator is formally anchored in the RDF algebra, making it possible
to be composed with other graph operations. The actual aggregation of the
graph can be fully customised by a user via the use of BGP queries. We showed
in our evaluation that the graph aggregation Gagg improves significantly the
performance of plain-SPARQL graph aggregation.

In future work, we plan to refine the formalisation of the Gagg operator to
include (a) multi-valued dimensions; and (b) missing data, especially for the def-
inition of dimensions. We plan also to investigate optimisations of graph queries
using the Gagg operator. Moreover, providing a distributed implementation of
Gagg might be an interesting direction to pursue.
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