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Abstract. Supporting physicians in their daily work with state-of-the
art technology is an important ongoing undertaking. If a radiologist
wants to see the tumour region of a headscan of a new patient, a system
needs to build a workflow of several interpretation algorithms all process-
ing the image in one or the other way. If a lot of such interpretation algo-
rithms are available, the system needs to select viable candidates, choose
the optimal interpretation algorithms for the current patient and finally
execute them correctly on the right data. We work towards developing
such a system by using RDF and OWL to annotate interpretation algo-
rithms and data, executing interpretation algorithms on a data-driven
and declarative basis and integrating so-called meta components. These
let us flexibly decide which interpretation algorithms to execute in order
to optimally solve the current task.

Keywords: Sequential decision making · Linked APIs · Data-driven
and declarative framework

1 Introduction

Supporting physicians in their daily work with state-of-the art technology is
an important ongoing undertaking. Technical experts are, therefore, developing
interpretation algorithms to, for instance, automatically process medical images.
To help radiologists assess the development of tumour patients, a tumour pro-
gression mapping (TPM) is beneficial. The brain has to be stripped out of a
patient’s headscan, registered with respect to prior headscans of the patient and
normalized until a final interpretation algorithm can generate a TPM. These
interpretation algorithms need to be fed with the correct data and executed in
correct order. In addition, there might be several interpretation algorithms avail-
able for one subtasks (e.g. for segmenting the brain) which might not all perform
‘optimally’. Above all, as the state-of-the-art in image processing evolves, new
interpretation algorithms might need to be taken into account for this task.

Besides TPM generation, there are numerous other complex tasks to support
physicians. We divide them into pre-surgical, intra-surgical and post-surgical
tasks and give an abstract and incomplete overview in Table 1.

These tasks are complex because they either need rich function classes to
solve them, comprise numerous subtasks or both. Interpretation algorithms, such
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Table 1. Complex medical task classification.

Pre-surgical Intra-surgical Post-surgical

Diagnosis Interpreting sensor outputs Health stability estimation

Treatment proposition Risk analysis Further treatment proposition

as image processors, might be important in all three phases. We work towards a
system able to solve numerous different complex tasks by choosing among a large
pool of interpretation algorithms. We, therefore, propose a semantic framework
for sequential decision making. Interpretation algorithms are annotated with
semantic concepts formalized in RDF and OWL, wrapped as Linked APIs and
integrated into a data-driven, declarative workflow. We use so-called meta com-
ponents to choose among interpretation algorithms for a given task. A central
open problem deals with how and to what degree we can leverage semantic
descriptions for optimally solving complex tasks.

2 State of the Art

In this section, we give an overview of research related to our setting. The section
is divided into two parts. First, we depict research about (semantic-) workflow
systems, as we need to enable workflows of interpretation algorithms to solve
complex tasks. The second part deals with decision making within these work-
flows. We have to find eligible interpretation algorithms to reach a goal and then
choose the optimal candidate.

2.1 Workflow Systems

The work centered around semantic workflows [5] aims to enable the automatic
composition of components in large-scale distributed environments. Generic
semantic descriptions support combining algorithms and enable formalizing ense-
mbles of learners. Therefore, conditions and constraints need to be specified. The
framework also automatically matches components and data sources based on user
requests.

Taverna [8] is a another scientific workflow system supporting process pro-
totyping by creating generic service interfaces and thus easing the integration
of new components. Semantic descriptions are being used to better capture the
view of the scientists. Taverna is able to integrate data from distributed sources
and automate the workflow creation process for users.

Wood et al. [16] create abstract workflows as domain models which are for-
malized using OWL and enable dynamic instantiation of real processes. These
models can the be automatically converted into more specific workflows result-
ing in OWL individuals. The components can be reused in another context or
process, and one can share abstract representations across the Web through
OWL classes.



762 P. Philipp

All of the above approaches develop abstractions of interfaces between work-
flow components in terms of meta data. Ontologies and taxonomies are, there-
fore, used to represent central structures for workflows. While some approaches
use OWL to generate meta-data, we try to model a low amount of axioms and
keep the approach flexible. We use this flexibility and incorporate decision mak-
ing strategies, as will be discussed in the subsequent section.

2.2 Decision Making for Workflows

In our setting, we need to decide among 2, . . . , n interpretation algorithms for
a subtask and build a workflow of 1, . . . , m interpretation algorithms to solve
a complex task. We, therefore, distinguish between meta learning and planning
approaches from the literature and will further classify our setting in Sect. 3.

