Skip to main content

Using EEG Signals to Detect the Intention of Walking Initiation and Stop

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

The ability of walking brings us a great freedom in our daily life. However, there is a huge number of people who have this ability diminished or are not even able to walk due to motor disabilities. This paper presents a method to detect the voluntary initiation and stop of the gait cycle using the ERD phenomenon. The system developed obtains a good accuracy in the detection of the rest and walking state (70.5 % and 75.0 %, respectively). Moreover, the average detection of the onset and ending instants of the gait is detected with a 65.2 % of accuracy. Taking into account the number of intentions of initiation and stop of the gait, the system reaches a good True Positive Rate (around 65%) but obtaining a still improvable False Positive Rate (15.4 FP/min in average). By reducing this factor, this detection system can be used in future works to control a lower limb exoskeleton or a wearable robot. These devices are very useful for rehabilitation and assistance procedures in patients with motor problems affecting their lower limb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daly, J.J., Wolpaw, J.R.: Brain-computer interfaces in neurological rehabilitation. The Lancet Neurology 7(11), 1032–1043 (2008)

    Article  Google Scholar 

  2. Wei, L., Yue, H., Jiang, X., He, J.: Brain Activity during Walking in Patient with Spinal Cord Injury. In: International Symposium on Bioelectronics and Bioinformatics (ISBB), pp. 96–99 (2011)

    Google Scholar 

  3. Hortal, E., Úbeda, A., Iáñez, E., Azorín, J.M.: Control of a 2 DoF Robot Using a Brain-Machine Interface. Computer Methods and Programs in Biomedicine 116(2), 169–176 (2014), New methods of human-robot interaction in medical practice,

    Google Scholar 

  4. Wolpaw, J.R., Birbaumerc, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

  5. Moreno, J.C., Collantes, I., Asin, G., Pons, J.L.: Design of better robotic tools adapted to stroke rehabilitation practice. In: World Congress on Medical Physics and Biomedical Engineering (2012)

    Google Scholar 

  6. Bortole, M., del Ama, A.J., Rocon, E., Moreno, J.C., Brunetti, F., Pons, J.L.: A Robotic Exoskeleton for Overground Gait Rehabilitation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3356–3361 (2013)

    Google Scholar 

  7. Bai, O., et al.: Prediction of human voluntary movement before it occurs. Clinical Neurophysiology 122, 364–372 (2011)

    Article  Google Scholar 

  8. Ibáñez, J., Serrano, J.I., del Castillo, M.D., Barrios, L., Gallego, J.Á., Rocon, E.: An EEG-Based Design for the Online Detection of Movement Intention. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part I. LNCS, vol. 6691, pp. 370–377. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Planelles, D., Hortal, E., Costa, A., Iáñez, E., Azorín, J.M.: First steps in the development of an EEG-based system to detect intention of gait initiation. In: 8th Annual IEEE International Systems Conference, Ottawa, Canada, pp. 167–171 (2014)

    Google Scholar 

  10. Dollar, A.M., Herr, H.: Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art. IEEE Transactions on Robotics 24(1), 144–158 (2008)

    Article  Google Scholar 

  11. Moreno, J.C., del Ama, A.J., de los Reyes-Guzmán, A., Gil-Agudo, A., Ceres, R., Pons, J.L.: Neurorobotic and hybrid management of lower limb motor disorders: a review. Medical & Biological Engineering & Computing 49(10), 1119–1130 (2011)

    Article  Google Scholar 

  12. Koralek, A.C., Jin, X., Long, J.D., Costa, R.M., Carmena, J.M.: Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483, 331–335 (2012)

    Article  Google Scholar 

  13. Shibasaki, H., Hallett, M.: What is the Bereitschaftspotential? Clinical Neurophysiology 117, 2341–2356 (2006)

    Article  Google Scholar 

  14. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  15. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification (2003), http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  16. Flórez, F., Azorín, J.M., Iáñez, E., Úbeda, A., Fernández, E.: Development of a low-cost SVM-based spontaneous Brain-Computer Interface. In: International Conference on Neural Computation Theory and Applications, pp. 415–421 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Hortal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hortal, E., Úbeda, A., Iáñez, E., Fernández, E., Azorín, J.M. (2015). Using EEG Signals to Detect the Intention of Walking Initiation and Stop. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics