Deriving Artefact-Centric Interfaces
for Overloaded Web Services

Fuguo Wei®™) | Alistair Barros, and Chun Ouyang

Queensland University of Technology, Brisbane, Australia
{f.wei,alistair.barros,c.ouyang}@qut.edu.au

Abstract. We present a novel framework and algorithms for the anal-
ysis of Web service interfaces to improve the efficiency of application
integration in wide-spanning business networks. Our approach addresses
the notorious issue of large and overloaded operational signatures, which
are becoming increasingly prevalent on the Internet and being opened
up for third-party service aggregation. Extending upon existing tech-
niques used to refactor service interfaces based on derived artefacts of
applications, namely business entities, we propose heuristics for deriv-
ing relations between business entities, and in turn, deriving permissible
orders in which operations are invoked. As a result, service operations
are refactored on business entity CRUD which then leads to behavioural
models generated, thus supportive of fine-grained and flexible service dis-
covery, composition and interaction. A prototypical implementation and
analysis of web services, including those of commercial logistic systems
(FedEx), are used to validate the algorithms and open up further insights
into service interface synthesis.

Keywords: Web service + Business entity - Service interface synthesis -
Service interface analysis

1 Introduction

Services have become the standard way of exposing applications, beyond tech-
nology and organisational boundaries, to allow functional capabilities to be
accessed and composed, based on loosely coupled collaborations. Web Services
Description Language (WSDL), REST and proprietary application programming
interfaces (API) are rapidly growing, especially with the rise of Internet-based
applications, software-as-a-service and cloud computing, in turn leading to larger
vendors providing openly available interfaces for large and otherwise “in-house”
software installations, notably in the enterprise systems segment (e.g. ERP and
CRM systems). Consequently, the number, range of types, size, and overall com-
plexity of services are progressively increasing, compounding the challenges of

This work is sponsored by Smart Service CRC Australia and in part by ARC Dis-
covery Grant DP140103788.

© Springer International Publishing Switzerland 2015
J. Zdravkovic et al. (Eds.): CAiSE 2015, LNCS 9097, pp. 501-516, 2015.
DOI: 10.1007/978-3-319-19069-3_31

502 F. Wei et al.

integrating services and vastly outpacing the conventional means to adapt ser-
vices to support application interoperability in diffuse network settings.

Consider, for example, SAP’s Enterprise (Web) services, as analysed in [1],
where the input message of the goods movement service operation has 104
parameters, out of which only 12 are mandatory for the correct invocation of the
service, with the other 92 data types and properties factoring in different usages
of the service across different industries. As another example, FedEx provides 12
Web services! with the open shipping service demonstrating the highest com-
plexity. It has 22 operations with the average number of input parameters of
307; 111 of them are nested types on average; an average number of hierarchical
levels is 6. The operation which has the largest number of input parameters is
createOpenShipment, with 1335 parameters, 442 of which are complex and the
total levels of hierarchy are 9. More contemporary services from Internet players,
too, have non-trivial operations as seen in the e-commerce services provided by
Amazon, requiring comprehension of large and technically intricate documenta-
tion?. From a service consumer’s perspective, several problems arise from this
level of service complexity: (1) It is difficult to comprehend what each parameter
means as the number is very large (2) It is challenging to know which parameter
should go along with which for a particular purpose, as a large number of these
parameters are optional and there are certain dependencies between them which
consumers often do not have sufficient comprehension. For example, parameter
B may become compulsory because parameter A is used in a specific invocation
(3) How are operations related to each other? In other words, are there any
sequence constraints to invoke these operations? (4) How are operations in one
service related to ones in other services?

In general, integration of heterogeneous applications requires adapters to
mediate across data types of operations (structural aspects) and the permissible
orders in which operations are invoked (behavioural aspects). Despite advances
in automated support for service adaptation, complex interfaces such as those
from SAP, FedEx, Amazon and many others require manual effort and reliance
on providers or specialist integrators, to design and implement the required
service adapters [2]. In fact, most service providers, especially enterprise systems
vendors, do not disclose structural and behavioural interfaces needed for service
adaptation, but instead publish interface signatures such as WSDL specifications
[3]. Thus, service adaptation incurs significant lead times and costly maintenance
to yield service adapters, and their productivity in the context of dynamic service
growth on the scale of the Internet is restricted.

