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Abstract. Twitter’s increasing popularity as a source of up to date news
and information about current events has spawned a body of research
on event detection techniques for social media data streams. Although
all proposed approaches provide some evidence as to the quality of the
detected events, none relate this task-based performance to their run-
time performance in terms of processing speed or data throughput. In
particular, neither a quantitative nor a comparative evaluation of these
aspects has been performed to date. In this paper, we study the run-
time and task-based performance of several state-of-the-art event detec-
tion techniques for Twitter. In order to reproducibly compare run-time
performance, our approach is based on a general-purpose data stream
management system, whereas task-based performance is automatically
assessed based on a series of novel measures.
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1 Introduction

With 271 million monthly active users1 that produce over 500 million tweets per
day2, Twitter is the most popular and fastest-growing microblogging service.
Microblogging is a form of social media that enables users to broadcast short
messages, links, and audiovisual content. In the case of Twitter, these so-called
tweets can contain 140 characters and are posted to a network of followers as
well as to a user’s public timeline. The brevity of tweets make them an ideal
mobile communication medium and Twitter is therefore increasingly used as an
information source for current events as they unfold. For example, Twitter data
has been used to detect earthquakes [17], to track epidemics [10], or to monitor
elections [21].

In this context, an event is defined as a real-world occurrence that takes place
in a certain geographical location and over a certain time period [3]. For tradi-
tional media such as newspaper archives and news websites, the problem of event
1 http://www.statista.com/study/9920/twityter-statista-dossier/
2 http://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/

d564001ds1.htm
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detection has been addressed by research from the area of Topic Detection and
Tracking (TDT). However, topic detection in Twitter data streams introduces
new challenges. First, Twitter “documents” are much shorter than traditional
news articles and therefore harder to classify. Second, tweets are not redacted
and thus contain a substantial amount of spam, typos, slang, etc. Finally, the
rate at which tweets are produced is very bursty and continually increases as
more people adopt Twitter every day.

Several techniques for event detection in Twitter have been proposed. How-
ever, most of these approaches suffer from two major shortcomings. First, they
tend to focus exclusively on the information extraction aspect and often ignore
the streaming nature of the input. As a consequence, they make unrealistic
assumptions, which limit their practical value. Examples of such assumptions
include buffering entire months of Twitter data before processing it or fixing a
complex set of parameters at design-time using sample data. Second, very few
authors have evaluated their technique quantitatively or comparatively. While
most provide some qualitative evidence demonstrating their task-based perfor-
mance, very few consider run-time performance. Therefore, little or no research
to date has measured the computing cost of the same result quality for different
approaches. We argue that understanding this trade-off is particularly important
in a streaming setting, where processing needs to happen in real-time.

In this paper, we present a method to study the task-based and the run-time
performance of current and future event detection techniques. In order to mea-
sure comparable run-time performance numbers, we propose to “standardize”
event detection techniques by implementing them based on a single data stream
management system. Additionally, we developed several scalable measures to
assess the task-based performance of event detection techniques automatically,
i.e., without painstakingly crafting a gold standard manually. The specific con-
tributions of this paper are as follows.

1. Streaming implementations of state-of-the-art event detection techniques for
Twitter that are consistent with respect to each other.

2. Detailed study of the task-based and run-time performance of well-known
event detection techniques.

3. Platform-based approach that will enable further systematic performance
studies for novel event detection techniques in the future.

The remainder of this paper is structured as follows. Section 2 provides the
background of this work by summarizing the state of the art in event detection
for Twitter data streams. In Sect. 3, we give a brief overview of Niagarino, the
data stream management system that we used as an implementation platform.
Section 4 describes the selected event detection techniques and their streaming
implementations using Niagarino. Section 5 presents the results of the evalua-
tion that we performed in order to study the selected task-based and run-time
performance of these event detection techniques. Finally, concluding remarks are
given in Sect. 6.



Performance of Event Detection Techniques for Twitter 37

2 Background

Our work is situated in the research field of analysis and knowledge discovery
for social media data. Bontcheva et al. [8] provides a good general overview of
sense making of social media data by surveying state-of-the-art approaches for
mining semantics from social media streams. Due to the fast propagation speed
of information in social media networks, a large number of works focus on event
or topic detection and tracking for various domains. In this setting, Farzindar
and Khreich [11] surveyed techniques for event detection in Twitter. The work
presented in this paper targets approaches that support the detection of general
(unknown) events [3] and we will therefore focus the following discussion on
approaches that share this goal.

Petrović et al. [16] propose to use an online clustering approach that is based
on locality sensitive hashing. The approach uses the number of tweets and hash-
tags, but also introduces a novel measure of entropy for the analysis. The method
was evaluated using six months of data containing 163.5 million tweets and an
average precision score was calculated against a manually labeled result set.
Becker et al. [6] present an approach for “real-world event detection on Twit-
ter” that uses an online clustering method in combination with a support vector
machine classifier. They focus on hashtags with special capitalization and check
for retweets, replies, and mentions. The method is evaluated against a manually
labeled result set for a one-month data set with 2.6 million tweets. Long et al. [14]
use divisive clustering, whereas Weng and Lee [21] use discrete wavelet analysis
and graph partitioning. Both of these approaches use word frequencies of indi-
vidual words for event detection. The latter approach was evaluated by using a
self-built ground truth, which is prepared by using a latent dirichlet allocation
(LDA) method [7]. Cordeiro [9] proposes the use of continuous wavelet analysis
to detect event peaks in the signal of hashtags and summarizes the detected
events by using LDA. For evaluation purposes, they used a visual illustration of
their results obtained from an eight-day data set with 13.6 million tweets. Zim-
mermann et al. [22] present a text stream clustering method that detects, tracks,
and updates large and small bursts in a two-level (global and local) topic hier-
archy by using collected news articles. The technique proposed by enBloque [4]
to detect emergent events relies on statistics about tags and pairs of tags. These
statistics are computed using a time-sliding window and monitored for shifts in
order to capture unpredictable and thus interesting developments. It has been
evaluated on a two-week Twitter data set by conducting experiments to measure
run-time performance and a user study to assess task-based performance.

In summarizing the state of the art in event detection techniques for Twitter,
it is important to note that all existing approaches are realized as custom ad-hoc
implementations, which limits the reproducibility and comparative evaluation of
their results. As a consequence, little to no comparative evaluations of different
event detection methods exist. In particular, none of these approaches have been
evaluated to relate their task-based (result quality) and run-time performance
(tweets per second). Therefore, there is a comprehensive lack of evaluation meth-
ods for event detection techniques for social media data.
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3 Niagarino Overview

In order to realize streaming implementations of state-of-the-art event detection
techniques for Twitter, we use Niagarino3, a data stream management system
that is developed and maintained by our research group. The main purpose
of Niagarino is to serve as an easy-to-use and extensible research platform for
streaming applications such as the one presented in the paper. The concepts
embodied by Niagarino can be traced back to a series of pioneering data stream
management systems, such as Aurora [2], Borealis [1], and STREAM/CQL [5].
In particular, Niagarino is an offshoot of NiagaraST [13], with which it shares
the most common ground. In this section, we briefly summarize the parts of
Niagarino that are relevant for this paper.

In Niagarino, a query is represented as a directed acyclic graph Q = (O,S),
where O is the set of operators used in the query and S is the set of streams used
to connect the operators. The Niagarino data model is based on relational tuples
that follow the first normal form, i.e., have no nesting. Two types of tuples can
be distinguished, data and metadata tuples. Data tuples are strongly typed and
have a schema that defines the domains of all attributes. All data tuples in a
stream share the same schema, which corresponds to the output schema of the
operator that generates the tuples and must comply with the input schema of
the operator that consumes the tuples. In contrast, metadata tuples, so-called
messages, are untyped and typically self-describing. Therefore, different messages
can travel in the same stream. Messages are primarily used to transmit data and
operator statistics in order to coordinate the operators in a query. Each stream
is bidirectional consisting of a forward and a backward direction. While data
tuples can only travel forward, messages can travel in both directions.

Based on its relational data model, Niagarino implements a series of oper-
ators. The selection (σ) and projection (π) operator work exactly the same as
their counterparts in relational databases. Other tuple-based operators include
the derive (f) and the unnest (μ) operator. The derive operator applies a func-
tion to a single tuple and appends the result value to the tuple. The unnest
operator splits a “nested” attribute value and emits a tuple for each new value.
A typical use case for the unnest operator is to split a string and to produce a
tuple for each term it contains. Apart from these general operators, Niagarino
provides a number of stream-specific operators that can be used to segment the
unbounded stream for processing. Apart from the well-known time and tuple-
based window operators (ω) that can be tumbling or sliding [12], Niagarino also
implements data-driven windows, so-called frames [15]. Stream segments form
the input for join (��) and aggregation (Σ) operators. As with derive operators,
Niagarino also supports user-defined aggregation functions. Niagarino opera-
tors can be partitioned into three groups. The operators described above are
general operators, whereas source operators read input streams and sink oper-
ators output results. Each query can have multiple source and sink operators.
3 http://www.informatik.uni-konstanz.de/grossniklaus/software/niagarino/

http://www.informatik.uni-konstanz.de/grossniklaus/software/niagarino/
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This classification is similar to the notion of spouts and bolts used in Twitter’s
data stream management system Storm [19].

Niagarino is implemented in Java 8 and relies heavily on its new language
features. In particular, anonymous functions (λ-expressions) are used in several
operators in order to support lightweight extensibility with user-defined func-
tionality. The current implementation runs every operator in its own thread.
Operator threads are scheduled implicitly using fixed-size input/output buffers
and explicitly through backwards messages.

4 Event Detection Techniques

We focus on techniques with the specific task of first story detection, i.e., the
detection of general (unknown) events, which is defined as a subtask of TDT [3].
In this section, we briefly describe the five state-of-the-art techniques that we
selected for our study in terms of their functionality and the parameters used.
Figure 1 illustrates these techniques by means of Niagarino query plans that use
the operators described in the previous section. As can be seen in the figure, all of
these techniques use the same pre-processing steps before the streaming tuples
enter the actual event detection phase. The pre-processing selects all tweets
that are non-retweets and in English. Additionally, each tuple is enriched with
the derived distinct terms of the tweet that are not contained in a standard
English stop-word list or can be considered noise (e.g., less than three characters,
unknown characters, repetition of the same pattern, or terms without vowels).

The TopN algorithm assigns each individual term a single value based on the
inverse document frequency (IDF) [18] over an entire time window. All values
are then sorted and the top n terms are reported as events together with their
top m most frequently co-occurring terms, which are also obtained by using the
IDF measure.

The Latent Dirichlet Allocation (LDA) [7] is a hierarchical Bayesian model
that explains the variation in a set of documents in terms of a set of n latent
“topics”, i.e., distributions over the vocabulary. Since LDA is normally used for
topic modeling, we equate a topic to an event. For each time window, LDA
extracts n events that are described by m terms. The parameter i defines the
number of iterations performed in the modeling phase, where a higher value typ-
ically increases the quality of the detected events. To perform the LDA, we use
Mallet4, an existing Java library.

Our own Shifty [20] technique calculates a measure that is based on the
shift of IDF values of single terms in pairs of successive sliding windows of a
pre-defined size. First, the IDF value of each term in a single window (with
size sinput) is continuously computed and compared to the average IDF value of
all terms within that window. Terms with an IDF value above the average are
filtered out. The next step builds a window with size s1 that slides with range
r1 in order to calculate the shift from one window to the next. In this step,
4 http://mallet.cs.umass.edu

http://mallet.cs.umass.edu
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Fig. 1. Niagarino query plans of the five selected event detection techniques

the shift value is again checked against the average shift of all terms and only
terms with a shift above the average are retained. In the last step, a new sliding
window with size s2 that slides with range r2 is created. The total shift value
is computed as the sum of all shift values of the sub-windows of this window.
If this total shift value is greater than the pre-defined threshold Ω, the term is
detected as event and reported together with its top 4 co-occurring terms.

The first step of the Event Detection with Clustering of Wavelet-based Sig-
nals (EDCoW) [21] algorithm is to partition the stream into intervals of s seconds
and to build DF-IDF signals for each distinct term in the interval. These signals
are further analyzed using discrete wavelet analysis that builds a second signal
for the individual terms. Each data point of this second signal summarizes a
sequence of values from the first signal with length Δ. The next step then filters
out trivial terms by checking the corresponding signal auto-correlations against
a threshold γ. The remaining terms are then clustered to form events with a
modularity-based graph partitioning technique. Insignificant events are filtered
out using a threshold parameter ε. Since this approach detects events with a
minimum of two terms, we introduced an additional enrichment step that adds
the top co-occurring terms to obtain events with at least five terms.

The Wavelet Analysis Topic Inference Summarization (WATIS) [9] algorithm
also partitions the stream into intervals of s seconds and builds DF-IDF signals
for each distinct term. Due to the noisy nature of the Twitter data stream, signals
are then processed by applying the adaptive Kolmogorov-Zurbenko filter (KZA),
a low-pass filter that smoothens the signal by calculating a moving average with
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ikz iterations over n intervals. It then uses continuous wavelet transformation to
construct a time/frequency representation of the signal and two wavelet analyses,
the tree map of the continuous wavelet extrema and the local maxima detection,
to detect abrupt increases in the frequency of a term. To enrich events with more
information, the previously mentioned LDA algorithm (with ilda iterations) is
used to finally report events that consist of five terms each.

5 Evaluation

The evaluation of event detection techniques is itself a challenging task. Deter-
mining an F1 score in terms of precision and recall would require a ground
truth (gold standard) to which the detected events can be compared. Due to
the lack of such a ground truth for the Twitter data stream, some existing
approaches have been evaluated using a manually created ground truth or based
on user studies, if at all. Since both of these methods are very time-consuming
and do not scale, we have experimented with a number of measures that can be
applied automatically. In this section, we discuss the motivation behind these
measures and present detailed results that were obtained by using them.

5.1 Measures

In order to evaluate different techniques automatically, we defined five main
measures (some with sub-measures), which are used for the individual ratings.
The measures are described in the following.

Precision (Search Engine). This measure describes the percentage of events
that can be verified with the use of a search engine (www.google.com). For
each detected event, the search engine is queried using the five event terms
and a specific date range. A rating between 1 and 10 (GoogleN ) is computed
by checking how many of the first ten result hits point to a news website. News
websites are identified based on a whitelist of domain names containing sites such
as CNN, CBS, Reuters, NYTimes, and the Guardian. Based on this measure,
detected events can be rated with respect to their newsworthiness on or at least
one day after the detection date.

Precision (DBPedia). This measure is calculated using the DBPedia5 data set,
which contains the abstracts (long versions) from all Wikipedia articles. In order
to query the roughly four million English abstract, the native XML database
BaseX6 is used. For each detected event, the number of matching abstracts
in DBPedia is computed using XQuery Full Text. We have defined three sub-
measures. DBPedia5 is the precision using all five event terms, DBPedia4S only
uses the top four event terms, and DBPedia4A queries DBPedia with all subsets
of cardinality four. For the first two measures, an abstract is considered a match
to an event if it contains all terms that were used in the query. For the third
measure, an abstract matches if it contains all terms of one of the combinations.
5 http://dbpedia.org/
6 http://basex.org

www.google.com
http://dbpedia.org/
http://basex.org
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Recall. In order to compute the recall, Bloomberg7 was crawled as their archive
maintains a list of the most important news articles for each day. Crawling
individual days leads to an average of about 200 events per day. Each crawled
news item is then tokenized and cleaned by the same processes as the tweets. As
a consequence, the short description of each news item by a series of terms can
be very similar to the one obtained from the tweets. In order to calculate the
similarity between detected events and a news item, eventSim(e1, e2) is used,
which is based on the Levenshtein distance.

levSim(t1, t2) = 1.0 − lev(t1, t2) / max({|t1|, |t2|}) (1)

termSim(t1, t2) =

{
0 levSim(t1, t2) < minTermSim
1 otherwise

(2)

eventSim(e1, e2) =
1
N

N∑
i=0,j=0

termSim(e1[ti], e2[tj ]) (3)

The motivation behind eventSim(e1, e2) is to compensate for misspellings or
alternate spellings of terms as well as for different term sets describing sim-
ilar events. An event is represented as an alphabetically sorted list of terms
e = [t0, . . . , tn]. Each term t1 ∈ e1 is compared to each term t2 ∈ e2 using
the levSim(t1, t2), which is the Levenshtein distance normalized to the range
[0 . . . 1]. If the similarity of a term of e1 to a term of e2 is above the threshold
minTermSim, this combination is marked as hit and the algorithm continues
with the next term of e1. Finally, eventSim(e1, e2) aggregates the number of
hits and normalizes it with the number of terms.

