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Abstract. In a typical data migration project, analysts identify the mappings be-
tween source and target data models at a conceptual level using informal textual 
descriptions. An implementation team translates these mappings into programs 
that migrate the data. While doing so, the programmers have to understand how 
the conceptual models and business rules map to physical databases. We pro-
pose a modeling mechanism where we can specify conceptual models, physical 
models and mappings between them in a formal manner. We can also specify 
rules on conceptual models. From these models and mappings, we can automat-
ically generate a program to migrate data from source to target. We can also 
generate a program to migrate data access queries from source to target. The 
overall approach results in a significant improvement in productivity and also a 
significant reduction in migration errors. 

Keywords: Data migration · Conceptual models · Data model mapping · Query 
translation 

1 Introduction 

Data migration is the process of transferring an enterprise’s data from one database to 
another. A typical data migration project starts with business analysts identifying the 
mappings between source and target data models. An implementation team then ma-
nually translates these mappings into programs that migrate the data. Business ana-
lysts specify the mappings in terms of conceptual data models that reflect the business 
domain semantics. Programmers have to write their programs in terms of physical 
database schemas. While doing this, programmers not only have to understand the 
source-to-target mappings correctly, but also how the conceptual models and the rules 
there of map to the physical databases, as shown in Fig. 1. This is an error prone 
process which is further compounded by the fact that these mappings are generally 
only documented informally, using sketchy textual descriptions. 

In this paper we describe a model driven approach to automate this process using a 
model mappings based infrastructure. Using this infrastructure we can create concep-
tual models, physical models and specify mappings between them, formally, using a 
mappings language. This infrastructure also provides a set of primitive processing 
blocks such as mapping composer, query translator, etc. Mapping composer can com-
pose a set of mappings to create a new mapping. Query translator can process a  
mapping to translate a query on a model at one end of the mapping to an equivalent 
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query on the model at the other end. These blocks process not only the mappings but 
also the rules captured in the conceptual model. 
 

 

Fig. 1. Data Migration – typical scenario 

In a data migration scenario, we create models and mappings as shown in Fig. 1, i.e. a 
mapping between source and target conceptual models, a mapping between source con-
ceptual and physical models, and a mapping between target conceptual and physical 
models. Some of these models and mappings can be reverse engineered from existing 
systems. For instance, source-side models and mappings can be reverse engineered from 
an existing source system implementation, and likewise on the target side. We compose 
these models and mappings to automatically derive a mapping between source and target 
databases. From this mapping, we generate a program to migrate data from source to 
target. We also generate a program to migrate queries expressed on the source database 
into equivalent queries on the target database. The latter is important because, typically, 
in a data migration project, it is not only the data that has to be migrated, but also the data 
access programs. The overall approach results in a significant improvement in produc-
tivity. It also results in a significant reduction in migration errors. 

The rest of the paper is organized as follows. Section 2 discusses the modeling in-
frastructure, section 3 discusses the data migration architecture and section 4 presents 
some results. Section 5 discusses related work. We conclude by summarizing and 
discussing future work. 

2 Modeling Infrastructure 

2.1 Conceptual Models 

We use an extended version of UML object model [17] as our conceptual modeling 
language. Object model is extended to add rules to classes and relations. The exten-
sion to UML meta model is implemented using our in-house meta modeling tool [9]. 
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without some of the procedural extensions such as method invocations on objects. We 
support user-defined functions but they are required to be side-effect-free, i.e. they 
just take inputs and return an output without leaving any side-effect in the state. 

Fig. 4 shows an example mapping where a class in model M1 is mapped as a view 
over a set of classes in model M2. 

2.5 Model Processing Infrastructure 

We use an internal representation language that is similar to Datalog with aggregation 
[1], [3], [20]. We translate PQL queries, mappings and rules into this internal repre-
sentation language. Detailed discussion of this language is outside the scope of this 
paper due to space constraints, but the following examples will give an idea. 

Example 1 
PQL (mapping of M1.Employee in Fig. 4): 
select e.name name, e.salary salary, d.name department,  
       c.name company 
from M2.Employee e, M2.Department d, M2.Company c 
where e.department = d and d.company = c; 

Internal Representation 
M1.Employee(name(v1), salary(v2), department(v3), 
 company(v4)) :- 
 M2.Employee(id(v0), name(v1), salary(v2)),  
 M2.employee_department(id1(v0), id2(v5)),  
 M2.Department(id(v5), name(v3)),  
 M2.department_company(id1(v5), id2(v6)),  
 M2.Company(id(v6), name(v4)). 