Planning. Automatic orchestration of analytical workflows has been studied by
Beygelzimer et al. [2]. The system essentially uses a planner, a leaner and a large
(structured-) knowledge base to solve complex tasks. A large amount of poten-
tial workflows are taken into account to answer a user specified query with the
optimal choice. The decision process comprises complex learning and planning
approaches, and entails exploring large possible feature spaces. Lastly, atomic
actions are lifted with semantic annotations to better adapt to user queries.
Although our goal equals automatically orchestrating workflows, we also want
to enable have multiple possibly situation-dependent learners, as there might
not be a generic solution.

Markov Decision Processes (MDP) are often employed to learn workflows.
Applications to the health care sector comprise the work of Sahba et al. [11].
They use MDPs to model segmentation algorithms for transrectal ultrasound
images and to optimize the prevalent parameters. Besides, Gao et al. [3] used
MDPs to enable the composition of web services described with Web Service Def-
inition Language (WSDL). The goal is to optimize decisions in terms of web ser-
vice availability and runtime. We, in contrast, deal with possibly heterogeneous
interpretation algorithms in one single workflow. We need to capture important
features to optimally choose them in correct situations. This also distinguishes
our work from optimizing for availability or runtime.

Meta Learning. Besides optimizing workflows, one can use ensemble learning
strategies to choose between two competing candidate interpretation algorithms.
A prominent strategy is the multiplicative weights method [1] (e.g. used in boost-
ing). Here, candidates are combined based on their performance on training sets.
The method was already applied to decision trees with patient factors (e.g. by
Moon et al. [7]) to combine predictions. We, however, focus on the interplay of
such strategies with available semantics for interpretation algorithms and data.
We, thus, want to enable to use such sophisticated ensemble learners within our
framework if they are well-suited for the current (sub-) task.
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3 Problem Statement and Contributions

Let X be the set of all tasks, Y the set of all abstract tasks and A the set of all avail-
able interpretation algorithms. Let further S be the set of abstract states defined
by a subset of objects O, literals L and relations R. We denote, for simplicity, Fsk

as the set of features of a state sk (i.e. a subset of O × R × O and O × R × L).
A grounded state g(sk) depicts an instance of sk in nature. The set Ask defines
the subset of applicable interpretation algorithms in sk which is known to some
degree. We, thus, assume that an interpretation algorithm ai ∈ A can be defined
by a subset of features of F in a similar way as states sk ∈ S. Knowing Ask

depends on how we define features f ∈ F for sk and ai. Let T (s, a, s′) be the
transition function for some state s and interpretation algorithm a ending in s′.
Our knowledge of T (s, a, s′), again, depends on the available features for s, a and
s′. T (g(s), a, g(s′)) is not known and requires further knowledge to be approxi-
mated. A task x(g(sk), (sK)) is a function defined on a grounded start state g(sk)
and an abstract goal state sK . Reaching an unknown grounded goal state g(sK)
takes 1 to n state transitions (g(s), a, g(s′)). To solve x(g(sk), (sK)), we need to
find a sequence of interpretation algorithms ai ending in the unknown grounded
goal state g(sK) with high probability. An abstract task y(g(sk), (sK)) is defined
similarly and we need to find any sequence a1, . . . , an to get from g(sk) to sK . Our
setting is much related to a Markov Decision Process (MDP) (S,A, T,R, γ) with
R, in addition, being the reward function for state, interpretation algorithm pairs
(s, a) and γ the discount factor. The latter regulates the influence of future inter-
pretation algorithms ai taken in future steps sk on the value estimations of cur-
rent states and actions. Defining R(s, a) for x(g(sk), (sK)) is not straightforward
as g(sK) is unknown. An absorbing state with R(sk, ai) = 0 can be artificially
modelled to denote the goal sK .

Wedefineabstractplanning as trying to solve an abstract task y(g(sk), (sK)).
Here, we ignore that multiple interpretation algorithms ai might be available for
sk. Meta learning considers |Ask | > 1 and tries to solve a subtask xi(g(sk), sK))
to find the optimal ai for g(sk). Planning deals with solving x(g(sk), sK)) with
known T and R, and planning-related learning considers T,R unknown and
tries to approximate them (as, for instance, is done in model-based reinforce-
ment learning).

We disclosed the following challenges for sequential decision making with
medical interpretation algorithms:

(a) Interpretation algorithm might be developed by different researchers from
different institutions. We need a common (meta-) representation to integrate
the interpretation algorithms and the data they consume.

(b) Interpretation algorithms need to be quickly and concurrently accessible if
numerous complex tasks have to be solved for different endusers.

(c) We need to reduce the effort to manually define procedures to solve complex
tasks in order to quickly integrate new interpretation algorithms and use
them if they perform better.

(d) To handle heterogeneous and competing interpretation algorithms, we need
meta components with potentially different (degrees of-) specialisation
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(e.g. some might only deal with continuous outcomes, others with discrete
ones; some might leverage groundings, others abstract levels).

(e) It is unclear which information we need to incorporate into our decision mak-
ing. Investigating the connection between (abstract-) planning and (meta-)
learning problems and (meta-) representations of interpretation algorithms
is, thus, important.

(f) For physicians to use the system, they have to trust the proposed solutions.

Based on these challenges, we see the following contributions of our work:

(i) We formalize the problem setting and introduce a framework for interpre-
tation algorithms and meta components to automatically solve complex
medical tasks.

(ii) We develop meta components to conduct abstract planning and meta learn-
ing, anddisclose further challenges for planning andplanning-related learning.

(iii) We are analysing the interplay between semantics (for meta components,
interpretation algorithms and data) and added value for solving complex
medical tasks.

(iv) We started to investigate the issue of ‘trust’ and try to give accurate confi-
dence estimates for solutions.

4 Research Methodology and Approach

An overview of our approach is illustrated in Fig. 1. Based on this abstract rep-
resentation of our ideas, we will focus on three different parts in this section.
We, first, describe our research methodology for developing data-driven, declar-
ative workflows to enable sequential decision making for complex medical tasks
by explaining the illustrated components. We, then, dwell on meta component
scenarios in part two and three - (abstract-) planning and (meta-) learning - and
explain their interfaces within the framework.

Fig. 1. A schematic overview of our approach.
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4.1 Data-Driven, Declarative Workflows

To integrate interpretation algorithms and make them easily accessible, we build
on Linked APIs [12] and Linked Data-Fu [13]. These concepts help us to tackle
challenges (a) and (b), and build a foundation for challenge (c).

Linked APIs describe a class of RESTful services which are extended with
descriptions inspired by the Semantic Web. In our approach, we define important
information about interpretation algorithms in terms of a description based on
RDF and OWL, and publish RDF wrappers of interpretation algorithms persis-
tently on the Web. We will refer to them as Linked interpretation algorithms.
To have a central and controlled vocabulary, we developed ontologies for both
data types and interpretation algorithms and are working on formalizing eval-
uation metrics. Besides non-functional requirements (e.g. contributors, textual
descriptions or example requests and responses), we model functional aspects of
the interpretation algorithms. Here, it remains open how to model the inputs
and outputs, and their respective pre- and postconditions to optimally leverage
interpretation algorithms for (abstract-) planning and (meta-) learning (chal-
lenge (d), see Sect. 6 for a short discussion).

To execute Linked interpretation algorithms, we use the Linked Data-Fu
Engine [14]. It enables virtual data integration of distributed data sources to
properly execute Linked interpretation algorithms. This is crucial as we have
different kinds of information/knowledge relevant for solving complex tasks.
Knowledge from experts helps estimating the interpretation algorithms’ per-
formances on data sets. It highly influences the initial belief about the applica-
bility of interpretation algorithms. As the system gathers more evidence, beliefs
might be challenged. Evidence-based knowledge from other sources (i.e.
other researchers and published papers) essentially comprises domain knowledge
as well, but might be subjective and hard to validate. Statistics-based knowl-
edge is gathered by testing the interpretation algorithms on training samples
and keeping track of their performances on new data.

We automatically generate rules for Linked Data-Fu based on preconditions
of interpretation algorithms. The term Linked agent is used to denote a Linked
Data-Fu instance with access to Linked interpretation algorithms, to a structured
(and distributed-) knowledge base and to meta components. The latter extend
the data-driven, declarative workflows with strategies (of arbitrary complex-
ity) to choose Linked interpretation algorithms for solving a complex task. The
Linked agent can, then, easily execute the proper worfklows based on a subset of
chosen Linked interpretation algorithms. Figure 2 visualizes the interactions of
the Linked agent for using abstract planning and meta learning components. The
meta components are only called if the current state sk matches their precon-
ditions, which is one step towards solving challenge (d). The next section deals
with our endeavours to develop such meta components and to extend them to
the pure planning and learning scenarios.

4.2 (Abstract-) Planning and Planning-Related Learning

As defined in Sect. 3, we are trying to solve an abstract task y(g(sk), (sK)) with
abstract planning. We, therefore, use the MDP formulation and only evaluate
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Fig. 2. Components of the framework with general rules.

Linked interpretation algorithms on a concept level based on the grounded start
state g(sk). We model a finite MDP by using the pre- and postconditions of
Linked interpretation algorithms as states sk with local scopes, i.e. we only
consider preconditions of states sk for transitions, and assume to know the state
features Fsk . The transition probabilities T are defined in Eq. 1 and make up a
S × (A+1)×S matrix by adding a dummy interpretation algorithm pointing to
the goal state, when the latter was reached. The reward function R is a S×(A+1)
matrix and shifts all rewards to the dummy interpretation algorithm (see Eq. 2).
By using any strategy to solve the MDP (e.g. value iteration), we find eligible
Linked interpretation algorithms to solve the task.

T (s, a, s′) =

{
tsas′ = 1

|Ask
| ∃(s, a, s′) based on Fs and Fs′

tsas′ = 0 otherwise
(1)

R(s, a) =

{
rsa = 1 if a equals dummy algorithm and s equals goal
rsa = 0 otherwise

(2)

Based on this first simple case, we can model and solve more complex work-
flows with unsure or stochastic transitions between states and might be able to
tackle the case where pre- and postconditions do not exactly match. However,
besides abstract tasks, we need to solve x(g(sk), (sK)) based on the grounded
states g(sk) resulting from executing Linked interpretation algorithms in a work-
flow. This is a different scenario, as we have to assess the quality of results in
terms of different evaluation criteria. Moreover, T and R might be unknown
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for numerous states and Linked interpretation algorithms, and we need to learn
them with planning-related learning approaches. See Sect. 6 for our next steps
towards solving x(g(sk), (sK)).

4.3 Meta Learning

In the meta learning setting, we try to solve xi(g(sk), sK)). We approach this
problem setting by investigating ensemble learning strategies and extend them
by incorporating semantics. A first meta learner might assess the expected per-
formance of a Linked interpretation algorithm for classification based on training
samples close to the grounded state g(sk). We train the Linked interpretation
algorithms (if possible in terms of their preconditions) on a subset of samples and
predict on the remaining ones (i.e. we cross-validate). The heuristic repeats the
process until all training samples have been assessed and derives the probability
for a new grounded state g(sk) based on its performance on similar instances.
We can use any similarity function to derive these similar instances (i.e. nearest
neighbours). The heuristic is summarized in Algorithm1.

Algorithm 1. Majority Heuristic given Linked interpretation algorithms L,
number of neighbours to consider k, state sk, cut t

1: N ← nearestNeighbours(g(sk), k)
2: T ← set of training samples cut into t subsets
3: for all t ∈ T do
4: for all l ∈ L do
5: train(l, T without t) //if possible
6: updatePerformanceTable(l, t)
7: for all l ∈ L do
8: wl ← estimatePerformance(l, N)
9: for all p ∈ P do

10: H(p) ←∑l∈L wl1[hl(g(sk)) = p]
11: h� ← arg maxp∈PH(p)
12: return h�

5 Preliminary Results

We applied the approach to two medical scenarios - image processing for tumour
progression mappings (TPM) and sensor interpretation to recognize surgical
phases - and evaluated them in terms of correctness, time consumption and
effect of meta components. Figure 3 illustrates the shared architecture compris-
ing a structured knowledge base integrated via a Semantic MediaWiki (SMW),
several Linked interpretation algorithms, the Linked agent and two Linked meta
components.



768 P. Philipp

Fig. 3. The semantic framework for medical sequential decision making (extended
based on [9]).