In an effort to obtain a reasonable amount of hits, the parameters of this
formula are set rather low. The parameter minTermSim is set to 0.7 and the
overall limit for eventSim is set to 0.2. Two sub-measures are defined for the
recall. Bloom1D calculates the recall just for the given date, whereas Bloom2D
also includes the following day.

Duplicate Event Detection Rate (DEDR). This measure is also based on the
event similarity defined above in order to calculate the similarity of the events
for one single technique and data set. Two sub-measures have been defined. For
ADEDR (almost duplicate event detection rate) the parameter minTermSim is
set to 0.8 and the limit for eventSim is set to 0.5, whereas for FDEDR (full
duplicate event detection rate) the minTermSim is the same but the limit for
eventSim is set to 0.9.

Run-time Performance. Run-time performance is measured as the number of
tweets per second that a technique is able to process.
7 http://www.bloomberg.com/archive/news/

http://www.bloomberg.com/archive/news/


Performance of Event Detection Techniques for Twitter 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Tue, 1 Jul 2014 Fri, 1 Aug 2014 Mon, 1 Sep 2014 Wed, 1 Oct 2014

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

(a) Total tweets per hour.
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(b) Non-retweet tweets per hour.
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(c) English non-retweet tweets per hour.
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Fig. 2. Statistics of the Twitter data set

5.2 Data Sets

The data sets used in the study presented in this paper consist of 10% of the
public live stream of Twitter for four days. Using the Twitter Streaming API8

with the so-called “Gardenhose” access level, which is a randomly sampled sub-
stream, we collected data for the first day of June, August, September, and
October. Figure 2 provides statistics of the initial data set as well as for the
processing steps that are common to all techniques (cf. Fig. 1). Figure 2a presents
the total number of tweets for the chosen days grouped by the hour (given in
GMT+1). As can be seen, the rate of tweets follows a regular daily pattern.
On average, the incoming stream contains 2.3 million tweets/hour and 35,000
tweets/minute. Figure 2b shows the hourly tweet volumes after filtering out
retweets at an average of 1.6 million tweets/hour. After the next step, shown in
Fig. 2c, the data sets are further reduced to an average of 500,000 tweets/hour
by filtering out tweets that are not in English. Finally, Fig. 2d shows an average
of 120,000 distinct terms/hour that have been derived from all English tweets.

5.3 Experimental Setup

In order to be able to compare the results of the five chosen techniques in a fair
way, they have to be aligned in terms of the rate and number of events detected.
8 https://dev.twitter.com

https://dev.twitter.com
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Table 1. Average number of detected events per techniques and dataset

dataset
Jul1 Aug1 Sep1 Oct1 AVG

te
ch

n
iq
u
e Top15 360 360 360 360 360

LDA500 360 360 360 360 360
Shifty 327 316 354 402 350

EDCoW 353 375 396 409 383
WATIS 270 261 287 276 273

The rate can be controlled by setting the time window on which a technique is
performed. Since we are interested in (near) real-time event detection, a window
of one hour was used. Note, that Shifty is the only true streaming algorithm that
reports results continuously, whereas all other techniques only produce results
after each hour. The number of events that are detected can be controlled by
setting the specific parameters of each technique. Given that our recall measure
assumes an average of 200 events per day and compensating for events that are
detected multiple times, we aim for about 350 events per day. The parameter
settings used are described below, whereas the actual number of detected events
per day and technique are shown in Tab. 1.

TopN. Per hour, the top n = 15 events are reported together with m = 5
co-occurring terms to obtain a total of 360 events per day

LDA. LDA is set to perform i = 500 iterations and to report 15 events,
described by m = 5 terms each, per hour, yielding again a total of 360
events per day.