Example 2 
Rule (on M1.Employee) 
If 
 Employee(e) and e.salary > 120000 
Then 
 e.department = ‘Management’ 

Internal Representation 
Employee(id(v0), name(_), salary(v1), 
department(‘Management’), company(_)) :- 
 Employee(id(v0), name(_), salary(v1), department(_)),  
 v1 > 120000. 

 
Please note that Datalog does not support functional terms in arguments. Our internal 
notation does not support them either. References to functional terms such as id(), 
salary(), etc. above are added purely for the sake of readability, to show which argu-
ments refer to which data elements. In the actual implementation, we only use  
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variable arguments, where the position of an argument uniquely identifies the data 
element it represents. 

Also note the usage of object IDs (id() terms), and the codification of a relationship 
as a term with two ID arguments. For example, the relationship between Employee 
and Department is represented by the term employee_department(id1(), id2()). 

With respect to a given model M, we classify the internal representation rules of 
mappings into two classes, the so-called global-as-view (GAV) [2], [5] and local-as-
view (LAV) rules [4]. Rules of a mapping where a class of M is defined as a view 
over classes of other models are classified as GAV rules; whereas rules of a mapping 
in the other direction, i.e. a class of the other model being defined as a view over 
classes of M, are treated as LAV rules. 

The uniform representation of rules and mappings allows us to process them to-
gether. For instance, referring to the rule above, if we have a query asking for em-
ployees of ‘management’ department, we can return all employees whose salary is 
greater than 120000. 

2.6 Query Translator 

We use a query translation algorithm to translate queries written on a model at one 
end of a mapping into an equivalent query on the other end of the mapping, as shown 
in Fig. 5. The algorithm is based on the well-known GAV [2] and LAV [4] query 
rewriting techniques. A detailed discussion of the query translation algorithm is out-
side the scope of this paper. A detailed discussion on the individual techniques can be 
found in the cited references. We combine these techniques in a layered manner, 
where each layer does a partial translation. 
 

 

Fig. 5. Query Translation 

2.7 Data Flow Graph Generator 

A Data Flow Graph or DFG represents the flow of data from one system to another 
system and the transformations it undergoes along the way. A DFG contains nodes 
and directed edges. Nodes represent operators. An edge represents flow of data from 
one node to the other. There are various types of operators in a DFG, such as join, 
union, filter, aggregation, etc. each performing a specific operation. For example, join 
operator joins the data tuples coming in on its input edges and sends out the joined 
tuples on its output edge. A data flow graph is a procedural artifact. We can either 
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execute it directly or translate it into procedural code in a standard high-level lan-
guage such as java, stored procedures, etc.  

We can translate a PQL query into an equivalent data flow graph. We first translate 
the query into our internal Datalog representation, and then generate the DFG from 
this internal representation. We illustrate this with a few examples: 

Example 1 
Datalog Query 

Customer(name(v1)) :- CorporateCustomer(name(v1), ..). 
Customer(name(v1)) :- IndividualCustomer(name(v1), ..). 

The query is used to fetch names of customers from two sources -- corporate cus-
tomers and individual customers by executing the corresponding sub queries Corpo-
rateCustomer() and IndividualCustomer(). 

Fig. 6 shows the equivalent DFG. The boxes CorporateCustomer and Indi-
vidualCustomer represent the sources. The Selection operators select name of 
CorporateCustomer and IndividualCustomer from respective sources. 

 

Fig. 6. DFG – Example 1 

Example 2 
Datalog Query 

MillionDollarCustomer(name(v1), amount(v2)) :- 
 SQ(v1, v2), v2 > 1000000. 
SQ(v1, SUM(v3)) :- 
 Customer(id(v0), name(v1), ..), 
 Customer_Contract(customer(v0), contract(v2)), 
 Contract(id(v2), amount(v3)). 

This query is used to fetch names and total contract amount of customers whose total 
contract amount exceeds a million. 

Fig. 7 shows the equivalent DFG.  

IndividualCustomer 

Customer UNION 

SELECTION 

CorporateCustomer SELECTION 



 A Model-Driven Approach to Enterprise Data Migration 237 

 

Fig. 7. DFG – Example 2 

2.8 Mapping Composer 

We can derive a mapping between two unmapped models by composing other known 
mappings. Referring to Fig. 8 below, suppose we have three models M1, M2 and M3. 
Suppose we know the mappings between M1 and M2, and between M2 and M3, 
namely MAP1 and MAP2. We can compose MAP1 and MAP2 to derive a new map-
ping MAP3 between M1 and M3. 
 

 

Fig. 8. Mapping composition 

Composition is done by a series of query translation steps. Suppose MAP1 specifies a 
class C1 in M1 as a view V1 over a set of classes in M2, and MAP2 in turn specifies 
classes in M2 as views over classes in M3. Then a translation of the view query V1 from 
model M2 to model M3 gives the mapping of class C1 in terms of classes in M3. 

3 Data Migration Solution 

Fig. 9 below depicts the data migration solution implemented using the modeling infra-
structure discussed in the previous section. We define source and target conceptual  
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models, corresponding physical models, and the mappings between them as depicted in 
the figure. We can reverse engineer physical models from database schemas. We can 
create initial versions of conceptual models (where they do not explicitly exist) in one of 
the following ways: 

- Derive a default one-to-one conceptual model from the physical model using a 
set of canonical object-relational mapping patterns. For example, a table becomes 
a class, a column becomes a property, a foreign-key between tables becomes a re-
lation between the corresponding classes, etc. 

- If a system is implemented using object-oriented technology, then we can reverse 
engineer the object model as the conceptual model and the object-relational map-
ping as the conceptual-physical mapping. 

 
These initial conceptual models are then refined in consultation with domain experts. 
Data migration team then defines the mapping between source and target conceptual 
models. We can use a schema matching algorithm [15, 16] to discover initial corres-
pondences. These are then refined into mappings in consultation with domain experts. 
From these mappings, we automatically derive a mapping between source and target 
physical models using mapping composer. Referring to Fig. 9, we derive the  
mapping PP_MAPPING by composing S_CP_MAPPING, CC_MAPPING and 
T_CP_MAPPING. 

 

Fig. 9. Data Migration – modeling schema 

A point to note here is that there is no inherent limitation on the number of source 
databases that can be mapped to the source conceptual model. We can have more than 
one source database, and so more than one source physical model and corresponding 
physical-conceptual mappings. This is typically the scenario when data is being mi-
grated from a number of related databases. 
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3.1 Generating Data Migration Program 

Conceptually the data we need in a target database table T is the data that should satisfy 
the query ‘select * from T’.  So for each target table T we start with this query. Then 
we translate this query into an equivalent query on the source data models. From the 
translated query we generate a data flow graph. This process is depicted in Fig. 10. 

 

Fig. 10. Generating data migration program 

We can execute the generated DFGs directly to transfer source data to the target 
tables, or we can translate them into platform specific ETL [8] processes. We can also 
translate the DFG to a platform specific executable program. For example, we can 
translate the DFG to a program in Java and JDBC. 

We also generate a master program that invokes the individual programs in an or-
der that honors referential integrity constraints in the target database. For instance, in 
a parent-child relationship, the DFG of the parent table is invoked before the DFG of 
the child table. 

3.2 Migrating Queries 

In a data migration project, typically, it is not only the data that has to be migrated, 
but also the data access programs. Query migration is at the heart of data access pro-
gram migration. We can use the derived mapping PP_MAPPING to translate queries 
on the source side into equivalent queries on the target side, as shown in Fig. 11. 
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Fig. 11. Migrating Queries 

For example, we take the following query on model M1 in Fig. 4.  

SELECT company, SUM(salary) 
FROM Employee GROUP BY company; 

We generate the following equivalent query on model M2. 

SELECT v2.name, SUM(v1.salary) 
FROM Employee v1, Company v2 
WHERE v1.department.company = v2 GROUP BY v2.name;  

We generate a program that internally uses the query translator and the composed 
mapping to migrate source queries to the target. 

4 Results 

We tested our data migration approach in a product migration scenario in the financial 
services business domain. Our company has developed a financial services product. 
Deploying this product in a customer organization involves migrating a customer’s 
existing systems to our product. Data migration is one of the first steps in the overall 
migration process. Customers’ data is typically present in customer specific data for-
mats and our financial services product stores its data in its own data model. 

We took the case of one of our customers whose data was migrated to this financial 
services product. The migration was done by writing a set of custom PL/SQL pro-
grams. The customer’s data was spread across two databases, with each database 
having more than 170 master tables. The record count in the tables ranges from a few 
hundred to a few millions. 

Using the data migration tool, we reverse engineered the physical data models 
from the database schemas of customer’s databases and our product database respec-
tively. We also created corresponding conceptual models. Mappings were then identi-
fied between source and target models. Mapping specifications were of different 

 on  on 
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Equivalent Query Query Translator  Query 
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complexities, varying from simple one-to-one mappings to complex mappings involv-
ing join conditions and sub-queries.  

We then generated the data migration program to migrate data from customer’s da-
tabases to our product database. Using the data migration approach discussed earlier 
DFGs were generated for target tables. Data migration program was then generated 
from these DFGs. This program had more than 400 Java Classes. This program was 
executed and results were compared with the data obtained from the previous hand-
coded approach. 

Preliminary assessment suggests that approximately 1 person year has been spent 
on this tool based migration approach. The corresponding effort in the old approach 
of creating custom PL/SQL programs was more than 5 person years. This is around 
80% improvement in productivity. Based on the analysis of available defect logs from 
the traditional approach, our initial estimate of error reduction is around 30%. These 
improvements are primarily due to automated code generation from model mappings, 
thereby improving productivity and eliminating error-prone manual coding. Model 
mappings are also much easier to verify, leading to early detection of errors. 

5 Related Work 

Commercial data migration tools [12, 13, 14] provide a graphical environment where 
developers create an ETL [8] process. These tools provide a library of operators along 
with an execution engine. ETL processes are essentially platform specific variants of 
data-flow graphs discussed in this paper. ETL based approaches suffer from the same 
issues discussed in this paper, viz., mappings are identified at a conceptual level, and 
a programmer has to understand how the conceptual models and their rules map to 
physical models and then translate this understanding into data-flow graphs, which is 
an error-prone and effort-intensive process [10].  

In [6] Simitsis et al propose an approach that uses semantic web technologies for 
designing ETL processes. They annotate data elements of data sources and warehouse 
using a common vocabulary, and from these annotations infer data transformations 
required to populate the warehouse from data sources. While this is an interesting 
approach, our experience suggests that it does not scale up for complex industrial 
scale problems. We need full-fledged conceptual models with rules and full-fledged 
mappings to capture the semantics. Annotations are useful but not sufficient. They 
also talk about generating an ontology from such annotations. This again is a useful 
feature to have when there is no explicitly defined ontology. Indeed we ourselves use 
a similar approach when we derive a conceptual model from a physical model as ex-
plained in section 3. Again, in our experience, this can only give an initial simplistic 
version, which has to be refined subsequently in consultation with domain experts. 

In [7] Lilia et al propose a Model Driven Architecture (MDA) based framework for 
development of ETL processes. They talk about specifying ETL processes at two 
levels -- a platform independent model (PIM) (they call it a conceptual model) and a 
platform specific model (PSM). They use UML activity diagrams to specify ETL 
processes at the PIM level and use Query/View/Transformations (QVT) specifications 
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to transform them into platform specific ETL models. While this gives a measure of 
independence from platform level variations, it does not significantly raise the level of 
abstraction. Activity diagrams are still procedural artifacts. They are not easy to rea-
son with to support operations such as query translation. 

In [11] Dessloch et al discuss Orchid, an approach for integrating declarative map-
pings with ETL processes. Their approach is the closest to our approach in spirit. 
They also talk about declarative mappings between models and generating ETL  
specifications from these mappings. However, they propose an operator model as the 
internal representation, where as we propose a logic based notation as the internal 
representation. Logic based notation allows us to treat both mappings and rules un-
iformly, enabling us to process them together. The abstract operator model proposed 
by Orchid is similar to the model we use for representing data-flow graphs. 

[15, 16] provide surveys of schema matching approaches. As discussed in section 
3, these approaches provide initial correspondences between models. These have to be 
refined into mappings in consultation with domain experts. 

6 Conclusion and Future Work 

A mapping document that specifies relationships between source and target data ele-
ments is the starting point for most data migration implementation efforts. We have 
shown that using our modeling framework we can specify these mappings formally, at 
a conceptual level, closer to the business domain, and use model driven techniques to 
automatically generate data migration programs. The automation helped us eliminate 
manual efforts in various stages of data migration, thereby increasing productivity and 
reducing the chances of errors. We have also shown how queries can be migrated. We 
plan to extend this approach to migrate stored procedures and embedded queries by 
integrating it with a program migration framework. We also plan to explore how in-
dustry standard reference conceptual models, such as ACORD for insurance [21], can 
be exploited to facilitate data exchange among applications. These standard models 
are growing in popularity and many applications are adopting them as their reference 
conceptual models. Lack of good conceptual models is one of the stumbling blocks in 
adopting model driven approaches such as the one discussed in this paper. Adopting 
industry reference models addresses this problem. We map application specific mod-
els to the industry reference model. From these mappings we can automatically derive 
mappings between any two applications, and use them to facilitate data exchange 
between the applications. 
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