Skip to main content

Identification of Schizophrenia-Associated Gene Polymorphisms Using Hybrid Filtering Feature Selection with Structural Information

  • Conference paper
  • First Online:
Health Information Science (HIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9085))

Included in the following conference series:

Abstract

Schizophrenia is a complex and severe neurological disorder that affects lots of people worldwide. Despite its strong evidence of heritability revealed by lots of genetic studies, research for locating of schizophrenia associated genes remains frustrating as numerous efforts had failed to identify biomarkers that could strongly impact the diagnosis and prognosis of schizophrenia. The major challenge lies in the weak discrimination of single gene marker and the enormous number of gene variants that exist in human genome. In this paper we propose a hybrid feature selection method that utilizes the biological structural information of the gene variants to tackle this problem. A set of statistical techniques are developed to encourage the clustering of multiple informative SNP variants on the same gene, which boost the probability of finding biologically meaningful features and suppresses false discoveries. As a result, the proposed method achieves significantly better performance on a published schizophrenia human genome data set compared with previous studies, with an area-under-ROC-curve of 65% and an odd ratio of 2.82 (95%CI: 1.80 – 4.40). 36 gene markers are discovered to be associated with the onset of schizophrenia with many of which verified directly or indirectly by previous literature. The method proposed in this paper can be also adopted for efficient control of false discoveries in finding biomarkers from genomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takahashi, S.: Heterogeneity of schizophrenia: Genetic and symptomatic factors. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B, 648–652 (2013)

    Article  Google Scholar 

  2. Rethelyi, J.M., Benkovits, J., Bitter, I.: Genes and environments in schizophrenia: The different pieces of a manifold puzzle. Neurosci. Biobehav. Rev. 37, 2424–2437 (2013)

    Article  Google Scholar 

  3. Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O’Donovan, M.C., Sullivan, P.F., Sklar, P.: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 460, 748–752 (2009)

    Google Scholar 

  4. Shatz, C.J.: MHC class I: an unexpected role in neuronal plasticity. Neuron. 64, 40–45 (2009)

    Article  Google Scholar 

  5. Kwon, E., Wang, W., Tsai, L.H.: Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol. Psychiatry 18, 11–12 (2013)

    Article  Google Scholar 

  6. Shi, Y.Y., Li, Z.Q., Xu, Q., Wang, T., Li, T., et al.: Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nature Genetics 43, 1224–1227 (2011)

    Article  Google Scholar 

  7. Hall, H., Lawyer, G., Sillen, A., Jonsson, E.G., Agartz, I., Terenius, L., Arnborg, S.: Potential genetic variants in schizophrenia: a Bayesian analysis. World J. Biol. Psychiatry 8, 12–22 (2007)

    Article  Google Scholar 

  8. Laywer, G., Nyman, H., Agartz, I., Arnborg, S., Jonsson, E.G., Sedvall, G.C., Hall, H.: Morphological correlates to cognitive dysfunction in schizophrenia as studied with Bayesian regression. BMC Psychiatry 6, 31 (2006)

    Article  Google Scholar 

  9. Lawyer, G., Nesvag, R., Varnas, K., Frigessi, A., Agartz, I.: Investigating possible subtypes of schizophrenia patients and controls based on brain cortical thickness. Psychiatry Res. 164, 254–264 (2008)

    Article  Google Scholar 

  10. Yang, H., Liu, J., Sui, J., Pearlson, G., Calhoun, V.D.: A Hybrid Machine Learning Method for Fusing fMRI and Genetic Data: Combining both Improves Classification of Schizophrenia. Front. Hum. Neurosci. 4, 192 (2010)

    Article  Google Scholar 

  11. Yamada, K., Iwayama, Y., Hattori, E., Iwamoto, K., Toyota, T., Ohnishi, T., Ohba, H., Maekawa, M., Kato, T., Yoshikawa, T.: Genome-wide association study of schizophrenia in Japanese population. PLoS One 6, e20468 (2011)

    Article  Google Scholar 

  12. Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002)

    Article  Google Scholar 

  13. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., et al.: NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41, D991–995 (2013)

    Article  Google Scholar 

  14. Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M., Sirotkin, K.: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001)

    Article  Google Scholar 

  15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Amsterdam (2011). ISBN: 978-0-12-374856-0

    Google Scholar 

  16. Lei, Y., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proc. Intl. Conf. Mach. Learn. 3, 856–863 (2003)

    Google Scholar 

  17. Benjamini, Y.: HochbergY: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. B 57(1), 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  18. Manning, C.D., Raghavan, P., Schutze, M.: Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

  19. Fawcett, T.: An Introduction to ROC Analysis. Pattern Recognition Letters 7(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  20. Hakak, Y., Walker, J.R., Li, C., Wong, W.H., Davis, K.L., Buxbaum, J.D., et al.: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad Sci. 98(8), 4746–4751 (2001)

    Article  Google Scholar 

  21. Zong, M., Wu, X.G., Chan, C.W.L., Chio, M.Y., Chan, H.S., Tanner, J.A., Yu, S.: The Adaptor Function of TRAPPC2 in Mammalian TRAPPs Explains TRAPPC2-Associated SEDT and TRAPPC9-Associated Congenital Intellectual Disability. PLOS ONE 6(8), e23350 (2011)

    Article  Google Scholar 

  22. Teixeira, A.L., et al.: Increased serum levels of CCL11/eotaxin in schizophrenia. Prog. Neuropsychopharmacol Biol. Psychiatry 32, 710–714 (2008)

    Article  Google Scholar 

  23. Morawski, M., et al.: Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369 (2014)

    Google Scholar 

  24. Kahler, A.K., et al.: Candidate gene analysis of the human natural killer-1 carbohydrate pathway and perineuronal nets in schizophrenia: B3GAT2 is associated with disease risk and cortical surface area. Biol. Psychiatry 69, 90–96 (2011)

    Article  Google Scholar 

  25. Lindor, N.M., Sobell, J.L., Heston, L.L., Thibodeau, S.N., Sommer, S.S.: Screening the dystrophin gene suggests a high rate of polymorphism in general but no exonic deletions in schizophrenics. American journal of medical genetics 54(1), 1–4 (1994)

    Article  Google Scholar 

  26. Bowden, N.A., Weidenhofer, J., Scott, R.J., Schall, U., Todd, J., Michie, P.T., Tooney, P.A.: Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophrenia research 82(2), 175–183 (2006)

    Article  Google Scholar 

  27. Hattori, K., Tanaka, H., Wakabayashi, C., Yamamoto, N., Uchiyama, H., Teraishi, T., et al.: Expression of Ca2+-dependent activator protein for secretion 2 is increased in the brains of schizophrenic patients. Prog. in Neuro-Psycho. & Biol. Psyc. 35(7), 1738–1743 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Y., Zeng, Z., Cai, Y. (2015). Identification of Schizophrenia-Associated Gene Polymorphisms Using Hybrid Filtering Feature Selection with Structural Information. In: Yin, X., Ho, K., Zeng, D., Aickelin, U., Zhou, R., Wang, H. (eds) Health Information Science. HIS 2015. Lecture Notes in Computer Science(), vol 9085. Springer, Cham. https://doi.org/10.1007/978-3-319-19156-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19156-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19155-3

  • Online ISBN: 978-3-319-19156-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics