
Minimizing Total Tardiness on Identical
Parallel Machines Using VNS

with Learning Memory

Eduardo Lalla-Ruiz1(B) and Stefan Voß2

1 Department of Computer and Systems Engineering, University of La Laguna,
San Cristóbal de La Laguna, Spain

elalla@ull.es
2 Institute of Information Systems, University of Hamburg, Hamburg, Germany

stefan.voss@uni-hamburg.de

Abstract. Minimizing total tardiness on identical parallel machines is
an NP-hard parallel machine scheduling problem that has received much
attention in literature due to its direct application to real-world appli-
cations. For solving this problem, we present a variable neighbourhood
search that incorporates a learning mechanism for guiding the search.
Computational results comparing with the best approaches for this prob-
lem reveals that our algorithm is a suitable alternative to efficiently solve
this problem.

1 Introduction

Minimizing total tardiness on identical parallel machines (referred to as P ||∑ Tj

in standard machine scheduling terminology) assumes a set of n jobs J =
{1, ..., n} to be processed on m identical parallel machines M1, ...,Mm. Each
job j has a processing time pj > 0 and a due date dj . All jobs are available at
time zero, and no job pre-emption is allowed. The tardiness Tj of job j is given
by Tj = max(Cj − dj , 0), where Cj is the completion time of j. The objective
of this problem is to find a schedule that minimizes the total tardiness

∑n
j=1 Tj .

Recent references include [1,2,6].
The P ||∑ Tj has been widely studied in the literature. Recent studies are

the following. Biskup et al. [1] present a comparison of the existing heuristic
algorithms for solving this problem. Moreover, they propose a new heuristic
approach to solve the problem. This heuristic provides better results in terms of
solution quality than the other heuristics. Tanaka and Araki [6] propose a new
branch and bound algorithm with a lagrangian relaxation for computing the
lower bounds. They propose a set of problem instances to assess their approach.
Niu et al. [4] propose a Clonal Selection Particle Swarm Optimization (CSPSO)
for this problem. The authors evaluate their proposal over the instances proposed
in [6]. Deng et al. [2] propose a Hybrid Differential Evolution algorithm (HDDE)
and also used the problem instances presented in [6]. The computational expe-
rience reported in their work shows that HDDE outperforms CSPSO for the
c© Springer International Publishing Switzerland 2015
C. Dhaenens et al. (Eds.): LION 9 2015, LNCS 8994, pp. 119–124, 2015.
DOI: 10.1007/978-3-319-19084-6 10

120 E. Lalla-Ruiz and S. Voß

small-sized problem instances. Moreover, they compare HDDE with branch and
bound (B&B) for the large-sized instances and indicate that HDDE improves
the performance of B&B in terms of computational time.

In this work, we present a Variable Neighbourhood Search with a learn-
ing mechanism (VNS-L) for solving P ||∑ Tj . Our approach combines a vari-
able neighbourhood search with restarting strategy which exploits the use of a
memory for learning from past solutions. The goal of this work is to assess the
performance of this idea as well as to provide high-quality solutions in short com-
putational times. In doing so, the performance of the VNS-L is evaluated using
the well-known benchmark suite proposed by Tanaka and Araki [6] and compar-
ing its results with those given by some arguably best algorithms reported in
the literature.

The remainder of this paper is organized as follows. Section 2 describes the
VNS-L proposed to address P ||∑ Tj . Afterwards, the performance of our algo-
rithm is analyzed in realistic scenarios proposed in literature; see Sect. 3. Finally,
Sect. 4 provides the main conclusions extracted from the work and suggests sev-
eral directions for further research.

2 Variable Neighbourhood Search with Learning

Variable Neighbourhood Search (VNS) is a well-established meta-heuristic that
systematically exploits the idea of changing neighbourhoods during the search
[3]. VNS relies only on the best solutions currently known to center the search. In
this regard, the information collected during the search relative to previous good
solutions or their characteristics is forgotten. In order to address this deficiency
and take advantage of that information, a Variable Neighbourhood Search with
a Learning Mechanism is proposed. It is a hybridization within a Multi-Start
strategy (MS) embedded with a learning mechanism for taking advantage of
the information obtained during the VNS process using a memory structure.
Within the VNS-L template we use the exploitation capabilities of the VNS and
the exploration capabilities provided by MS as it gives the ability of re-starting
the search. As noted by [5], incorporating memory structures into re-starting
processes improves their performance.

The learning mechanism within VNS-L is based on (i) a frequency based
memory structure, termed as M , with the aim of collecting promising solution
features found during the search and (ii) a solution generation procedure. The
memory structure, M , is composed of solution features as follows. Consider a
set of solutions Λ. Each solution x ∈ Λ has associated a set C(x) = {(i, j)}
of features. That is, a job j is the i-th job served in the whole schedule. The
memory has a matrix structure with dimension n × n, where the rows represent
the jobs and the columns the service order. Each time the VNS improves the
best solution known within the search, the information related to the solution
features is updated, for keeping track of these matches. For example, in case
the solution structure considered for updating the memory includes the feature
(i, j), i.e., job j is the i-th job served in the schedule, then its corresponding
memory position Mij is updated.

Minimizing Total Tardiness on Identical Parallel Machines 121

Algorithm 1. VNS-L pseudocode
1 iter = 1
2 Initialize M
3 while iter �= itermax do
4 x ← Solution Generation Procedure using M
5 k = 1
6 while k �= kmax do
7 Shaking:
8 Choose a random neighbour x′ ∈ N1(x, k)
9 Improvement phase:

10 while stopping criterion is not met do
11 a) Reinsertion move over x′ → x′′

12 b) Interchange move over x′′ → x′′′

13 if x′′′ is better than x′ then
14 x′ ← x′′′

15 Solution assessment:
16 if x′′′ is better than x then
17 x ← x′′′

18 if x′′′ is better than xbest then
19 Update memory M using β parameter
20 xbest ← x′′′

21 k = 1

22 else
23 Update memory M using γ parameter
24 k = k + 1

25 iter = iter + 1

26 return xbest

The way a memory position Mij is updated is as follows: Mij = (Mij +1) ·β.
The parameter β ≥ 1 is used so that when the memory is updated, those solution
features that have been part of the best known solutions more often have greater
significance. On the other hand, in VNS-L we keep track of the worst solution
obtained during the local search process. In case we are not able to improve the
disturbed solution, we update the memory according to Mij = (Mij +1) ·γ. The
parameter γ < 1 is used so that when the memory is updated, those solution
features affected will have less significance.

VNS-L as shown in Algorithm 1 uses a finite set of neighbourhoods based on
(a) reinsertion-move, N1(x, k), namely k jobs are removed from a machine m
and reinserted in another machine m′, where m �= m′, and (b) interchange-move
N2(x), that consists of exchanging a job j assigned to machine m with a job j′

assigned to machine m′, where m �= m′. For any given k the application of these
neighbourhood structures is performed sequentially, i.e., firstly the reinsertion-
move is applied and thereafter the interchange-move. The shaking process allows

122 E. Lalla-Ruiz and S. Voß

Table 1. Computational results for the 2250 instances proposed by [6]. Note that only
the computational times (measured in seconds) are reported since all the approaches
reach the optimal solutions

Instance HDDE B&B VNS-L

n m Avg. t(s.) Max. t(s.) Avg. t(s.) Max. t(s.) Avg. t(s.) Max. t(s.)

20 2 0.01 0.30 0.43 1.41 0.06 0.12

3 0.02 0.41 0.30 4.00 0.07 0.13

4 0.03 1.14 0.15 4.03 0.08 0.13

5 0.02 0.17 0.08 0.47 0.08 0.13

6 0.02 0.38 0.05 0.36 0.09 0.16

7 0.02 0.27 0.04 0.36 0.09 0.17

8 0.02 0.63 0.03 0.28 0.10 0.18

9 0.01 0.52 0.11 8.81 0.10 0.19

10 0.01 0.88 0.03 0.33 0.12 0.18

25 2 0.02 0.45 1.16 13.47 0.12 0.22

3 0.06 1.92 19.85 757.28 0.15 0.32

4 0.08 1.22 47.47 4148.98 0.17 0.28

5 0.13 5.97 14.15 1534.72 0.17 0.43

6 0.12 4.00 0.37 27.22 0.24 0.45

7 0.10 1.52 0.16 2.84 0.28 0.58

8 0.18 13.78 0.11 0.89 0.30 0.54

9 0.06 0.72 0.18 12.78 0.32 0.57

10 0.03 0.28 0.07 2.81 0.33 0.59

0.05 1.92 4.71 362.28 0.16 0.30

to escape from those local optima found along the search by using the reinsertion-
move. Once the search process in the VNS-L is over, the information stored in
M is used by the solution generation procedure for re-starting the VNS-L. To
do so, a roulette wheel mechanism using the information stored in M is applied
to generate a job order sequence. Then, the first job in that sequence will be
assigned to the machine which adds the minimum tardiness completion time to
the solution.