5.1 Tumour Progression Mapping and Abstract Planning

As discussed in Sect. 1, a TPM supports radiologists in assessing the develop-
ment of a patient when treated for brain tumours. The available Linked inter-
pretation algorithm are listed in Fig. 3. Listing 1.1 comprises the preconditions
to generate a brain mask, which takes as input a headscan and two refer-
ence images. The image ontology is available in the knowledge base (kbont
namespace). We evaluated the correct functioning and time consumption in
[4,10], and modelled the scenario as finite MDP, as explained in Sect. 4.2. We,
therefore, added Linked interpretation algorithms for sensor interpretation to
test if only goal-oriented Linked interpretation algorithms were chosen. The
MDP consisted of 9 states according to possible transitions we derived based on
modelled pre- and postconditions of the interpretation algorithms. When apply-
ing value iteration to solve the MDP with T,R following Eqs. 1 and 2, we derived
V = < 0.32805. 0.3645, 0.405. 0.405, 0.45, 0.45, 1.00, 0, 0 > after 6 iterations with
discount factor 0.9. The starting state was a grounding for ‘Brain Mask Genera-
tion’ and the goal state was the generated TPM. V gives us the estimated values
of states sk and assigns 0 to states related to sensor interpreters. We, thus, do
not have to execute them to reach the goal state ‘TPM’.

?headscan rdf:type kbont:Headscan;
dc:format "image/nrrd".

?brainAtlasImage rdf:type kbont:BrainAtlasImage;
dc:format "image/mha".

?brainAtlasMask rdf:type kbont:BrainAtlasMask;
dc:format "image/mha".

Listing 1.1. Preconditions of the brain mask generation step (namespaces are omitted)
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5.2 Surgical Phase Recognition and Meta Learning

In surgical phase recognition, one tries to predict the phase of the ongoing surgery
based on sensor outputs. Based on this phase, one could visualize risk structures
and, thereby, support the surgeon. We wrapped two phase recognizers as Linked
interpretation algorithms. ‘SWRL’ uses rules formalized with the Semantic Web
Rule Language to predict the phase, and ‘ML’ uses machine-learning and can
be trained with annotated surgeries. We evaluated the correct functioning and
time consumption in [9] and integrated the meta learning heuristic (see Algo-
rithm1) into the architecture. Table 2 summarizes the results. The meta learner
was able to provide stable and sometimes better results than the single Linked
interpretation algorithms.

Table 2. Performance evaluation of phase recognition algorithms and meta learner in
5 different surgeries.

Algorithm Surgery 1 Surgery 2 Surgery 3 Surgery 4 Surgery 5

ML-based 0.91 0.66 0.90 0.45 0.64

SWRL 0.93 0.78 0.89 0.81 0.72

Linked meta learner 0.93 0.78 0.92 0.78 0.72

6 Evaluation Plan

Our research approach and preliminary results showed that our framework is
able to solve first complex tasks. The next step to systematically approach chal-
lenge (e) is to explore the effect of feature selection on the meta leaning case
and the planning-related learning case. We, here, study the interplay between
semantics and meta components to be able to assess how fine-grained the pre-
and postconditions for Linked interpretation algorithms need to be. Hence, we
need to find out how much semantics we need to confidently learn transition
probabilities T (s, a, s′) and the rewards R(s, a) associated with taking interpre-
tation algorithm a in state s.

We, also, want to better leverage semantics in the (abstract-) planning case.
We only modelled a flat image structure for the TPM scenario which restricts
generalization and flexibility. We will, therefore, investigate relational MDPs [15]
and try to better capture the semantics of Linked interpretation algorithms when
modelling the MDP. This might enable to better generalize to new unknown
states sk if their features Fsk have been sufficiently explored before. Generaliza-
tion, in turn, helps to solve the pure planning case x(g(sk), g(sK)).

We will focus on giving confidence estimates for the performance of meta
components on new states sk. We aim to extend our abstract planning (and
pure planning-) approach with learners of the ‘Knows what it knows’ (KWIK)
framework [6] and give theoretical justifications for the framework’s performance
(challenge (f)).
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7 Conclusions

Solving complex tasks with heterogeneous Linked interpretation algorithms
depicts a diverse problem setting and imposes interesting challenges. The medical
domain exhibits sufficient complexity for investigating this problem and provides
scenarios for sequential decision making under uncertainty. We, first, formalized
the setting and disclosed the necessity of semantics, a data-driven and declarative
execution and meta components. We, then, proposed a framework which enables
to easily incorporate Linked meta components as well as new Linked interpre-
tation algorithms, and to automatically solve complex tasks (contribution (i)).
Lastly, we presented first conceptual and practical results for the meta learning
and abstract planning cases (contribution (ii)). We work towards extending the
capabilities of the meta components and especially investigate their interplay
with semantics (longterm contribution (iii)). As trust is an important issue for
endusers of the framework, we aim to give exact and transparent confidence
estimates for the generated solutions (longterm contribution (iv)).
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