
© Springer International Publishing Switzerland 2015
J. Zdravkovic et al. (Eds.): CAiSE 2015, LNCS 9097, pp. 230–243, 2015.
DOI: 10.1007/978-3-319-19069-3_15

A Model-Driven Approach to Enterprise Data Migration

Raghavendra Reddy Yeddula(), Prasenjit Das, and Sreedhar Reddy

Tata Consultancy Services, Pune 411 013, India
{raghavendrareddy.y,prasenjit.d,sreedhar.reddy}@tcs.com

Abstract. In a typical data migration project, analysts identify the mappings be-
tween source and target data models at a conceptual level using informal textual
descriptions. An implementation team translates these mappings into programs
that migrate the data. While doing so, the programmers have to understand how
the conceptual models and business rules map to physical databases. We pro-
pose a modeling mechanism where we can specify conceptual models, physical
models and mappings between them in a formal manner. We can also specify
rules on conceptual models. From these models and mappings, we can automat-
ically generate a program to migrate data from source to target. We can also
generate a program to migrate data access queries from source to target. The
overall approach results in a significant improvement in productivity and also a
significant reduction in migration errors.

Keywords: Data migration · Conceptual models · Data model mapping · Query
translation

1 Introduction

Data migration is the process of transferring an enterprise’s data from one database to
another. A typical data migration project starts with business analysts identifying the
mappings between source and target data models. An implementation team then ma-
nually translates these mappings into programs that migrate the data. Business ana-
lysts specify the mappings in terms of conceptual data models that reflect the business
domain semantics. Programmers have to write their programs in terms of physical
database schemas. While doing this, programmers not only have to understand the
source-to-target mappings correctly, but also how the conceptual models and the rules
there of map to the physical databases, as shown in Fig. 1. This is an error prone
process which is further compounded by the fact that these mappings are generally
only documented informally, using sketchy textual descriptions.

In this paper we describe a model driven approach to automate this process using a
model mappings based infrastructure. Using this infrastructure we can create concep-
tual models, physical models and specify mappings between them, formally, using a
mappings language. This infrastructure also provides a set of primitive processing
blocks such as mapping composer, query translator, etc. Mapping composer can com-
pose a set of mappings to create a new mapping. Query translator can process a
mapping to translate a query on a model at one end of the mapping to an equivalent

 A Model-Driven Approach to Enterprise Data Migration 231

query on the model at the other end. These blocks process not only the mappings but
also the rules captured in the conceptual model.

Fig. 1. Data Migration – typical scenario

In a data migration scenario, we create models and mappings as shown in Fig. 1, i.e. a
mapping between source and target conceptual models, a mapping between source con-
ceptual and physical models, and a mapping between target conceptual and physical
models. Some of these models and mappings can be reverse engineered from existing
systems. For instance, source-side models and mappings can be reverse engineered from
an existing source system implementation, and likewise on the target side. We compose
these models and mappings to automatically derive a mapping between source and target
databases. From this mapping, we generate a program to migrate data from source to
target. We also generate a program to migrate queries expressed on the source database
into equivalent queries on the target database. The latter is important because, typically,
in a data migration project, it is not only the data that has to be migrated, but also the data
access programs. The overall approach results in a significant improvement in produc-
tivity. It also results in a significant reduction in migration errors.

The rest of the paper is organized as follows. Section 2 discusses the modeling in-
frastructure, section 3 discusses the data migration architecture and section 4 presents
some results. Section 5 discusses related work. We conclude by summarizing and
discussing future work.

2 Modeling Infrastructure

2.1 Conceptual Models

We use an extended version of UML object model [17] as our conceptual modeling
language. Object model is extended to add rules to classes and relations. The exten-
sion to UML meta model is implemented using our in-house meta modeling tool [9].

Conceptual model + Rules Conceptual model + Rules

Physical data model Physical data model

Mapping
 ?

Mapping
 ?

Data migration
 program Database Database

Mapping
 ?

Source Target

232 R.R. Yeddula et al.

2.2 Rules

We can specify rules on co
or a constraint among a set
flavor to Semantic Web Ru
suitably to cast it in the fa
comfortable with. Also we
properties in SWRL parlan
and readable notation.

A rule has the following

if <antecedent> the

Here, antecedent specifies
specifies the inferences one
of this language is outside
strate the syntax. Fig. 2 sho
and parent, spouse and

The following are some of
el:

Rule 1: Persons who have a

If
 Person(p1) and Pe
Then
 p1.sibling = p2

Constraint 1: Two differen
the same gender.

If
 Person(p1) and Pe
 p1.parent = p2 an
then
 p2.gender <> p3.g

onceptual models. A rule specifies a derivative relations
of related entities. We use a rule language that is simila
ule Language (SWRL) abstract syntax [18], but modif
amiliar ‘IF..THEN’ notation that business users are m
e can refer to properties and relations (i.e. object-val

nce) using path expressions which leads to a more comp

form:

en <consequent>

a condition on a set of related entities and the consequ
e can draw when the condition holds. Detailed explanat
the scope of this paper. We give a few examples to i

ows a simple conceptual model where Person is a conc
d sibling are relationships.

Fig. 2. A simple conceptual model

the rules and constraints that one can express on this m

a common parent are siblings.

erson(p2) and p1.parent = p2.parent

nt parents (e.g. mother and father) of a person cannot h

erson(p2) and Person(p3)and
nd p1.parent = p3 and p2 <> p3

gender

ship
ar in
fied

more
lued
pact

uent
tion
illu-
cept

mod-

have

 A

2.3 Physical Models

We use relational model fo
tional meta model is show
tables and primary-key and

2.4 Model Mappings

We map two models by def
more classes or tables of t
language that is a restricted
this language PQL (for pa

A Model-Driven Approach to Enterprise Data Migration

or physical data modeling. A simplified version of the re
wn in Fig. 3. Using this model we can specify relatio

foreign-key relations among them.

Fig. 3. Relational meta-model

fining a class or a table of one model as a view over one
the other model. Views are defined declaratively usin
d version of Object Query Language (OQL) [19]. We
ath expression query language). This is essentially O

Fig. 4. Sample Mapping

233

ela-
onal

e or
ng a
call

OQL

234 R.R. Yeddula et al.

without some of the procedural extensions such as method invocations on objects. We
support user-defined functions but they are required to be side-effect-free, i.e. they
just take inputs and return an output without leaving any side-effect in the state.

Fig. 4 shows an example mapping where a class in model M1 is mapped as a view
over a set of classes in model M2.

2.5 Model Processing Infrastructure

We use an internal representation language that is similar to Datalog with aggregation
[1], [3], [20]. We translate PQL queries, mappings and rules into this internal repre-
sentation language. Detailed discussion of this language is outside the scope of this
paper due to space constraints, but the following examples will give an idea.

Example 1
PQL (mapping of M1.Employee in Fig. 4):
select e.name name, e.salary salary, d.name department,
 c.name company
from M2.Employee e, M2.Department d, M2.Company c
where e.department = d and d.company = c;

Internal Representation
M1.Employee(name(v1), salary(v2), department(v3),
 company(v4)) :-
 M2.Employee(id(v0), name(v1), salary(v2)),
 M2.employee_department(id1(v0), id2(v5)),
 M2.Department(id(v5), name(v3)),
 M2.department_company(id1(v5), id2(v6)),
 M2.Company(id(v6), name(v4)).

Example 2
Rule (on M1.Employee)
If
 Employee(e) and e.salary > 120000
Then
 e.department = ‘Management’

Internal Representation
Employee(id(v0), name(_), salary(v1),
department(‘Management’), company(_)) :-
 Employee(id(v0), name(_), salary(v1), department(_)),
 v1 > 120000.

Please note that Datalog does not support functional terms in arguments. Our internal
notation does not support them either. References to functional terms such as id(),
salary(), etc. above are added purely for the sake of readability, to show which argu-
ments refer to which data elements. In the actual implementation, we only use

 A Model-Driven Approach to Enterprise Data Migration 235

variable arguments, where the position of an argument uniquely identifies the data
element it represents.

Also note the usage of object IDs (id() terms), and the codification of a relationship
as a term with two ID arguments. For example, the relationship between Employee
and Department is represented by the term employee_department(id1(), id2()).

With respect to a given model M, we classify the internal representation rules of
mappings into two classes, the so-called global-as-view (GAV) [2], [5] and local-as-
view (LAV) rules [4]. Rules of a mapping where a class of M is defined as a view
over classes of other models are classified as GAV rules; whereas rules of a mapping
in the other direction, i.e. a class of the other model being defined as a view over
classes of M, are treated as LAV rules.

The uniform representation of rules and mappings allows us to process them to-
gether. For instance, referring to the rule above, if we have a query asking for em-
ployees of ‘management’ department, we can return all employees whose salary is
greater than 120000.

2.6 Query Translator

We use a query translation algorithm to translate queries written on a model at one
end of a mapping into an equivalent query on the other end of the mapping, as shown
in Fig. 5. The algorithm is based on the well-known GAV [2] and LAV [4] query
rewriting techniques. A detailed discussion of the query translation algorithm is out-
side the scope of this paper. A detailed discussion on the individual techniques can be
found in the cited references. We combine these techniques in a layered manner,
where each layer does a partial translation.

Fig. 5. Query Translation

2.7 Data Flow Graph Generator

A Data Flow Graph or DFG represents the flow of data from one system to another
system and the transformations it undergoes along the way. A DFG contains nodes
and directed edges. Nodes represent operators. An edge represents flow of data from
one node to the other. There are various types of operators in a DFG, such as join,
union, filter, aggregation, etc. each performing a specific operation. For example, join
operator joins the data tuples coming in on its input edges and sends out the joined
tuples on its output edge. A data flow graph is a procedural artifact. We can either

Model 1 Model 2 Mapping

Query Query Translator Query

expressedOn expressedOn

236 R.R. Yeddula et al.

execute it directly or translate it into procedural code in a standard high-level lan-
guage such as java, stored procedures, etc.

We can translate a PQL query into an equivalent data flow graph. We first translate
the query into our internal Datalog representation, and then generate the DFG from
this internal representation. We illustrate this with a few examples:

Example 1
Datalog Query

Customer(name(v1)) :- CorporateCustomer(name(v1), ..).
Customer(name(v1)) :- IndividualCustomer(name(v1), ..).

The query is used to fetch names of customers from two sources -- corporate cus-
tomers and individual customers by executing the corresponding sub queries Corpo-
rateCustomer() and IndividualCustomer().

Fig. 6 shows the equivalent DFG. The boxes CorporateCustomer and Indi-
vidualCustomer represent the sources. The Selection operators select name of
CorporateCustomer and IndividualCustomer from respective sources.

Fig. 6. DFG – Example 1

Example 2
Datalog Query

MillionDollarCustomer(name(v1), amount(v2)) :-
 SQ(v1, v2), v2 > 1000000.
SQ(v1, SUM(v3)) :-
 Customer(id(v0), name(v1), ..),
 Customer_Contract(customer(v0), contract(v2)),
 Contract(id(v2), amount(v3)).

This query is used to fetch names and total contract amount of customers whose total
contract amount exceeds a million.

Fig. 7 shows the equivalent DFG.

IndividualCustomer

Customer UNION

SELECTION

CorporateCustomer SELECTION

 A Model-Driven Approach to Enterprise Data Migration 237

Fig. 7. DFG – Example 2

2.8 Mapping Composer

We can derive a mapping between two unmapped models by composing other known
mappings. Referring to Fig. 8 below, suppose we have three models M1, M2 and M3.
Suppose we know the mappings between M1 and M2, and between M2 and M3,
namely MAP1 and MAP2. We can compose MAP1 and MAP2 to derive a new map-
ping MAP3 between M1 and M3.

Fig. 8. Mapping composition

Composition is done by a series of query translation steps. Suppose MAP1 specifies a
class C1 in M1 as a view V1 over a set of classes in M2, and MAP2 in turn specifies
classes in M2 as views over classes in M3. Then a translation of the view query V1 from
model M2 to model M3 gives the mapping of class C1 in terms of classes in M3.

3 Data Migration Solution

Fig. 9 below depicts the data migration solution implemented using the modeling infra-
structure discussed in the previous section. We define source and target conceptual

M1 M2 M3 MAP1 MAP2

 MAP3

Customer(c) SELECTION

Contract(cn)

Million Dollar
Customer

JOIN
(cc.customer = c

&&
cc.contract = cn)

AGGREGATION
(SUM)

FILTER
(SUM > 1000000)

SELECTION

Customer_Contract(cc) SELECTION

238 R.R. Yeddula et al.

models, corresponding physical models, and the mappings between them as depicted in
the figure. We can reverse engineer physical models from database schemas. We can
create initial versions of conceptual models (where they do not explicitly exist) in one of
the following ways:

- Derive a default one-to-one conceptual model from the physical model using a
set of canonical object-relational mapping patterns. For example, a table becomes
a class, a column becomes a property, a foreign-key between tables becomes a re-
lation between the corresponding classes, etc.

- If a system is implemented using object-oriented technology, then we can reverse
engineer the object model as the conceptual model and the object-relational map-
ping as the conceptual-physical mapping.

These initial conceptual models are then refined in consultation with domain experts.
Data migration team then defines the mapping between source and target conceptual
models. We can use a schema matching algorithm [15, 16] to discover initial corres-
pondences. These are then refined into mappings in consultation with domain experts.
From these mappings, we automatically derive a mapping between source and target
physical models using mapping composer. Referring to Fig. 9, we derive the
mapping PP_MAPPING by composing S_CP_MAPPING, CC_MAPPING and
T_CP_MAPPING.

Fig. 9. Data Migration – modeling schema

A point to note here is that there is no inherent limitation on the number of source
databases that can be mapped to the source conceptual model. We can have more than
one source database, and so more than one source physical model and corresponding
physical-conceptual mappings. This is typically the scenario when data is being mi-
grated from a number of related databases.

Source Conceptual
Model

Target Conceptual
Model

Source Physical
Model

Target Physical
Model

Source Database Target Database

CC_MAPPING

S_CP_MAPPING T_CP_MAPPING

PP_MAPPING

 Mapping Composer

 A Model-Driven Approach to Enterprise Data Migration 239

3.1 Generating Data Migration Program

Conceptually the data we need in a target database table T is the data that should satisfy
the query ‘select * from T’. So for each target table T we start with this query. Then
we translate this query into an equivalent query on the source data models. From the
translated query we generate a data flow graph. This process is depicted in Fig. 10.

Fig. 10. Generating data migration program

We can execute the generated DFGs directly to transfer source data to the target
tables, or we can translate them into platform specific ETL [8] processes. We can also
translate the DFG to a platform specific executable program. For example, we can
translate the DFG to a program in Java and JDBC.

We also generate a master program that invokes the individual programs in an or-
der that honors referential integrity constraints in the target database. For instance, in
a parent-child relationship, the DFG of the parent table is invoked before the DFG of
the child table.

3.2 Migrating Queries

In a data migration project, typically, it is not only the data that has to be migrated,
but also the data access programs. Query migration is at the heart of data access pro-
gram migration. We can use the derived mapping PP_MAPPING to translate queries
on the source side into equivalent queries on the target side, as shown in Fig. 11.

Source Physical
Model

Target Physical
Model

PP_MAPPING

 Table T

select * from T Query Translator Query on source model

 Data Flow Graph Generator DFG

 Java program (JDBC) Source database Target database

240 R.R. Yeddula et al.

Fig. 11. Migrating Queries

For example, we take the following query on model M1 in Fig. 4.

SELECT company, SUM(salary)
FROM Employee GROUP BY company;

We generate the following equivalent query on model M2.

SELECT v2.name, SUM(v1.salary)
FROM Employee v1, Company v2
WHERE v1.department.company = v2 GROUP BY v2.name;

We generate a program that internally uses the query translator and the composed
mapping to migrate source queries to the target.

4 Results

We tested our data migration approach in a product migration scenario in the financial
services business domain. Our company has developed a financial services product.
Deploying this product in a customer organization involves migrating a customer’s
existing systems to our product. Data migration is one of the first steps in the overall
migration process. Customers’ data is typically present in customer specific data for-
mats and our financial services product stores its data in its own data model.

We took the case of one of our customers whose data was migrated to this financial
services product. The migration was done by writing a set of custom PL/SQL pro-
grams. The customer’s data was spread across two databases, with each database
having more than 170 master tables. The record count in the tables ranges from a few
hundred to a few millions.