Shifty. The IDF value is calculated over 1-minute intervals. The size of the
window used to compute the IDF shift is s1 = 2 minutes. The size of the
window that aggregates and filters the IDF shift is s2 = 4 minutes. Both
windows slide by range r1 = r2 = 1 minute. By setting the threshold Ω =
0.35, we obtain all terms with a minute by minute IDF value that increases
more than 35% over four minutes.

EDCoW. The size of the initial intervals is set to s = 10 seconds and the
number of intervals that are combined by the wavelet analysis to Δ = 32,
yielding a total window size per value of 320 seconds. The other parameters
are set to the same values as in the original paper (γ = 1 and ε = 0.2).
As the original paper fails to mention the wavelet type that was used, we
experimented with several types. The results reported in this paper are based
on the Discrete Meyer wavelet, which showed the best performance.

WATIS. The length of initial intervals is set to s = 85 seconds. For the KZ/KZA
analysis, n = 5 intervals and ikz = 5 iterations are used, yielding a total
window size of 425 seconds. LDA is set to perform ilda = 500 iterations and
report a description with five terms per detected event.
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5.4 Results

In the following, we present the results of our evaluation of event detection tech-
niques in terms of run-time and task-based performance. Rather than discussing
all results that we have obtained, we focus on the most significant measures and
outcomes. While we do not claim that our measures are absolute, it should be
noted that these results support relative conclusions.

Run-Time Performance. Run-time performance was measured using Ora-
cle Java 1.8.0 25 (64 bit) on server-grade hardware with 2 Intel Xeon E5345s
processors at 2.33 GHz with 4 cores each and 24 GB of main memory. The cor-
responding results for all techniques in terms of throughput (tweets/second) are
given in Fig. 3. We note that the performance of all techniques is very stable
across the four days for which experiments were run. Taking into account the
average rate of 35,000 tweets/minute (583 tweets/second), we can derive that all
techniques are able to process the 10% stream in real-time on the tested hard-
ware. However, taking a 100% stream (∼ 5, 830 tweets/second) into account,
both LDA500 and WATIS would be too slow to process the stream in real-time
on the tested hardware. In both techniques, the number of LDA iterations could
be reduced, i.e., trading off result quality for performance. Finally, we point
out that our experimental setup is stacked against our own technique, Shifty.
In contrast to the other approaches that can only process tweets at the end of
each one-hour window, Shifty processes tweets continuously and can therefore
amortize its processing cost over the one-hour window.

Task-Based Performance. The first measure of task-based performance that
we will examine is the duplicate event detection rate. Results obtained using
both the ADEDR and FDEDR sub-measures are given in Fig. 4. In comparison
to the other three techniques, both Top15 and LDA500 detect a large number
of duplicates. This result is explained by the fact that these techniques identify
events based on the absolute frequency of terms, i.e., without considering changes
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Fig. 6. Recall using Bloom1D

in the relative frequency. The ADEDR of the remaining three techniques is
relatively low in the range of 15–18%. Shifty ’s FDEDR stayed consistently below
10% in all our experiments, whereas EDCoW and WATIS do hardly detect any
duplicates at all. Finally, the results also show that there is little deviation in
the detected number of duplicates over the four days in our data set.

Apart from the duplicate event detection rate, we have also studied the task-
based performance of the selected techniques in terms of precision and recall.
Figure 5 summarizes the precision results of all techniques obtained with the
Google1, Google2, DBPedia5, and DBPedia4S measures. We omit results from
the DBPedia4A as our experiments showed that they are not discriminating.
Even though the measures we defined yield a wide range of precision values, their
relative ratio is always the same. Since our goal is to comparatively evaluate event
detection techniques, we conclude that our measures are sound with respect to
this criterion. Again, Top15 and LDA500 stand out with higher precision values
than the other three techniques. The reason for this result is that our precision
measures are slightly biased towards approaches that report duplicates.

Figure 6 shows the recall results for the Bloom1D measure. Bloom2D is
omitted as the results are almost exactly the same. First of all, it can be seen
from the figure that the recall of all techniques is relatively low at 10–20%. Note
that our recall measure is based on the Bloomberg news website, which lists an
average of 200 topics per day. Even though techniques were configured to report
about 1.5× as many events, our recall measure is nevertheless ambitious. For
example, it is difficult to imagine that enough people will tweet about a topic
such as Heathrow’s cargo statistics in order to detect it as an event. However,
since we are only interested in relative measures, these low recall figures are not
a problem. Rather, we can observe that Top15 and LDA500 generally have a
lower recall than the other three techniques. As this outcome is to be expected
due to the high duplicate event detection rate of these techniques, we can again
conclude that our measure for recall is sound.