This paper extends upon a recent and complementary strategy to conven-
tional service adaptation, whereby the details of service interfaces and knowledge
required to interact with them can be unilaterally synthesised by service con-
sumers. Existing interface synthesis techniques build on type elicitation and data
dependencies by automatically analysing service interfaces [4,5]. These are useful
for identifying the focal artefacts of applications, namely the business entities,

! http:/ /www.fedex.com/us/web-services/
2 http://aws.amazon.com /ecommerce-applications/

http://www.fedex.com/us/web-services/
http://aws.amazon.com/ecommerce-applications/

Deriving Artefact-Centric Interfaces for Overloaded Web Services 503

which forms the basis for the creation of a simplified and fine-grained interface
layer, allowing access (create, read, update and delete) operations against indi-
vidual business entities. We extend upon these techniques to derive key relation-
ships between business entities, which then provides a refined understanding of
derived business entities and their dependencies, allowing invocation dependen-
cies across their operations to be derived. For example, if one business entity such
as a purchase order strictly contains another business entities such as line items,
the container business entity should be created before the contained entities. In
all, we develop heuristics for three relationship categories: strong containment,
weak containment, and association. These, in turn, result in different business
entity operation invocation dependencies, providing indispensable knowledge for
generating behavioural aspects of service interfaces.

The remainder of this paper is structured as follows. Section 2 reviews state
of the art and this is followed by the elaboration on the key components of
our interface synthesis framework and the development of detailed insights into
its most novel features in Section 3. Section 4 evaluates the framework by
experimenting the implemented prototype with a variety of services and reveals
some open issues. Finally, Section 5 concludes the paper and outlines the future
work.

2 Related Work

Service analysis techniques have been proposed over many years to address chal-
lenges of service integration concerning structural and behavioural aspects of
interfaces. Different approaches have been proposed including the utilisation of
semantic ontologies to annotate interfaces to facilitate discovery, use, and com-
position of services. As an example, Falk et al. [6] adapted automata learning
to the problem of service interaction analysis. This proposal usefully combines
automated analysis with semantic ontologies in that it needs semantically anno-
tated interface descriptions showing preconditions and effects as the prerequisite
to learn interaction protocols. These semantically annotated descriptions are
usually not provided by service providers in practice, and the development and
maintenance of semantic ontologies requires significant lead times and adoption.
Complementary to semantic techniques, log mining algorithms [7] have been
proposed for matching data type of target services for service requests, which
can also be used at design-time to develop adapters. These incur overheads for
aggregating logs and can suffer from missing information for derivation of associ-
ation dependencies. As we discussed above, our approach concerns static analysis
of service interfaces in order to derive the structure and behaviour of services,
complementary to semantic and mining approaches.

The first challenge of static service interface analysis is to identify business
entities in operations, noting that operations of especially larger systems can
have more than one entity, with potential overloading arising from bad service
interface design. Identification of business entities is a complex problem requir-
ing an insight into the clustering of different attributes which imply structural

504 F. Wei et al.

type cohesion of an entity. Proposals for static interface analysis proceed from
assumptions of attribute to entity type associations based on the use of prior
matching techniques (ontology or mining based). The approach of Kumaran
et al. [5] proposes heuristics for understanding basic business entity relation-
ships based on the domination theory of business entities, however the derived
relationship type is strict containment, which leads to a limited understanding of
operation invocation dependencies across services. A more advanced proposal for
behavioural interface synthesis has been proposed by [4] based on data depen-
dencies between service operations’ input and output parameters, but the study
has not been exposed to overloaded service interfaces such as the aforementioned
examples from enterprise and Internet players.

Service composition approaches have also been used in the context of service
adaptation, the common problem being addressed is “how to automatically gen-
erate a new target service protocol by reusing some existing ones” [8]. However,
this technique assumes that the interfaces of individual services involved in a
composition are available.

3 Service Interface Synthesis

To address the aforementioned problems, this section presents the details of a
service interface synthesis framework. It consists of two main modules: Service
interface analysis and Service interface refining.

The service interface analysis module is comprised of two components (Fig. 1):
BFE data model derivation and Service operation refactoring. They analyse service
structural interfaces and determine the order of invoking operations provided
by a service. Services essentially focus on addressing and transferring states of
resources and business entities are the primary resource manipulated by services
in the context of global business networks. Therefore, our service analysis is car-
ried out based on the notion of business entity (i.e., entity types) - a concept
widely adopted in Object Role Modelling [9]. The BE data model derivation
component analyses the input and output parameters of operations on a service
and map them to a business entity-based service data model (BE data model).
The Service operation refactoring component categorises operations provided
by a service according to what each operation does to a business entity (i.e,
to CREATE, READ, UPDATE or DELETE (CRUD) a business entity). This
component also generates behavioural interfaces for each CRUD operation of a
business entity.