Using the data migration tool, we reverse engineered the physical data models
from the database schemas of customer’s databases and our product database respec-
tively. We also created corresponding conceptual models. Mappings were then identi-
fied between source and target models. Mapping specifications were of different

 on on

Source Physical
Model

Target Physical
Model

PP_MAPPING

Equivalent Query Query Translator Query

 Source database Target database

 A Model-Driven Approach to Enterprise Data Migration 241

complexities, varying from simple one-to-one mappings to complex mappings involv-
ing join conditions and sub-queries.

We then generated the data migration program to migrate data from customer’s da-
tabases to our product database. Using the data migration approach discussed earlier
DFGs were generated for target tables. Data migration program was then generated
from these DFGs. This program had more than 400 Java Classes. This program was
executed and results were compared with the data obtained from the previous hand-
coded approach.

Preliminary assessment suggests that approximately 1 person year has been spent
on this tool based migration approach. The corresponding effort in the old approach
of creating custom PL/SQL programs was more than 5 person years. This is around
80% improvement in productivity. Based on the analysis of available defect logs from
the traditional approach, our initial estimate of error reduction is around 30%. These
improvements are primarily due to automated code generation from model mappings,
thereby improving productivity and eliminating error-prone manual coding. Model
mappings are also much easier to verify, leading to early detection of errors.

5 Related Work

Commercial data migration tools [12, 13, 14] provide a graphical environment where
developers create an ETL [8] process. These tools provide a library of operators along
with an execution engine. ETL processes are essentially platform specific variants of
data-flow graphs discussed in this paper. ETL based approaches suffer from the same
issues discussed in this paper, viz., mappings are identified at a conceptual level, and
a programmer has to understand how the conceptual models and their rules map to
physical models and then translate this understanding into data-flow graphs, which is
an error-prone and effort-intensive process [10].

In [6] Simitsis et al propose an approach that uses semantic web technologies for
designing ETL processes. They annotate data elements of data sources and warehouse
using a common vocabulary, and from these annotations infer data transformations
required to populate the warehouse from data sources. While this is an interesting
approach, our experience suggests that it does not scale up for complex industrial
scale problems. We need full-fledged conceptual models with rules and full-fledged
mappings to capture the semantics. Annotations are useful but not sufficient. They
also talk about generating an ontology from such annotations. This again is a useful
feature to have when there is no explicitly defined ontology. Indeed we ourselves use
a similar approach when we derive a conceptual model from a physical model as ex-
plained in section 3. Again, in our experience, this can only give an initial simplistic
version, which has to be refined subsequently in consultation with domain experts.

In [7] Lilia et al propose a Model Driven Architecture (MDA) based framework for
development of ETL processes. They talk about specifying ETL processes at two
levels -- a platform independent model (PIM) (they call it a conceptual model) and a
platform specific model (PSM). They use UML activity diagrams to specify ETL
processes at the PIM level and use Query/View/Transformations (QVT) specifications

242 R.R. Yeddula et al.

to transform them into platform specific ETL models. While this gives a measure of
independence from platform level variations, it does not significantly raise the level of
abstraction. Activity diagrams are still procedural artifacts. They are not easy to rea-
son with to support operations such as query translation.

In [11] Dessloch et al discuss Orchid, an approach for integrating declarative map-
pings with ETL processes. Their approach is the closest to our approach in spirit.
They also talk about declarative mappings between models and generating ETL
specifications from these mappings. However, they propose an operator model as the
internal representation, where as we propose a logic based notation as the internal
representation. Logic based notation allows us to treat both mappings and rules un-
iformly, enabling us to process them together. The abstract operator model proposed
by Orchid is similar to the model we use for representing data-flow graphs.

[15, 16] provide surveys of schema matching approaches. As discussed in section
3, these approaches provide initial correspondences between models. These have to be
refined into mappings in consultation with domain experts.