In order to summarize the most discriminating measures presented in this
paper, we define three scoring functions that can be used to compare the run-time
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and task-based performance of event detection techniques. The three scoring
functions are defined as follows.

FScore = 2 × precision × recall
precision + recall

(4)

PFScore = (FScore × performance) (5)
DPFScore = PFScore × (1 − DEDR) (6)

The first score, FScore, denotes the F1 score that is calculated by using the
value of the Google1 and Bloom1D measures for precision and recall, respectively.
Alternatively, using DBPedia5 leads to very similar results. The second score,
PFScore, also factors in the performance rate of the technique. Performance
values are normalized to the range [0 . . . 1] by setting the maximum processing
rate that we measured to 1. Finally, the last measure, DPFScore, also includes
the duplicate event detection rate of the technique. In the following, we have
used the value of the FDEDR measure to calculate DPFScore.

Top15 LDA500 Shifty EDCoW WATIS

FScore
PFScore
DPFScore

S
co

re
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Fig. 7. Average rating scores

Based on these definitions, Fig. 7
shows the scores that were assigned
to each of the five techniques as aver-
ages over the four days in the eval-
uation data set. Even though Top15
scores relatively high in terms of pre-
cision, its FScore is low due to a poor
recall because of duplicates. As Top15
is consistently the fastest technique in
our experiments, its PFScore is equal
to its FScore. The high DEDR of
Top15 has a noticeable negative effect
on its DPFScore. LDA500 ’s FScore is relatively high, but comes at a high perfor-
mance penalty, which negatively affects both its PFScore and DPFScore. Based
on these results, we can conclude that neither Top15 nor LDA500 are suit-
able event detection techniques. This result is not surprising as both of these
techniques have originally not been developed for this task.

In contrast, the scores of Shifty, EDCoW, and WATIS are much better.
In particular, none of these techniques suffer significantly from duplicate event
detection. Shifty and WATIS have a similar FScore, but are both negatively
affected by their performance score. However, since Shifty ’s streaming algorithm
was forced to an hourly reporting scheme for the sake of comparability, this
score is still a good result for our technique. EDCoW scores impressive results
for all scoring functions, which confirms that its status as the most cited event
detection technique is well-deserved. This work however is the first to provide
comparative and quantitative evidence for EDCoW ’s quality.

Finally, we note that duplicate events are not always undesired, e.g., when
tracking re-occurring events or changes in event descriptions. The need to study
event detection techniques in both settings, motivates our separate definitions of
FScore, PFScore, and DPFScore. Both LDA500 and Top15 could be extended
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to explicitly avoid the detection of duplicate events. However, since the other
techniques do allow for duplicates, we have chosen not to do so in this study.

6 Conclusion

In this paper, we addressed the problem of comparatively and quantitatively
studying the task-based and run-time performance of state-of-the-art event detec-
tion techniques for Twitter. In order to do so, we have presented a two-pronged
approach. First, we ensure comparable run-time performance results by providing
streaming implementations of all techniques based on a data stream management
system. Second, we propose several new measures that can assess the relative task-
based performance of event detection techniques. The detailed study described in
this paper has shown that these measures are sound and which of them are most
discriminating. Finally, we defined scoring functions based on selected measures
that revealed how the different techniques relate to each other as well as where
their strengths and weaknesses lie.

As immediate future work, we plan to take advantage of our platform-based
approach to study further techniques, e.g., enBloque [4] and the approach of
Petrović et al. [16]. At the same time, the currently implemented techniques
could be improved to process data continuously. Furthermore, the influence of
the pre-processing on run-time and task-based performance should be studied.
In our platform-based approach, we can easily remove existing operators (e.g.,
retweet filtering) and replace them with new operators (e.g., part-of-speech tag-
ging or named-entity recognition). Finally, a deeper evaluation of how the dif-
ferent parameters of a technique influence the trade-off between run-time and
task-based performance could give rise to adaptive event detection techniques.
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