Skip to main content

Estimation of M/EEG Non-stationary Brain Activity Using Spatio-temporal Sparse Constraints

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9107))

Abstract

Based on the assumption that brain activity appears in localized brain regions that can vary along time, yielding spatial and temporal non-stationary activity, we propose a constrained M/EEG inverse solution, based on the Fused Lasso penalty, that reconstructs brain activity as dynamic small and locally smooth spatial patches. Thus, our main contribution is to provide neural activity reconstruction tracking non-stationary dynamics. We validate the proposed approach in two different ways: i) using simulated MEG data when we have previous knowledge about spatial and temporal signal dynamics, and ii) using real MEG data, particularly we use a faces perception paradigm aimed to examine the M170 response. In the former case of validation, our approach outperforms conventional M/EEG-based imaging algorithms. Besides, there is a high correspondence between brain activities presented on the evaluated real MEG data and the time-varying solution obtained by our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grech, R., Cassar, T., Muscat, J., Camilleri, K., Fabri, S., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in eeg source analysis. Journal of NeuroEngineering and Rehabilitation 5(25), 792–800 (2008)

    Google Scholar 

  2. Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic Brain Mapping. IEEE Signal Processing Magazine 18, 14–30 (2001)

    Article  Google Scholar 

  3. Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J.: Multiple sparse priors for the m/eeg inverse problem. NeuroImage 39(3), 1104–1120 (2008)

    Article  Google Scholar 

  4. Wipf, D., Nagarajan, S.: A unified bayesian framework for meg/eeg source imaging. NeuroImage 44(3), 947–966 (2009)

    Article  Google Scholar 

  5. Haufe, S., Tomioka, R., Dickhaus, T., Sannelli, C., Blankertz, B., Nolte, G., Muller, K.-R.: Large-scale eeg/meg source localization with spatial flexibility. NeuroImage 54(2), 851–859 (2011)

    Article  Google Scholar 

  6. Gramfort, A., Strohmeier, D., Haueisen, J., Hamalainen, M.S., Kowalski, M.: Time-frequency mixed-norm estimates: Sparse m/eeg imaging with non-stationary source activations. NeuroImage 70, 410–422 (2013)

    Article  Google Scholar 

  7. Owen, J.P., Wipf, D.P., Attias, H.T., Sekihara, K., Nagarajan, S.S.: Performance evaluation of the champagne source reconstruction algorithm on simulated and real m/eeg data. NeuroImage 60(1), 305–323 (2012)

    Article  Google Scholar 

  8. Schmitt, U., Louis, A.K., Wolters, C., Vauhkonen, M.: Efficient algorithms for the regularization of dynamic inverse problems: II. Applications. Inverse Problems 18(3), 659–676 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Barton, M.J., Robinson, P.A., Kumar, S., Galka, A., Durrant-Whyte, H.F., Guivant, J., Ozaki, T.: Evaluating the performance of Kalman-filter-based EEG source localization. IEEE Transactions on Bio-medical Engineering 56(1), 122–136 (2009)

    Article  Google Scholar 

  10. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society Series B, 91–108 (2005)

    Google Scholar 

  11. Monti, R.P., Hellyer, P., Sharp, D., Leech, R., Anagnostopoulos, C., Montana, G.: Estimating time-varying brain connectivity networks from functional MRI time series. NeuroImage 103, 427–443 (2014)

    Article  Google Scholar 

  12. Belardinelli, P., Ortiz, E., Barnes, G., Noppeney, U., Preissl, H.: Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches. PloS One 7(12), e51985 (2012)

    Google Scholar 

  13. Harrison, L.M., Penny, W., Ashburner, J., Trujillo-Barreto, N., Friston, K.J.: Diffusion-based spatial priors for imaging. NeuroImage 38(4), 677–695 (2007)

    Article  Google Scholar 

  14. Ye, G.-B., Xie, X.: Split bregman method for large scale fused lasso. Computational Statistics Data Analysis 55(4), 1552–1569 (2011)

    Article  MathSciNet  Google Scholar 

  15. Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J.: A parametric empirical bayesian framework for the eeg/meg inverse problem: generative models for multisubject and multimodal integration. Frontiers in Human Neuroscience 5(76) (2011)

    Google Scholar 

  16. Harris, A.M., Duchaine, B.C., Nakayama, K.: Normal and abnormal face selectivity of the M170 response in developmental prosopagnosics. Neuropsychologia 43(14), 2125–2136 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Martínez-Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martínez-Vargas, J.D., Grisales-Franco, F.M., Castellanos-Dominguez, G. (2015). Estimation of M/EEG Non-stationary Brain Activity Using Spatio-temporal Sparse Constraints. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics