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Abstract. Service processes, for example in transportation, telecommu-
nications or the health sector, are the backbone of today’s economies.
Conceptual models of such service processes enable operational analysis
that supports, e.g., resource provisioning or delay prediction. Automatic
mining of such operational models becomes feasible in the presence of
event-data traces. In this work, we target the mining of models that
assume a resource-driven perspective and focus on queueing effects. We
propose a solution for the discovery and validation problem of scheduled
service processes - processes with a predefined schedule for the execu-
tion of activities. Our prime example for such processes are complex
outpatient treatments that follow prior appointments. Given a process
schedule and data recorded during process execution, we show how to
discover Fork/Join networks, a specific class of queueing networks, and
how to assess their operational validity. We evaluate our approach with
a real-world dataset comprising clinical pathways of outpatient clinics,
recorded by a real-time location system (RTLS). We demonstrate the
value of the approach by identifying and explaining operational bottle-
necks.

1 Introduction

Service systems play a central role in today’s economies, e.g., in transportation,
finance, and the health sector. Service provisioning is often realized by a service
process [1,2]. It can be broadly captured by a set of activities that are executed
by a service provider and designated to both attain a set of organizational goals
and add value to customers.

Independently of the domain, service processes can be classified by the amount
of interactions between service providers and customers and the level of demand
predictability and capacity flexibility. A service can be multi-stage, in the sense
that service provisioning involves a series of interactions of a customer with a
provider, or specific resources at a provider’s end. Further, a process can be sched-
uled, meaning that the number of customers to arrive is known in advance, up
c© Springer International Publishing Switzerland 2015
J. Zdravkovic et al. (Eds.): CAiSE 2015, LNCS 9097, pp. 417–433, 2015.
DOI: 10.1007/978-3-319-19069-3 26



418 A. Senderovich et al.

to last moment cancellations and no-shows. Then, customers follow a pre-defined
series of activities, with every activity having a planned starting time for its exe-
cution, a duration, and a set of involved resources. Multi-stage scheduled pro-
cesses are encountered, for instance, in outpatient clinics, where various types of
treatments are provided as a service to patients [3]. Here, a schedule determines
when a patient undergoes a specific examination or treatment. Another example
of multi-stage scheduled processes is public transportation, where schedules deter-
mine which vehicle serves a certain route at a specific time [4].

In this work, we focus on the following operational question for multi-stage
scheduled service processes: how to assess the conformance of the schedule of a
service process to its actual execution? To address this question, we develop an
approach that is based on discovery and validation of resource-centered models.
First, we discover a deterministic model that represents a planned execution of
a service process (schedule). Second, we check the conformance of a schedule
against a log of recorded process executions.

Our choice of formalism to capture a resource-centered view of service pro-
cesses is driven by two challenges that arise from multi-stage scheduled service
processes, namely dependencies and synchronization. Specifically, in multi-stage
processes, customers go through a complex network of resources prior to service
completion. Hence, resource demand does not arrive at random, and dependen-
cies between arrivals at different resources must be taken into account. Second,
in scheduled processes, customers are delayed not only due to scarce capacity of
providers (resource queues), but also in synchronization queues where customers,
for whom activities are executed concurrently, experience delays before they can
proceed towards subsequent service phases. The formalism that we select cap-
tures the resource perspective in service processes is queueing networks and
more specifically, Fork/Join networks [5]. The Fork/Join networks allow for per-
formance analysis and optimization of parallel queueing systems [35]. Adopting
this formalism, the contribution of this paper is summarized as follows:

(1) We propose a technique to discover a deterministic Fork/Join network from
a schedule of a service process.

(2) We present a conformance checking technique that assesses the validity of a
deterministic Fork/Join network based on recorded process executions.

We demonstrate the value of the proposed discovery and validation methods by
applying them to RTLS-based data from a real-world use-case of scheduling in
a large outpatient oncology clinic. Our experiments demonstrate the usefulness
of the proposed methods in detecting operational bottlenecks in the schedule,
specifically longer-than-planned synchronization delays, and diagnosing the root-
cause to those problems.

The remainder of the paper is structured as follows. Section 2 presents a
detailed use-case of a process in an outpatient clinic. The models for schedules
and log data of service processes is outlined in Section 3. Fork/Join networks
and their discovery from a schedule are discussed in Section 4. The technique to
check conformance of schedule-driven models against recorded process executions
is presented in Section 5. An empirical evaluation of our approach is given in
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Fig. 1. The control-flow perspective of patient flow in the day hospital

Fig. 2. A Fork/Join network that depicts the scheduled process from the resource
perspective

Section 6. Section 7 discusses related work, followed by concluding remarks and
future work (Section 8).

2 A Service Process in an Outpatient Clinic

We illustrate the challenges that arise from operational analysis of multi-stage
scheduled service processes through a process in the Dana-Farber Cancer
Institute (DFCI), a large outpatient cancer center in the US. In this hospital,
approximately 900 patients per day are served by 300 health care providers,
e.g. physicians, nurse practitioners, and registered nurses, supported by approx-
imately 70 administrative staff. The hospital is equipped with a Real-Time
Location System (RTLS). We use the movements of patients, personnel, and
equipment recorded by this system to evaluate our approach.

We focus on the service process for a particular class of patients, the on-
treatment patients (OTP). This process applies to 35% of the patients, yet it
generates a large fraction of the workload due to the long service times. Hence,
operational analysis to balance quality-of-service and efficiency is particularly
important for this process. Figure 1 depicts the control-flow perspective of the
process as a BPMN diagram: Arriving patients may directly receive examination
by a physician, or shall undergo a chemotherapy infusion. For these patients, a
blood draw is the initial appointment. Then, they either move to the infusion
stage directly, or first see a provider for examination.
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For a specific part of the aforementioned chemotherapy infusion process,
Fig. 2 illustrates a queueing network that captures the resource perspective of
the process. This model is a Fork/Join network, discussed in more detail in
Section 4. It represents the associated resources: clinical assistants, a pharmacy,
and infusion nurses, as well as dependencies between them that follow from the
patient flow. Patients first fork and enter two resource queues in parallel: one is
the queue where they actually sit and wait for a clinical assistant to take their
vital signs; the other queue is virtual, where they wait for their chemotherapeu-
tic drugs to be prepared by the central hospital pharmacy. The process can only
continue once both of these parallel activities are completed, which explains the
existence of synchronization queues in front of the join of the flows. After the
join, patients are enqueued to wait for a nurse and chair to receive infusion.

The provisioning of infusions in DFCI is scheduled. Therefore, each patient
has a schedule that assigns a planned time for execution by the respective activ-
ities. As such, a schedule allows not only for discovery of the structure of a
Fork/Join network, such as the one in Fig. 2, but also its annotation in terms of
arrival rates, service times, and server capacities. Such a schedule-driven model
reflects the performance of the planned execution of the process, which raises
the question whether the model accurately reflects the actual process execution.
Any deviation from the plan, e.g., because of aborted activities or differences
in resource scheduling policies, negatively impacts the validity of the schedule-
driven model. In the presence of recorded process executions, however, confor-
mance checking as presented in this work can be used to assess the behavioral,
conceptual, and operational validity of the schedule-driven model.

3 Schedules and Event Logs of Service Processes

In this work, we provide a multi-level analysis approach that exploits two types
of input data, namely a schedule and a log of recorded actual executions of
activities. Such multi-level representation enables analysis that is richer than
the state-of-the-art. Below, we formalize the models for schedules and event
logs.
Schedule. A schedule represents the plan of a multi-staged service process for
individual customers. It comprises tasks that are partially ordered. We define
a task to be a relation between customers, activities, resources at a time, for a
duration, e.g., customer Smith is to perform a blood draw with nurse Greenberg
on Monday, 03/02/2016 8:00, for 5 minutes. We denote the universe of tasks by
T .

Definition 1 (Schedule). A schedule is a set of planned tasks, TP ⊆ T , having
a schema (set of functions) σP = {ξp, αp, ρp, τp, δp}, where
– ξp : T → C assigns a customer to a task.
– αp : T → A assigns an activity to a task.
– ρp : T → R assigns a resource to a task.
– τp : T → N

+ assigns a timestamp representing the planned start time to a
task.
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– δp : T → N
+ assigns a duration to a task.

The timestamps assigned by τp induce a partial order of tasks, denoted by ≺P ⊆
TP × TP .

Log. A log contains the data recorded during the execution of the service pro-
cess, e.g., by a Real-Time Location System (RTLS) as in our use-case scenario
(Section 2). Task events in the log relate to a customer, resource, activity, and
the timestamps of execution, thereby representing a unique instantiation of an
activity executed by a resource for a customer at a certain time.

Definition 2 (Log). A log is a set of sequences of executed tasks, TA ⊆ T ∗,
having a schema σA = {ξa, αa, ρa, τstart, τend}, where
– ξa : T → C assigns a customer to a task.
– αa : T → A assigns an activity to a task.
– ρa : T → R assigns a resource to a task.
– τstart : T → N

+ assigns a timestamp representing the observed start time to
a task.

– τend : T → N
+ assigns a timestamp representing the observed end time to a

task.

4 Discovering Queueing Networks for Scheduled
Processes

Fig. 3. An outline of our approach

The approach taken in this paper is out-
lined in Figure 3. We first discover a deter-
ministic F/J network from a schedule
(see Definition 1). Then, data-driven tech-
niques create an enriched F/J network
that is used for validation. This section
focuses on the discovery stage, by first
defining Fork/Join networks (Section 4.1),
before elaborating on the actual discovery
(Section 4.2). Enrichment and validation
are detailed in Section 5.

4.1 F/J Queueing Networks: Structure and Dynamics

Queueing networks are directed graphs, with each node corresponding to either a
server (a resource ) or a queue, see Fig. 2. We consider single-class (customers are
of one type), open (customers arrive from outside the system and depart even-
tually), Fork/Join (F/J) queueing networks [5]. F/J networks extend ‘classical’
queueing networks with support for splitting and joining of customer instances,
which makes them particularly suited to model concurrent actions in service
processes.

To define F/J networks, we first need to specify server dynamics. To capture
these dynamics, we adopt a version of Kendall’s notation [8], so that every server
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is characterized by, A/B/C+P where A is the arrival rate for queues with external
arrivals, given as the joint distribution of inter-arrival times; B is the service time
of processing a single customer, given as the distribution of this time; and C is the
capacity, given as the number of resources. Note that arrivals, service times, and
resource capacity may be defined in a time-varying manner. Further, component
P is the service policy that sets both the order of entry-to-service, among the
enqueued customers, and selects the resource, among available resources, to serve
a customer. For example, the most well-known service policy for queues is the
First-Come First-Served Policy (FCFS), which is often combined with a server
selection strategy that choses the first server that becomes available.

F/J networks support two types of queues: resource queues are formed because
of limited resource capacity; synchronization queues result from simultaneous pro-
cessing by several resources. Servers can be of three types: regular (services with
capacity), fork, and join. A routing matrix defines the flow between servers and
queues. With K being the universe of possible dynamics models for a server, we
define F/J network as follows.

Definition 3 (F/J Network). An F/J network is a quadruple 〈S,Q,W, b〉, where
– S = SR ∪ SF ∪ SJ is a set of servers, with SR being a set of resources and

SF , SJ being sets of forks and joins, respectively;
– Q = QR ∪ QS is a set of queues, with QR being a set of resource queues and

QS being a set of synchronization queues;
– W : (Q × S) ∪ (S × Q) → [0, 1] is a routing matrix that assigns weights (or

probabilities) to edges between servers and queues;
– b : S → K assigns a dynamics model to servers.

We consider forks and joins to be zero-delay, single-server nodes. Further, the
entries of the routing matrix for forks and joins are binary. For a fork s ∈ SF , a
customer always continues in all downstream queues q ∈ Q for which W (s, q) = 1.
For a join s ∈ SJ , a customer needs to be selected from all upstream queues q ∈ Q
with W (q, s) = 1 before continuation. An F/J network for which the complete
routing matrix is binary is deterministic, otherwise the network is probabilistic.

As an example, consider the F/J network in Fig. 2. It contains three resources,
a fork, a join, three resource queues (preceding resources), and two synchroniza-
tion queues (succeeding resources). Note that the structure given in Fig. 2 can
only be a deterministic F/J network as all queues and servers, which are not
forks, have a single outgoing edge.

4.2 Discovering a Scheduled Queueing Network

Under the assumption that the process follows the schedule in terms of the
execution of activities for customers by resources, i.e., there may only be tempo-
ral deviations, the network structure is directly derived from the schedule. The
timestamps of the schedule tasks in TP induce a partial order ≺P , which gives
raise to a dependency graph between activities and, thus, resource nodes. The
structure of the F/J network is then created by inserting the required forks and
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joins, at resource nodes with more than one predecessor or successor, respec-
tively. Further, resource queues are inserted for all incoming edges of resource
nodes, which are no forks or joins. Finally, synchronization queues are added for
all incoming edges of joins.

To extract the dynamics models, for each resource node s ∈ SR, we shall
assume that the number of resources as function of time, Ks(t), can easily be
extracted from the schedule log (see also [9] for a respective method). To extract
the arrivals (A), service times (B), and service policy (P) from a schedule of tasks
TP with schema σP = {ξp, αp, ρp, τp, δp}, partially ordered by ≺P , we proceed
as follows.
Arrival Times. For each of the most upstream resource nodes s ∈ SR, arrival
times

A(s, TP , σP , ≺P ) = {τp(t) | t ∈ TP ∧ ρp(t) = s ∧ ∀ t′ ∈ TP : ξp(t) = ξp(t
′) ⇒ t′ �≺P t},

(1)
are defined by the first event in the schedule for the planned process execu-
tion for each customer. Arrivals into downstream resource nodes are assumed to
correspond to end-of-processing times of previous nodes.
Service Times. For a resource node s ∈ SR, services times

B(s, TP , σP ,≺P ) = {δp(t) | t ∈ TP ∧ ρp(t) = s}, (2)

are defined by the planned duration of the respective activity.
Service Policy. A service policy is a, potentially time-dependent, function that
selects a task to be served from a set of waiting tasks. A typical schedule assumes
that tasks are served according to an earliest-due-date (EDD) policy with the
additional constraint that tasks arriving ahead of their due time do not get
served. Formally, given a set of waiting tasks, {t1, . . . , tn} at time t, the EDD
policy is given by:

P ({t1, . . . , tn}, t) = argmint′∈{t1,...,tn},τp(t′)<t{τp(t′)}. (3)

5 Validating Schedule-Driven Networks with Logs

A F/J network discovered from a schedule enables operational analysis of the
planned process behavior under the assumption that there are no deviations
from the plan. In most cases, however, such deviations are likely to be observed,
which calls for validation of the schedule-driven model. In the presence of a log
of recorded process executions, such validation can be achieved by conformance
checking.

Below, we first review dimensions of validity for operational models, i.e., behav-
ioral, operational, and conceptual validity (Section 5.1). Given the rich body of lit-
erature on methods to ensure behavioral validity, we focus on the other dimensions
and present a methodology to ensure operational validity (Section 5.2) and concep-
tual validity (Section 5.3). For both dimensions, we also instantiate the methodol-
ogy and outline methods to validate specific model aspects, i.e., processing delays
and service policies. Finally, we elaborate on the link between conceptual and oper-
ational validity (Section 5.4).
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5.1 Dimensions of Validity

Validity relates to behavioral, operational, and conceptual model aspects [10].
Behavioral Validity. Given a process model, its behavioral relevance with
respect to the real process is of crucial importance. Four complementary notions
of behavioral validity are given in the literature, namely fitness, simplicity, pre-
cision and generalization [11]. Various techniques to assess behavioral validity
have been proposed, among some trace replay [12], also known as trace-based
simulation [7], trace alignment [13], the comparison of behavioral relations [14],
and the injection of negative events [15].

Deterministic F/J networks are equivalent to decision-free Petri-Nets [16].
Therefore, the aforementioned techniques to assess behavioral validity can directly
be lifted to the resource perspective of a process that is given as a deterministic
F/J network.
Operational Validity. Operational validity concerns model performance mea-
sures and the accuracy of conclusions drawn from it. Operational models and
recorded executions of a process may be consistent in terms of ordering, i.e., the
model is behaviorally valid. However, the same model may show low operational
validity and be inaccurate in the operational sense. An example would be too
coarse-grained abstractions, e.g., a schedule consisting of a single activity per
customer and logs that record only the execution of this activity. The discov-
ered model, while behaviorally valid, may be useless for operational analysis.
Specifically, execution times for the single activity that would result from the
model may not match their corresponding times from the log, because of their
large variability that stems from the aggregation of customers that are served
differently.
Conceptual Validity. Conceptual validity is defined as the checking of the
assumptions and theories that underlie a model [10]. For the context of F/J net-
works, conceptual validity relates to its structure and the dynamics models of
server nodes. Operational models are typically built with assumptions related to
the distribution of execution times, customer arrival rates, and routing probabil-
ities. Moreover, some operational models rely on approximations and therefore,
should be tested for their applicability against data. To determine conceptual
validity, various techniques can be used, for example, statistical tests can be
applied to verify model assumptions and quantify the deviation between assumed
values (e.g., first-moments) and actual measurements (data) [10].

5.2 Operational Validity: Detecting and Quantifying Performance
Deviations

Methodology for Operational Validity. To assess operational validity of a
model, model-based performance measures are compared to their counterparts
in the recorded log data. The specific measures to consider may vary among
scenarios. However, the comparison between the model and the recorded data
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typically exploits a discrepancy metric between the two, based on a specific
performance measure (or output).

Formally, let D : O ×O → X be the deviation between an output of a model
and the corresponding actual measurements (or the output of another model),
where O is the output domain (e.g., processing delays) and X is the domain of
the measure for deviation (e.g. the distance between processing delays is also a
delay).

Once the performance measures and distance function are set, one can apply
a replay technique, see [12], to collect sample values of D for every planned task
t ∈ TP that also exists in the log, i.e., t ∈ TA. The replay will result in sample
of the deviations between two outputs, {D(t) | t ∈ (TP ∩ TA)}. This sample
can, in turn, be analyzed via statistical techniques for measuring goodness-of-fit
between two models.
Validation of Processing Delays. We now turn to an instantiation of the
methodology to assess operational validity for a specific model aspect. We take
up the aforementioned case of Dana-Farber, where quality improvement teams
focus on delays of individual patients per activity with respect to the maximum
between the scheduled time and the time of arrival at the respective resource. To
investigate this aspect, a distribution is constructed from the individual delays.
Then, the difference between the measure from the log and its equivalent from
the deterministic F/J network is quantified.

Using a continuous time model, the specific deviation function for processing
delays is defined as DD : R × R → R. For convenience, we assume TA ⊆ TP , i.e.,
no unplanned tasks arrived to the system. While this assumption is not necessary
for the demonstrated approach, it simplifies the definitions in the remainder.

Delays in processing may be caused by resource capacity (customers wait in a
resource queue) or synchronization (customers wait in a synchronization queue).
Hence, for a task t ∈ TA, there is a resource delay ŴR(t) and a synchronization
delay ŴS(t), and the total delay is their sum, Ŵ (t) = ŴR(t) + ŴS(t). The
resource delay is the difference between the current time and the maximum
between synchronization time between previous tasks and the scheduled time
for the task. The synchronization delay is the difference of the earliest and latest
entry in one of the synchronization queues.

From the schedule, for resource s ∈ SR, we extract the planned delay W (t, s)
as the timestamp difference between the task and its direct successors. Then,
we define DD(t) = D(Ŵ (t),W (t)) as one of the well-established metrics for
deviations between two outputs, e.g. the squared deviation. This way, deviations
in processing delays between the schedule and the observed process execution
are detected and quantified.

5.3 Conceptual Validity: Checking Model Assumptions

Methodology for Conceptual Validity. We approach the conceptual validity
of a deterministic F/J network discovered from the schedule by means of enhance-
ment and comparison. That is, the deterministic F/J network is enhanced based
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on the log data, which yields a stochastic F/J network. Conceptually, this step is
similar to enhancement operations known for process models that focus on the
control-flow perspective, see [17]. As a by-product of applying the enhancement
algorithm, however, our approach directly compares the two models, specifically,
the server dynamics of the deterministic, schedule-driven model to the dynamics
of the stochastic, data-driven model.

An enhancement function creates a stochastic F/J network from a determin-
istic F/J network and a log. In practice, enhancement boils down to fitting all
model elements of the stochastic F/J network with the log data, namely identi-
fying the model structure and, for every server, discovering its dynamics. Gen-
erally speaking, enhancement combines several process mining and statistical
techniques:

– To extract the model structure, process discovery algorithms that exploit
direct successorship of activities and detect concurrency can be used, e.g.,
the family of α-algorithms [18, Ch.5].

– The routing matrix can be inferred by its empirical equivalent, i.e. counts
over sums of historical transitions between nodes.

– Service policies for routing customers can be discovered using the policy-
mining techniques presented in [19].

– The distribution of inter-arrival and service times can be fitted via techniques
that were developed and applied in [20,21].

Differences in the structure and server dynamics of the schedule-driven model
and the data-driven model are assessed by statistical comparison techniques, e.g.,
hypothesis testing [22]. This allows for quantifying deviations and concluding on
their significance.
Validation of Service Policies. Next, we instantiate the methodology and
demonstrate a statistical comparison method for service policies that determine
the routing of customers to resources. We focus on a single resource node s ∈ SR

and assume that it has been previously diagnosed (via the techniques to assess
operational validity) to cause delays downstream. Hence, we aim at comparing
that server’s service policy and verify whether the schedule-driven policy indeed
holds.

Formally, let P be the assumed policy that has to be checked against all his-
torical decisions on the next customer to enter service, which are represented in
the log. Policy P supposedly follows Equation 3, i.e., for a set of tasks {t1, . . . , tn}
waiting in the respective resource queue at time t, the task that has the earli-
est scheduled timestamp is selected. To assess to which extent this policy holds
true, we define a respective indicator 1P (i), which is equal to one if indeed the
i-th past decision corresponds to Equation 3. Then, we define a statistic that
quantifies the level of compliance to policy P :

χP =
1
|n|

n∑

i=1

1P (i), (4)

This is an estimate of the probability that P holds, i.e., E[1P ] = P(P ) with
P being the compliance-to-policy-P event. We use this estimate to test several
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plausible policies, e.g., First-Come First-Serve, and decide on the best-fitting
policy.

5.4 Continuous Validity

We tighten the relations between conceptual and operational validity by adopting
the paradigm of continuous validity. This paradigm means that two models that
are equivalent in the conceptual domain, will also be equivalent in the operational
domain. The notion of conceptual equivalence between two models can be derived
from model comparison as described above, while operational equivalence can
be defined with respect to our measure for deviations, D (see Section 5.2). The
result of continuous validation can be interpreted in two ways. First, assuming
that the schedule is the normative process, one should fix the causes for deviation
in process executions. Alternatively, if the actual execution is the reference point,
the schedule is to be repaired accordingly.

6 Evaluation

This section presents an empirical evaluation of our approach based on the case
study of the Dana-Farber Cancer Institute, see Section 2. Specifically, we use the
appointment schedule, RTLS data, and pharmacy data to discover a schedule-
based queueing network. Then, we demonstrate an operational validation of the
model that searches for deviations from the scheduled process in the temporal
sense. Last, we check the conceptual validity to locate the root-cause of these
deviations.

Below, Section 6.1 describes the datasets and experimental setup. Section 6.2
discuss the obtained discovery and validation results.

6.1 Datasets and Experimental Setup

Our experiments combine three data sources from the Dana-Farber Cancer Insti-
tute: an appointment schedule, an RTLS log recording movements of badges
(patients and service providers), and a pharmacy log that records checkpoints
in the medication-production process. The resolution of the RTLS can be as
accurate as 3 seconds, depending on the amount of movement of a badge. From
the pharmacy log, we only extracted the start and end events for the production
process, since we consider the pharmacy as a separate server. The experiments
involve three weekdays, April 14-16, 2014, which are days of ‘regular’ operation
(approximately 600 OTP patients) as was verified with local contacts.

Our experiments involved the following steps. First, we discovered a deter-
ministic F/J network from the schedule. Second, we performed an operational
validation of the model against log data, with a focus on deviations in process-
ing delay. Third, we assessed conceptual validity. We enhanced the model to
obtain a stochastic, data-driven F/J network and then focus on one of the server
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nodes, for which operational deviations had been detected in the second step,
and analyzed its dynamics.

We implemented our experiments in two software frameworks, SEEStat and
SEEGraph. Both tools have been developed in the Service Enterprise Engineer-
ing lab,1 and enable, respectively, statistical and graphical analysis of large oper-
ational datasets. In particular, they enable the creation of new procedures for
server dynamics (SEEStat), and for the discovery of structure and routing in
queueing networks (SEEGraph).

6.2 Results

Waiting 
Lab

Waiting 
Vitals

Infusion

Waiting 
Infusion

Planned
Delay

Lab

Planned
Delay

Vitals

Fig. 4. Schedule-driven process (appoint-
ments) extracted from the RTLS data

Model Discovery. As a first step, we
discovered a deterministic schedule-
driven F/J network. An excerpt of
the result is presented in Fig. 4. Note
that the excerpt shows only the activ-
ities that are conducted by staff of the
outpatient clinic, i.e., the preparation
of medications by the pharmacy is
not shown2. Note that the SEEGraph
notation for the queueing network dis-
tinguishes two types of customer delays, i.e., time spent before the scheduled
time (Planned Delay) and the processing delay after the time the customer was
scheduled (Waiting Lab/Vitals/Infusion).
Operational Validity: Delay Deviations. Next, we enacted the operational
validation and tracked down deviating performance measures. Here, we provide
the results for the example that is outlined in Fig. 2: a patient that is scheduled
to enter infusion waits for two concurrent activities, namely pre-infusion vital
signs (vitals) and medication production. The scheduled time between the end
of vitals and the beginning of infusion is actually zero and most of the delay is
planned for the beginning of vitals.

Figure 5 presents the actual distribution of time between vitals and the begin-
ning of infusion, based on the RTLS data. We observe that, indeed, a large
portion of patients go into infusion within a minute from vitals. However, the
distribution presents a long tail of patients, who wait for the next step (average
delay of 23 minutes). For most patients, this is due to synchronization delays
since they wait for their medications. In many occasions, one can observe in
the RTLS data that patients wait, while infusion nurses are available for service.
This again points toward synchronization delays between the vitals activity and
the pharmacy. According to schedule, the central pharmacy is planned to deliver
the medication in synchronization with vitals (within 30 minutes). The opera-
tional insight of long synchronization delays, however, hints at a conceptual issue
regarding the just-in-time arrival of the medication.
1 http://ie.technion.ac.il/labs/serveng/
2 An animation can be found at http://youtube.com/watch?v=ovXu3DB9RuQ

http://ie.technion.ac.il/labs/serveng/
http://youtube.com/watch?v=ovXu3DB9RuQ
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Fig. 5. Waiting time for Infusion (after vitals); Sample size = 996, Mean = 25min,
Stdev = 29min
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Fig. 6. Medication production time; Sample size = 7187, Mean = 30min, Stdev =
24min

Conceptual Validity: Production Times and Policy. To check for a con-
ceptual issue related to the ‘Pharmacy’ resource, we investigated its dynamics.
We assume that the fork in Fig. 2 is zero-delay and that pharmacy is notified
once the patient is ready for infusion. Therefore, we assume that the arrival times
do not deviate, and diagnose the two remaining dynamics: production time and
service policy. Figure 6 shows the distribution of production times (for April
2014), and the fitted ‘Dagum’ distribution. Here, we observe that the stochastic
model shares a first moment with the planned duration: both are 30 minutes
on average. Therefore, in alignment to our continuous-validity paradigm, the
root-cause for operational deviations is not the length of drug production.

We now turn to the second dynamic component, the service policy for the
drug production. Here, we focus on the time until the first drug has been pre-
pared. Although patients often require more than one drug, the first medication
is the one that is needed for the process to flow. Using the method proposed in
Section 5.3, we estimated the expected indicators for three policies: (1) Earliest-
Due-Date (EDD) First, which corresponds to the plan, (2) First-Come First-
Served (FCFS), which produces according to the order of prescription arrivals
and (3) Shortest Processing Time (SPT) first, which implies that priority will
be given to patients with shorter infusion durations.

Figure 7 presents the estimated proportion of compliance to policy, as a
function of the number of medication orders in queue. To see an effect of selection
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Fig. 7. Policy comparison for the pharmacy resource

based on a policy, the comparison starts with a queue of size two. We observe
that as the queue grows, the decision on the next task to enter service becomes
more random. However, for short queues, the selection policy tends towards
FCFS, instead of EDD as assumed in the schedule. The deviation between the
two policies, planned and actual, can be seen as a cause of the synchronization
delays observed in Fig. 5.

7 Related Work

Recently, there has been an increased interest in scheduled service processes,
especially in the health sector. Outpatient clinics that operate as a scheduled
multi-stage process, are of particular interest, due to their pervasiveness and
growth over the past years [3]. Performance questions for scheduled multi-stage
processes relate to bottleneck identification, dynamic resource allocation, and
optimal control (decision making).

Traditionally, such performance analysis is based on techniques from Oper-
ations Research disciplines, such as Scheduling [23] and Queueing Theory [24].
These methods use hand-made (highly abstract) models of the reality, and apply
the relevant (model-specific) analysis. Validation of the results is typically per-
formed by simulating the ‘reality’ (again a hand-made model), and comparing
the outputs of the modeled reality and the simulated reality, neglecting the ben-
efits of data-driven validation, c.f. [25].

The rapidly evolving field of process mining, in turn, is driven by the available
data [18]. Models are discovered from and validated against event data that stems
from recorded process executions, see [26]. Mined models are used as the basis for
prediction [27,28], simulation [17], and resource-behavior analysis [29,30]. How-
ever, much work in this field focuses on the control-flow perspective, i.e. the order
of activities and their corresponding resources, times and decisions [18, Ch.8], so
that the created models cannot benefit from the analysis techniques developed
in Operations Research. In earlier work, therefore, we argued for an explicit
representation of the queueing perspective and demonstrated its value for sev-
eral real-world processes [9,19]. However, the existing techniques all considered
the simplistic setting of a single-station system, whereas, this paper addressed
the more complex scenario of service processes that are scheduled and have a
multi-stage structure that involves resource synchronization.
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Our approach of discovering a model from a schedule is similar to the transfor-
mation of schedules to Petri-Nets presented in [31]. However, our target formal-
ism is Fork/Join networks to leverage existing analysis techniques for queueing
networks. Also, we employ log data to answer structural and operational ques-
tions regarding the schedule.

One of the main questions in scheduled processes is that of conformance of the
actual process execution to the plan. Techniques for model validation in process
mining primarily focus on behavioral validity, see [12–15]. However, a few works
also addressed time and resource validity of discovered models [32,33], where
the replay method, as in [34], is used to quantify deviations in performance mea-
sures. However, in these approaches, conceptual validity (model assumptions)
is confounded with operational validity (resulting performance measures). This
paper argues for a clear separation between behavioral, operational and concep-
tual validity, and introduces a methodology for assessing the operational and
conceptual validity of Fork/Join networks.

8 Conclusion

In this work, we provided a framework for the operational analysis of scheduled
multi-stage service processes, as they are observed in such domains as healthcare
and transportation. To assess the conformance of the schedule of a process and
its actual execution, we presented an approach based on discovery and validation
of queueing networks. First, we showed how a deterministic Fork/Join network
is discovered from a schedule. Second, we presented a method that exploits log
data to assess the operational and conceptual validity of the discovered model.
We evaluated the approach with real-world data from an outpatient clinic and
showed how our approach leads to the identification of operational bottlenecks
and supports the analysis of the root-causes of these bottlenecks.

In future work, we would like to test the value of the stochastic Fork/Join
network in the context of queue mining, e.g. for delay prediction in a network.
Also, we hope to extend our validation techniques to incorporate features of
stochastic analysis, when comparing two models, e.g., by developing similarity
measures for Fork/Join networks.
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