3 Computational Results

This section is devoted to present the computational experiments carried out
in order to assess the performance of the proposed algorithm. For this purpose,
we use a set of 2250 instances provided by [6]. All the computational exper-
iments reported in this work are conducted on a computer equipped with an
Intel 3.16 GHz and 4 GB of RAM. We run 20 executions of VNS-L with the
following parameter values: itermax = 15, kmax= 3, β = 1.2, γ = 0.95, and M
initialized as the one-matrix.

Minimizing Total Tardiness on Identical Parallel Machines 123

Table 1 shows the average computational results provided by (i) the best
approximate approach reported in the literature based on a Hybrid Discrete
Differential Evolution Algorithm, HDDE [2], (ii) the best exact approach based
on a Branch and Bound, B&B [6], and (iii) our VNS-L. HDDE and B&B were
executed on an Intel 3.2 GHz with 512 MB of RAM by [2]. The first columns
correspond to the sizes of the instance sets. Since all the sets are composed
of 125 instances each and the optimal solution values are known, in the tables
we only report the average computational time values since the three methods
always obtain the optimal solution values.

As can be seen in the table, VNS-L maintains a consistent temporal perfor-
mance during the search. VNS-L reduces the maximum required time in 85 %
and 99.92 % of the cases in comparison to HDDE and B&B, respectively. In this
regard, it should be noted that, on average, there is not much difference between
the average and maximum running performance of VNS-L (about 0.15 s). This
gives a sense of the temporal performance of VNS-L, which makes it suitable
when addressing related problems, solving larger instances or tackling integrated
problem schemes where this problem is involved.

4 Conclusions and Further Research

In this work, the problem of minimizing total tardiness on identical parallel
machines (P ||∑ Tj) has been addressed. In order to solve it, a Variable Neigh-
bourhood Search with a Learning mechanism (VNS-L) is proposed. According to
our computational experience over a well-known set of instances proposed in the
literature, our algorithm shows a competitive performance in terms of solution
quality and computational time. In this regard, it exhibits a similar performance
by means of average and maximum computational time, which makes it suitable
for those environments where the expected computational time may not vary
from one instance to another within the same scenario dimensions.

As further research, we are going to assess the contribution of VNS-L for
different configurations of its learning parameters as well as to determine an
adaptive method to parameterize it according to given problem instances.

Acknowledgements. This work has been partially funded by the European Regional
Development Fund, the Spanish Ministry of Economy and Competitiveness (project
TIN2012-32608). Eduardo Lalla-Ruiz thanks the Canary Government for the financial
support he receives through his doctoral grant.

References

1. Biskup, D., Herrmann, J., Gupta, J.N.D.: Scheduling identical parallel machines to
minimize total tardiness. Int. J. Prod. Econ. 115(1), 134–142 (2008)

2. Deng, G., Zhang, K., Gu, X.: A hybrid discrete differential evolution algorithm
to minimise total tardiness on identical parallel machines. Int. J. Comput. Integr.
Manuf. 26(6), 504–512 (2013)

124 E. Lalla-Ruiz and S. Voß

3. Hansen, P., Mladenovic, N., Moreno Pérez, J.A.: Variable neighbourhood search.
Ann. Oper. Res. 175, 367–407 (2010)

4. Niu, Q., Zhou, T., Wang, L.: A hybrid particle swarm optimization for parallel
machine total tardiness scheduling. Int. J. Adv. Manuf. Technol. 49(5–8), 723–739
(2010)

5. Stützle, T.: Local search algorithms for combinatorial problems. Darmstadt Univer-
sity of Technology. Ph.D. thesis (1998)

6. Tanaka, S., Araki, M.: A branch-and-bound algorithm with lagrangian relaxation to
minimize total tardiness on identical parallel machines. Int. J. Prod. Econ. 113(1),
446–458 (2008)

	Minimizing Total Tardiness on Identical Parallel Machines Using VNS with Learning Memory
	1 Introduction
	2 Variable Neighbourhood Search with Learning
	3 Computational Results
	4 Conclusions and Further Research
	References