6 Conclusion and Future Work

A mapping document that specifies relationships between source and target data ele-
ments is the starting point for most data migration implementation efforts. We have
shown that using our modeling framework we can specify these mappings formally, at
a conceptual level, closer to the business domain, and use model driven techniques to
automatically generate data migration programs. The automation helped us eliminate
manual efforts in various stages of data migration, thereby increasing productivity and
reducing the chances of errors. We have also shown how queries can be migrated. We
plan to extend this approach to migrate stored procedures and embedded queries by
integrating it with a program migration framework. We also plan to explore how in-
dustry standard reference conceptual models, such as ACORD for insurance [21], can
be exploited to facilitate data exchange among applications. These standard models
are growing in popularity and many applications are adopting them as their reference
conceptual models. Lack of good conceptual models is one of the stumbling blocks in
adopting model driven approaches such as the one discussed in this paper. Adopting
industry reference models addresses this problem. We map application specific mod-
els to the industry reference model. From these mappings we can automatically derive
mappings between any two applications, and use them to facilitate data exchange
between the applications.

References

1. Abiteboul S., Hull R., Vianu V. Foundations of Databases. Addison Wesley, Reading,
Mass., USA (1995)

2. Ullman, J.D.: Information integration using logical views. In: Afrati, F.N., Kolaitis, P.G.
(eds.) ICDT 1997. LNCS, vol. 1186, pp. 19–40. Springer, Heidelberg (1996)

 A Model-Driven Approach to Enterprise Data Migration 243

3. Ullman, J.D.: Principles of database and knowledge-base systems, vol. I, II. Computer
Science, Rockville, Md., USA (1989)

4. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10(4), 270–
294 (2001)

5. Maurizio, L.: Data integration: a theoretical perspective. In: Proceedings of the Twenty-
First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.
ACM (2002)

6. Skoutas, D., Simitsis, A.: Designing ETL processes using semantic web technologies. In:
Proceedings of the 9th ACM International Workshop on Data Warehousing and OLAP.
ACM (2006)

7. Muñoz, L., Mazón, J.-N., Trujillo, J.: Automatic generation of ETL processes from con-
ceptual models. In: Proceedings of the ACM Twelfth International Workshop on Data Wa-
rehousing and OLAP. ACM (2009)

8. Vassiliadis, P., Simitsis, A.: Extraction, transformation, and loading. Encyclopedia of Da-
tabase Systems. Springer US, pp. 1095-1101 (2009)

9. Kulkarni, V., Reddy, S.: A model-driven architectural framework for integration-capable
enterprise application product lines. In: IEEE European Conference on Model Driven
Architecture - Foundations and Applications, Bilbao, Spain, July 2006

10. Dayal, U., et al.: Data integration flows for business intelligence. In: Proceedings of the
12th International Conference on Extending Database Technology: Advances in Database
Technology. ACM (2009)

11. Dessloch, S., et al.: Orchid: integrating schema mapping and etl. In: IEEE 24th Interna-
tional Conference on Data Engineering, ICDE 2008. IEEE (2008)

12. Abinitio, March 2014. http://www.abinitio.com/#prod-cs
13. Informatica, March 2014. http://www.informatica.com/in/solutions/enterprise-data-

integration-and-management/data-migration/
14. Talend, March 2014. http://www.talend.com/solutions/data-migration
15. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The

VLDB Journal (2001)
16. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spaccapietra, S.

(ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg
(2005)

17. Unifed Modeling Language. www.omg.org/spec/UML
18. Semantic Web Rule Language. http://www.w3.org/Submission/SWRL/#2
19. Object Query Language. Wikipedia. en.wikipedia.org/wiki/Object_Query_Language
20. Cohen, S., Nutt, W., Serebrenik, A.: Algorithms for rewriting aggregate queries using

views. In: Masunaga, Y., Thalheim, B., Štuller, J., Pokorný, J. (eds.) ADBIS 2000 and
DASFAA 2000. LNCS, vol. 1884, pp. 65–78. Springer, Heidelberg (2000)

21. ACORD. https://www.acord.org/

	A Model-Driven Approach to Enterprise Data Migration
	1 Introduction
	2 Modeling Infrastructure
	2.1 Conceptual Models
	2.2 Rules
	2.3 Physical Models
	2.4 Model Mappings
	2.5 Model Processing Infrastructure
	2.6 Query Translator
	2.7 Data Flow Graph Generator
	2.8 Mapping Composer

	3 Data Migration Solution
	3.1 Generating Data Migration Program
	3.2 Migrating Queries

	4 Results
	5 Related Work
	6 Conclusion and Future Work
	References

