Skip to main content

Optimally Sparse Data Representations

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA,volume 68))

Abstract

This chapter is dedicated to the question of how to efficiently encode a given class of signals. We introduce several mathematical techniques to construct optimal data representations for a number of signal types. Specifically we study the optimal approximation of functions governed by anisotropic singularities such as edges in images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berger, T.: Rate distortion theory: A mathematical basis for data compression (1971)

    Google Scholar 

  2. Candes, E.J.: Ridgelets and the representation of mutilated sobolev functions. SIAM J. Math. Anal. 33(2), 347–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with C 2 singularities. Commun. Pure Appl. Math. 56, 219–266 (2004)

    Article  Google Scholar 

  4. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser Basel, Boston (2003)

    Book  MATH  Google Scholar 

  5. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70(233), 27–75 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahlke, S., Steidl, G., Teschke, G.: Shearlet coorbit spaces: compactly supported analyzing shearlets, traces and embeddings. J. Fourier Anal. Appl. 17(6), 1232–1255 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies, I., et al.: Ten Lectures on Wavelets, vol. 61. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  9. Demanet, L., Ying, L.: Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmonic Anal. 23(3), 368–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. DeVore, R.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  11. Donoho, D.L.: Unconditional bases and bit-level compression. Appl. Comput. Harmonic Anal. 3(4), 388–392 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho, D.L.: Orthonormal ridgelets and linear singularities. SIAM J. Math. Anal. 31(5), 1062–1099 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoho, D.L.: Sparse components of images and optimal atomic decomposition. Constr. Approx. 17, 353–382 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Etter, S., Grohs, P., Obermeier, A.: Ffrt: A fast finite ridgelet transform for radiative transport. Multiscale Model. Simul. 13(1), 1–42 (2015)

    Article  MathSciNet  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations. AMS, Providence (2010)

    Book  MATH  Google Scholar 

  16. Feichtinger, H.G., Gröchenig, K., Walnut, D.: Wilson bases and modulation spaces. Mathematische Nachrichten 155(1), 7–17 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, New York (2013)

    Book  MATH  Google Scholar 

  18. Gröchenig, K.: Foundations of Time-Frequency Analysis. Springer, New York (2001)

    Book  MATH  Google Scholar 

  19. Grohs, P.: Tree approximation with anisotropic decompositions. Appl. Comput. Harmonic Anal. 33(1), 44–57 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grohs, P.: Bandlimited shearlet frames with nice duals. J. Comput. Appl. Math. 243, 139–151 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M.: α-molecules. arXiv preprint arXiv:1407.4424 (2014)

    Google Scholar 

  22. Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M.: Cartoon approximation with α-curvelets. arXiv preprint arXiv:1404.1043 (2014)

    Google Scholar 

  23. Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M.: Parabolic molecules: Curvelets, shearlets, and beyond. In: Approximation Theory XIV: San Antonio 2013, pp. 141–172. Springer, New York (2014)

    Google Scholar 

  24. Grohs, P., Kutyniok, G.: Parabolic molecules. Found. Comput. Math. 14(2), 299–337 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grohs, P., Obermeier, A.: Optimal adaptive ridgelet schemes for linear transport equations. arXiv preprint arXiv:1409.1881 (2014)

    Google Scholar 

  26. Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math Anal. 39, 298–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, K., Labate, D.: The construction of smooth Parseval frames of shearlets. Math. Model. Nat. Phenom. 8(1), 82–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kittipoom, P., Kutyniok, G., Lim, W.Q.: Construction of compactly supported shearlet frames. Constr. Approx. 35(1), 21–72 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kutyniok, G., Labate, D. (eds.): Shearlets: Multiscale Analysis for Multivariate Data. Birkhäuser, Boston (2012)

    Google Scholar 

  30. Kutyniok, G., Lim, W.Q.: Compactly supported shearlets are optimally sparse. J. Approx. Theory 163(11), 1564–1589 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kutyniok, G., Lim, W.Q.: Dualizable shearlet frames and sparse approximation. arXiv preprint arXiv:1411.2303 (2014)

    Google Scholar 

  32. Kutyniok, G., Shahram, M., Zhuang, X.: Shearlab: A rational design of a digital parabolic scaling algorithm. SIAM J. Imag. Sci. 5(4), 1291–1332 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lim, W.Q.: The discrete shearlet transform: A new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010)

    Article  MathSciNet  Google Scholar 

  34. Mallat, S.: A Wavelet Tour of Signal Processing. Academic press, London (2006)

    Google Scholar 

  35. Mallat, S., Peyré, G.: A review of bandlet methods for geometrical image representation. Numer. Algorithm 44(3), 205–234 (2007)

    Article  MATH  Google Scholar 

  36. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  37. Pinsky, M.A.: Introduction to Fourier analysis and wavelets. Brooks/Cole, Pacific Grove (2002)

    MATH  Google Scholar 

  38. Renyi, A.: Foundations of Probability. Courier Corporation, Mineola (2007)

    MATH  Google Scholar 

  39. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, vol. 3. Walter de Gruyter, Berlin (1996)

    Book  MATH  Google Scholar 

  40. Stein, E.M., Murphy, T.S.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 3. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Grohs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grohs, P. (2015). Optimally Sparse Data Representations. In: Dahlke, S., De Mari, F., Grohs, P., Labate, D. (eds) Harmonic and Applied Analysis. Applied and Numerical Harmonic Analysis, vol 68. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-18863-8_5

Download citation

Publish with us

Policies and ethics