As a result of structural and behavioural interface analysis, a complex service
interface is mapped onto a BE data model and a behavioural interface model.
The former presents business entities and the relations among them inherent in
the service, and the later depicts the behavioural constraints that service con-
sumers are required to follow. These models form the refactored service inter-
faces, which encapsulate and simplify complex and overloaded service interfaces.
Having these structured service interfaces, valid combinations of input param-
eter sets can be easily derived. The Service interface refining component then

Deriving Artefact-Centric Interfaces for Overloaded Web Services 505

utilises a Monte Carlo statistic approach [10] to search for possible valid com-
binations and then invoke services using these combinations with sample data
values in order to determine and test their validity. An Interface Layer is formed
in the end, and it exhibits much simpler service interface with possible valid
combinations and behavioural specifications so that service consumers can eas-
ily consume services. Due to space limit, this paper only addresses the first
module: service interface analysis, which simplifies service structural interfaces
and generates service behavioural interfaces.

Interface Layer

CJ

Service consumer
applications

Commnn services in
". a domain

F : =S
 BE, htttp %m:.
%. : ﬁ —=

B @B =
Complex & overloaded services nterfaces

i aligned with BEs :

Service interface

€ s Refactored
analysis /serwce |nterface; S N
~
~

BE data model

Service
specification
repository

derivation

I

:
=l
g |

[omrmosen] 7]

Service interface
refining

Service operation |
refactoring (using BE \
CRUD operations)

[
1 I | I
‘]

/

—_—

A

Service Interface Synthesis Framework

Fig. 1. An overview of the service interface synthesis framework

3.1 BE Data Model Derivation

Definition 1 (Operation and Parameter). Let s be a service, OP; is a set
of operations of s. For each operation op € OP,, N(op) is the name of op, Z(op)
is the set of input parameters and O(op) is the set of output parameters of op.
Let P be a set of parameters. For each p € P, N(p) is the name of p,
~v(p) € {primitive, complex} indicates whether p is of a primitive or a complex
type (i-e., an user-defined type), and type(p) specifies the type of data (e.g. string,
Lineltem) carried by p.
= {p € P|y(p) = complex} denotes the set of complex parameters in P.
&P C Po x P specifies the (direct) nesting relation between two parameters. £ is
transitive and irreflexive. AT : ¢F — {true, false} indicates for each (p,p’) € ¢F
whether p’ is a compulsory (true) or optional (false) element of p. O

Definition 2 (Business Entity). E is a set of business entities. For each e €
E, N(e) is the name of e, key(e) is the unique identifier of e, and A(e) is the set
of attributes associated with e. For each attribute a € A(e), N'(a) is the name
of a and type(a) is the type of data carried by a. O

506 F. Wei et al.

Definition 3 (Parameter and Business Entity Mapping). Let Pc be a
set of complex parameters, £ the nesting relation between parameters, and E
a set of business entities. There exists a surjective mapping f : Po — F where
Vp,p' € Po, (p,p') € £ = f(p) # f(p'), i.e. two nesting parameters cannot be
mapped to the same business entity. a

Definition 4 (Business Entity Nesting Relation). Let P be a set of com-
plex parameters, £ the nesting relation between parameters, E a set of business
entities, and f the mapping from Pc to E. The nesting relation between two
business entities can be defined as ¢¥ C E x E where V(e,e’) € ¢, 3 p,p’ € P.
such that f(p) = e, f(p') = €, and (p, p’) € £F. This nesting relationship is tran-
sitive, i.e., if e€Fe’ and e’¢Fe”, then ecFe”. AP : ¢¥ — {true, false} indicates for
each (e,e’) € £¥ whether ¢’ is a compulsory (true) or optional (false) element of
e. XE(e,e') = MP(p, ') if f(p) = e and f(p') = ¢'. 0

Definition 5 (Domination, adapted from [5]). Let s be a service and OP
the set of operations of s. Given two business entities e, e’ and two parameters
p,p’ s.t. e = f(p) and € = f(p’), e dominates €’ in service s, denoted as e — ¢/,
iff: (1) V op € OPy, if p’ € I(op), then p € I(op) (2) V op € OPg, if p' € O(op),
then p € O(op) (3)3 op € OPg, s.t. p € I(op) U O(op), but p’ ¢ I(op)U O(op). O

In other words, p’s corresponding business entity is e and p’’s is €/, e domi-
nates €', if and only if (1) for every operation that uses p’ as an input parameter,
p is also used as an input parameter, (2) for every operation that uses p’ as an
output parameter, p is also used as an output parameter, and (3) p is used by
at least one operation (as its input or output parameter) that does not use p'.

Definition 6 (Strong Containment). Given two business entities e and ¢/,
e is strongly contained in e iff e¢Fe’, e+ €', and fle” € E\ {e} st. e’ — €. T
captures the set of strong containment relations between business entities. O

Definition 7 (Weak Containment). Given two business entities e and ¢/,
¢/ is weakly contained in e iff e€Fe’ and € + e. ¢ captures the set of weak
containment relations between business entities. O

Definition 8 (Association). Given two business entities e and e’ where (e, ¢’)
€ ¢, e and €' are associated with each other if there exist two parameters p, p’
such that e = f(p) and ¢’ = f(p’), and there exist an operation op such that
p’ € I(op) and p € O(op). w captures the set of association relations between
business entities. O

Definition 9 (Business Entity Data Model). A business entity data model
M is a tuple (E,¢F, o, 7,w) which consists of a set business entities £ and their
nesting relations £, strong containment relations 7, weak containment relations
o, and association relations w.

Given a service specification such as a WSDL file, the BE model derivation
derives the BE data model for each operation provided by the service. This can

Deriving Artefact-Centric Interfaces for Overloaded Web Services 507

Algorithm 1. IDENTIFYBEANDRELATION

input: (complex) parameter p, parameters nesting relation ¢°, business entity e, busi-
ness entity set F, business entity nesting relation £, business entity repository £
/* Find a matching business entity from the repository via ontology check */
e’ := ONTOLOGYCHECK (N (p), type(p), &)
/* Record the business entity and derive the relation with its parent entity x/
if ¢’ #1 then
for each (p,p’) € ¢¥ do
A(e) := A(e) U {CONVETTOENTITYATTR(p') }
end for
E:=FU{c}
if e #1 then
€E = £E U{(e,e)}
end if
/* Recursively call this algorithm for each complex parameter nested in p */
for each (p,p’) € €F A~(p') = complez do
IDENTIFYBEANDRELATION(p', ¢¥, ¢/, E, €7 &)
end for
end if
return (E,£)

be achieved through algorithm 1 and 2. The first algorithm generates E and ¢7
and the second refines the relation ¢ to derive o, 7, and w for the operation.
For each service, we iterate its operations and then loop through each complex
input and output parameter of each operation to identify the BE data model.
There is an overview algorithm which calls algorithm 1 to do so and the details
of the algorithm can be found in our report [11].

Algorithm 1 contains three main steps. The first mainly involves the function
ONTOLOGYCHECK which takes name (N (p)) and type (type(p)) of a complex
parameter p € P¢, and the business entity repository (€) as the inputs, and
returns an entity e’ s.t. ¢ = f(p). It will return nothing if there is no match
found. For each complex parameter p, we check if there is a business entity that
maps onto p. To do this, the service synthesis framework allows users to des-
ignate business entities for a particular context at design time. These business
entities are stored in a repository £, and p is checked against it to determine
if there is a matching business entity in it. To semantically match a parameter
with a business object, we assure the existence of an ontology that allows users
to designate business objects for a particular context at design time. Semantic
matching techniques have been well studied and this research adopts S-Match
[12], a widely used semantic matching algorithm. The second step keeps the
business entity and its nesting relation. If there is a mapping business entity €,
parameters that are nested in p are converted and added to e’’s attribute list
A(e’). The conversion involves interpreting these nested parameters as attributes
of ¢’ and skipping parameters that should not be attributes. Then e is added to
op’s entity set E,j,, which stores all business entities discovered in op. If there is

508 F. Wei et al.

Algorithm 2. REFINEBERELATION

input: service operation set OP, service operation op (op € OP), set of business entity
sets U, cop Pz, business entity nesting relation &fp, set of mappings from parameters
to business entities f

/* Set flags for indication of whether a specific relation holds */
r™ =1 /* flag for strong containment relation x/
r® =1 /% flag for association relation x/
for each e € E,, do
/* Iterate for all the business entities nested in e */
for each (e,¢’) € ¢£, do
/* Iterate for all the operations manipulating € wuntil a strong containment
relation fails to hold x/
X := 0P
while X # @ A 7" # false do
Select € X s.t. ¢ € E,
Y .= FE,
while Y # @ Ar” # false do
Select €’ €Y s.t. € — ¢
r = (" =¢e)
Y: =Y\ {}
end while
X =X\ {z}
end while
/* Collect strong containment, weak containment, and association relations x/
if r" = true then
Top := Top U{(e,€")} /* collect strong containment relation x/
else if ¢/ — ¢ then
for each z € OP do
Search for p,p’ s.t. p’ € I(op) A f(p') =e' Ap € O(op) A f(p) = e
if there exist such p and p’ then

rY = true
Wop 1= Top U {(e,e")} /* collect association relation */
end if
end for

if r := false then
Pop = wop U{(e,e")} /* collect weak containment relation */
end if
end if
end for
/* Reset flags for relation indication */
r7 =1
r¢ =1
end for
return (7op, Pop, Wop)

a business entity e containing €', this relation is recorded as nesting, which is a
part of op’s BE data model {5). e is an input parameter of algorithm 1 and it

Deriving Artefact-Centric Interfaces for Overloaded Web Services 509

refers to the parent entity of current entity e’. The final step takes every complex
parameter p’ that is nested in p and recursively calls the algorithm itself to pro-
cess each p’. The current €’ is passed on to next invocation to form the nesting
relation because it is the parent of each f(p’). Essentially, algorithm 1 incremen-
tally updates op’s BE data model until all entities and nesting relationships are
processed.

Once B, and & g) are identified, we can call algorithm 2 to refine the relations
and derive the other three types of relations for op: strong containment (7,,),
weak containment (y,p), and association (wp) to complete the BE data model
for op. Algorithm 2 iterates each business entity e in op’s BE data model and
then assesses the relationship between e and every business entity e’ that is
nested in e. This assessment is carried out according to the definitions of strong
containment (Definition 6), weak containment (Definition 7), and association
(Definition 8).

3.2 Service Operation Refactoring

The above algorithms show how a BE model for an operation (i.e., M,,) is
generated. A BE data model for a service M, is an aggregation of BE data
models of all operations provided by s. Based on the service BE data model M,
the service operation refactoring component derives the behavioural interface
for s. For any business entity e derived, there are a number of operations that
manipulate e and these operations can be categorised into four groups: Ce, Re,
Ue, and D., which denote the set of operations for creating, reading, updating,
and deleting an instance of e respectively. To categorise operations provided by
a service into the four modular operations of a business entity, we identified the
following mapping rules.

CREATE If the invocation of an operation requires some input parameters
which are actually attributes of e and returns a reference to a business entity
(i.e., key(e)), the operation is for creating an instance of e. In other words, an
operation that is designed to create a business entity e usually requires its users
to pass in values for some parameters which are attributes of e. For instance, to
create a shipment order, a create operation often needs to know details of ship-
ment order such as what goods are to be shipped, where these goods are shipped
from and to. As a result, the create operation should return a reference (i.e., id)
of the shipment order created. There may be multiple operations designed for
creating a business entity, and the set C. is used to keep these operations.

READ If the invocation of an operation requires information of key(e) and
it returns the values of parameters that are attributes of the business entity e,
the operation is for reading an instance of e. The set (i.e., R.) that stores READ
operations is singleton because there is usually only one operation to read an
instance of e.

UPDATE If the invocation of an operation requires information of key(e)
and some input parameters which are actually attributes of e, the operation is
for updating an instance of e.

510 F. Wei et al.

DELETE If the invocation of an operation requires information of key(e)
and returns nothing related to e but just a status, the operation is for deleting
an instance of e.

We propose an algorithm that invokes each operation op that manipulates a
business entity e and then analyses the input and output parameters according to
the aforementioned mapping rules to determine the category of op, i.e. whether
op is to create, read, update or delete e. As a result, the algorithm groups each
op and adds it into one of the following sets:C,, R., U, and D.. The details
of this algorithm can be found in our report [11]. At this stage, there could be
many operations in C,., U, and D.. For example, to create a shipping order,
there are a number of operations and a service consumer needs to follow certain
sequence constraints, so the next step is to generate these sequences for each
modular operation.

Service behavioural interfaces (i.e., protocols) depict a set of sequencing con-
straints and they define legal order of messages. In this paper, a behavioural
interface is formalised as business entity-based behavioural model (BE model). A
BE behavioural model is a Petri net (@, T, F). T is a set of transitions that spec-
ify service operations, @ a set of places that specify the pre- and post-conditions
of service operations, and FF C (@ x TU T x Q) a set of flow relations that
connect a (pre-)condition to an operation or an operation to a (post-)condition.

For each e € FE5, we generate BE models for its CRUD operations. For
example, the model for CREATE operation defines the operations and their
invocation order for creating an instance of a business entity. To derive such
a model for e, we firstly retrieve entities that are strongly contained in, weakly
contained in, and associated with e. When a business entity ¢’ is weakly contained
in or associated with business entity e, an instance of ¢ and an instance of e
can be created in any order if (e, e’) = false, otherwise if (i.e. A(e,e’) = true),
an instance of ¢/ must be created before the creation of an instance of e. If a
business entity e’ is strongly contained in another business entity e, an instance
of ¢’ cannot be created unless an e is instantiated. The second step is to retrieve
all operations in C, and identify their sequence through trial/error invocation.
Each op is called and the response is analysed. If it is positive, the invocation is
in sequence. Otherwise, other operations in C, are called. This process proceeds
until either all operations are in order or all operations have been checked.

Fig. 2 (by) and Fig. 2 (by) present the BE behavioural model derived based on
the e; focused data model shown in Fig. 2 (a). Specifically, Fig. 2 (b1) presents
the model for the situation when the compulsory factor A(e,e’) between all
the entities that are related is true. As es is associated with ey, it has to be
created before ey’s creation, the same can be said for e; and es. In this case,
Ce, = {op1, 0p2, ops} and we assume the sequence of creating e; is op; —op1 —opa,
so the invocations of these three operations can create an instance of e;. As e
is strongly contained in e, it can only be created after e;’s creation. Similarly,
e5 is created after eo’s creation. Fig. 2 (b2), on the other hand, depicts the
sequence derived for the situation when the compulsory factor is false. e3 can be
created concurrently with e;’s creation and e4 can be created in parallel with

Deriving Artefact-Centric Interfaces for Overloaded Web Services 511

eo’s creation. The detailed algorithm for BE Behavioural model derivation can
be found in our report [11].

[Legend
c €1 —— Strong Containment
el e e T s Weak Containment
0p1 /_/ <om Association
op,)
€2
ops &
~.
s
——
€4 €s

(bs)

Fig. 2. An abstract demonstration for BE Behavioural model derivation

4 Implementation and Validation

To validate the service interface synthesis framework, we have developed a pro-
totype that analyses service interfaces and generates BE data models for CRUD
of a business entity. This prototype is called Service Integration Accelerator
and it implements the algorithms presented in the previous section. This section
presents the details of the experiments we conducted on service interface analysis
and evaluates the framework using their results.

Hypotheses. We define three hypotheses to assess the effectiveness of the ser-
vice interface synthesis framework. The first one is simplification - the service
interface analysis mechanism simplifies overloaded and complicated service inter-
faces, so service consumers are able to utilise the structural analysis results as a
guidance to facilitate their comprehension of service interfaces. As a result, this
reduces the amount of time that they need in order to comprehend and then

512 F. Wei et al.

invoke services correctly. Another criteria to be examined is accuracy - the ser-
vice interface analysis mechanism derives all possible business entities, however
a rate of 25% of false positives is allowed as some entities may not be busi-
ness entities in one specific context, but are possibly business entities in another
context. Therefore, we allow service consumers to filter out those which should
not be entities in a specific context. Finally, we presume that the performance
fulfils our requirement - the implemented algorithms complete service interface
analysis on a service within ten seconds.

Objects. Thirteen popular services (shown in Table 1) drawn from xmeth-
ods.net?, Amazon.com, and FedEx were chosen as the experiment objects. These
experiment samples were from three categories: Internet Services (IS), i.e., ser-
vices from the Internet, Software-as-a-Service (SaaS), and Enterprise Services
(ES) and the complexity of services increases from IS to ES. Services in the IS
category are highlighted in light grey (i.e, the first three services); Services in
the SaaS category are darkgray (i.e., the four Amazon services); Services in the
ES category are in dimgray (i.e., the six FedEx services).

Validation Process. We applied the Service Integration Accelerator to the
interfaces of the aforementioned 13 services, and a total set of 272 operations,
12962 input parameters, and 29700 output parameters were analysed. Then, we
asked the domain experts to examine the analysis results, identify false positives,
and do some adjustments if necessary.

Results. Table 1 presents the detailed structural analysis results and it reports
the following details: (1) the number of operations each service provides, (2)
the mean number (per operation) of input parameters (IPs), output parameters
(OPs), business entities (BE) derived, strong containment pairs (SCP), weak
containment pairs (WCP), and association pairs (Asso Pairs), (3) The mean
(per operation) of false positive rate (FPR).

According to the results, Internet services usually do not involve business
entities, because they often only have a few operations with a handful of param-
eters. For example, the Weather Forecast service only has two operations ‘GetC-
itiesByCountry(Country)’ and ‘GetForecastByCity(City, Country)’. Therefore,
although the Service Integration Accelerator can pick up and present the Inter-
net services’ parameters, which provides guidance on the structural interface of
these services, Internet service consumers will not benefit significantly from the
analysis results because the interface is not complex.

As for services in the SaaS category, their interfaces present intermediate
complexity. The number of operations provided in the four Amazon web services
ranges from 9 to 157 and the average number of input parameters is between
4 and 24. There are around 3 business entities derived per operation. It may
seem that service consumers can cope with this type of services as the number
of input parameters for some operations is not very large, but the number of
operations is quite significant and service users may find it difficult to know

3 http://www.xmethods.net:5868 /ve2/index.po

http://www.xmethods.net:5868/ve2/index.po

Deriving Artefact-Centric Interfaces for Overloaded Web Services 513

the sequential constraints among these operations. Having a proper structural
analysis is essential to derive such constraints.

Services in the ES category are the most complex ones and they usually have
a large of number of input and output parameters. Therefore, it is worthwhile to
reduce complexity so that service consumers can understand the interfaces. The
result shows that the Service Integration Accelerator works effectively for enter-
prise services. The six FedEx services in Table 1 show how these complex services
are simplified. For example, the Open Shipping service has 22 operations and
the average number of input parameters is 309 and the output parameter is 575.
After the structural analysis, on average, we derived 11 entities per operation,
which dramatically reduce the complexity as users can more easily understand
the interface by looking at these business entities and their relationships. Taking
the FedEx Open Shipping service as an example, the operation - ‘createOpen-
Shipment’ has 1336 input parameters and 596 output parameters, by analysing
these parameters, we derived 14 key business entities and their relationships as
shown in Fig. 3 (b).

Regarding false positive rate, as the Service Integration Accelerator treats
all complex parameters as business entities, it sometimes generates entities that
should not be. For example, in the generated Amazon S3 service structural anal-
ysis result in Fig. 3 (a), ‘CopyObject’ and ‘PutObject’ should be combined as
one entity, which is ‘Object’, and ‘SetBucketLoggingStatus’ should not be an
entity. These false positives are 12% of total entities (32) derived. Overall, the
results for majority of services experimented fulfil the hypothesis, which is 25%
false positive rate, plus we allow domain experts to manually revise the busi-
ness entity model and to correct these false positives. These false positives can
cause the Service Integration Accelerator to derive incorrect behavioural models,
but they are assessed by domain experts prior to the derivation of behavioural
interfaces, so invalid ones will be prevented.

The time taken to analyse each service is not listed in Table 1 as it was fairly
quick to complete the analysis, even the most complicated service - FedEx Open
Shipping - took only 7 seconds, indicating the hypothesis about performance has
been met.

Legend

» Association

Strong
Containment t
o> Weak

Containment
===~ shippingCharges
o Payment

—

‘ShipmentDrylced
etail

- !
\
I
PubObjectinline)}~ _ _
- Metadata

(a) (b)

Fig. 3. Interface analysis results of Amazon S3 and Fedex createOpenshipment services

514 F. Wei et al.

Table 1. Structural Analysis Results of the 13 services (Mean)

2 f: 2
" 3 2 S
g E 3 e o =
E @ n " & O 8
3 SEBRRE | &
Weather Forecast 2 [2 [5 [0 [0 [o [0 o
Find People® 3 2 [t o Jo o Jo Jo
MailBox Validator® [1 2 6 0 0 0 0 0
Amazon S37 16 19 4 2 1 1 o |12
Amazon EC2° 5704 18 2 1 |1 |1 |20
Amazon 9 24 1243 |4 3 1 0 2
Advertising®
Amazon 44 |11 |271 |3 2 1 0 10
Mechanical'®
709 1239 134 40 [8 1 |28
137 (41 [25 [23 [8 [1 |5
20 115 13 |1 o o o
47 18 |4 13 |1 1 |12
309 [575 11 [9 [3 |5 |24
31 [51 [5 [3 Jo [o o

Open issues. Having examined the experiment results, we find that another
two types of relationships between entities: inclusive and exclusive specialization.
The former refers to subtypes of business entities, i.e., a set of attributes of a
business entity be may form a new business entity beg,p, which is a subtype of be.
For example, in Fig. 3 (a), ‘BucketAccessControlPolicy’ should be an inclusive
specialization of ‘AccessControlPolicy’. However, this relationship is currently
considered weak containment. Inclusive specialization can also be derived using
our Monte Carlo statistic based Service operation refining mechanism. That is
to say, if a valid combination is a sub set of a business entity (be)’s attributes,
this combination may become a new business entity, which is a specialization
of be. Exclusive specialization denotes different versions of a business entity.
As a business entity evolves, some parameters (i.e., features) may be added or
removed, but service providers usually still support the older version of interface

* http://www.restfulwebservices.net /wcf/ WeatherForecastService.sve?wsdl
5 http://www.findpeoplefree.co.uk/findpeoplefree.asmx?wsdl
6 http://ws2.fraudlabs.com/mailboxvalidator.asmx?wsdl
" http://s3.amazonaws.com/doc/2006-03-01/AmazonS3.wsdl
8 http://s3.amazonaws.com/ec2-downloads/ec2.wsdl
9 http://webservices.amazon.com/AWSECommerceService/ AWSECommerceService.
wsdl
9 http://mechanicalturk.amazonaws.com/AWSMechanical Turk/2013-11-15/
AWSMechanical TurkRequester.wsdl
1 http:/ /www.fedex.com /us/web-services,/

http://www.restfulwebservices.net/wcf/WeatherForecastService.svc?wsdl
http://www.findpeoplefree.co.uk/findpeoplefree.asmx?wsdl
http://ws2.fraudlabs.com/mailboxvalidator.asmx?wsdl
http://s3.amazonaws.com/doc/2006-03-01/AmazonS3.wsdl
http://s3.amazonaws.com/ec2-downloads/ec2.wsdl
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl
http://mechanicalturk.amazonaws.com/AWSMechanicalTurk/2013-11-15/AWSMechanicalTurkRequester.wsdl
http://mechanicalturk.amazonaws.com/AWSMechanicalTurk/2013-11-15/AWSMechanicalTurkRequester.wsdl
http://www.fedex.com/us/web-services/

Deriving Artefact-Centric Interfaces for Overloaded Web Services 515

because of compatibility. Therefore, our interface analysis should be able to cope
with the analysis of different version of business entities. We will examine these
two types of specializations in our future work.

5 Conclusion

This paper presented a service interface synthesis framework for addressing the
service interoperability challenges in the context of open and diffuse setting of
global business networks. Specifically, it described a few key components of the
framework, detailing service interface analysis. We also validated the framework
using a variety of services. The study has demonstrated that the business entity
based service interface analysis technique is an effective solution to simplify ser-
vices with large, overloaded operations in interfaces. Future work will complete
the framework by composing different service invocations and then validate them
using a Monte Carlo statistic approach. We will also extend the prototype to
support service operation refactoring to derive service behavioural interfaces and
validate them.

References

1. Stollberg, M., Muth, M.: Efficient business service consumption by customization
with variability modelling. Journal of Systems Integration 1(3), 17-32 (2010)

2. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: Proceedings of the 16th Interna-
tional Conference on World Wide Web (WWW 2007), pp. 993-1002. ACM, New
York (2007)

3. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-Layer Connector Syn-
thesis: Beyond State of the Art in Middleware Interoperability. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 217-255. Springer, Heidelberg
(2011)

4. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of
behavior protocols for composable web-services. In: Proceedings of the the 7th
Joint Meeting of the European Software Engineering Conference, ESEC/FSE 2009,
pp. 141-150. ACM, New York (2009)

5. Kumaran, S., Liu, R., Wu, F.Y.: On the Duality of Information-Centric and
Activity-Centric Models of Business Processes. In: Bellahséne, Z., Léonard, M.
(eds.) CAISE 2008. LNCS, vol. 5074, pp. 32—47. Springer, Heidelberg (2008)

6. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On Handling Data
in Automata Learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II.
LNCS, vol. 6416, pp. 221-235. Springer, Heidelberg (2010)

7. Motahari-Nezhad, H., Saint-Paul, R., Benatallah, B., Casati, F.: Protocol discovery
from imperfect service interaction logs. In: IEEE 23rd International Conference on
Data Engineering, pp. 1405-1409 (2007)

8. Ragab Hassen, R., Nourine, L., Toumani, F.: Protocol-Based Web Service Compo-
sition. In: Bouguettaya, A., Krueger, 1., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 38-53. Springer, Heidelberg (2008)

516

10.

11.

12.

F. Wei et al.

Halpin, T., Morgan, A., Morgan, T.: Information modeling and relational
databases, Morgan Kaufmann series in data management systems. Else-
vier/Morgan Kaufmann Publishers (2008)

Robert, C.P., Casella, G.: Monte Carlo Statistical Methods (Springer Texts in
Statistics). Springer-Verlag New York Inc., Secaucus (2005)

Wei, F., Barros, A., Ouyang, C.: Deriving artefact-centric interfaces for overloaded
web services (February 2015)

Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an Algorithm and an Imple-
mentation of Semantic Matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer,
R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61-75. Springer, Heidelberg (2004)

	Deriving Artefact-Centric Interfaces for Overloaded Web Services
	1 Introduction
	2 Related Work
	3 Service Interface Synthesis
	3.1 BE Data Model Derivation
	3.2 Service Operation Refactoring

	4 Implementation and Validation
	5 Conclusion
	References

