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Abstract. In timed Petri nets temporal properties are associated with
transitions as transition firing times (or occurrence times). Specific prop-
erties of timed nets, such as boundedness or absence of deadlocks, can
depend upon temporal properties and sometimes even a small change
of these properties has a significant effect on the net’s behavior (e.g., a
bounded net becomes unbounded or vice versa). The objective of sym-
bolic analysis of timed nets is to provide information about the net’s
behavior which is independent of specific temporal properties, i.e., which
describes properties of the whole class of timed nets with the same struc-
ture.
Keywords: timed Petri nets, symbolic analysis, boundedness, absence
of deadlocks, producer–consumer model.

1 Introduction

Petri nets are formal models of systems which exhibit concurrent activities [11],
[10], [7], [4]. Communication networks, multiprocessor systems, manufacturing
systems and distributed databases are simple examples of such systems. As for-
mal models, Petri nets are bipartite directed graphs, in which the two types of
vertices represent, in a very general sense, conditions and events. An event can
occur only when all conditions associated with it (represented by arcs directed
to the event) are satisfied. An occurrence of an event usually satisfies some other
conditions, indicated by arcs directed from the event. So, an occurrence of one
event causes some other event to occur, and so on.

In order to study performance aspects of systems modeled by Petri nets, the
durations of modeled activities must also be taken into account. This can be done
in different ways, resulting in different types of temporal nets [2], [3], [14], [8]. In
timed Petri nets [17], firing times or occurrence times are associated with events,
and the events occur in real–time (as opposed to instantaneous occurrences in
other models [1]). For timed nets, the state graphs of nets are Markov chains
(or embedded Markov chains), so the stationary probabilities of states can be
determined by standard methods [13], [5]. Stationary probabilities are used for
the derivation of many performance characteristics of the model [12].

In timed nets, all firings of enabled transitions are initiated in the same
instants of time in which the transitions become enabled. If, during the firing
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period of a transition, the transition becomes enabled again, a new, independent
firing can be initiated, which will overlap with the other firing(s). There is no
limit on the number of simultaneous firings of the same transition (sometimes
this is called “infinite firing semantics”).

The firing times of transitions can be either deterministic or stochastic (i.e.,
described by a probability distribution function); in the first case, the corre-
sponding timed nets are referred to as D–nets [15], in the second, for the (nega-
tive) exponential distribution of firing times, the nets are referred to as M–nets
(Markovian nets) [16]. In both cases, the concepts of states and state transitions
have been formally defined and used in the derivation of different performance
characteristics of the models [15], [16], [17].

In Petri nets with deterministic firing times, the properties such as bound-
edness or absence of deadlocks can depend upon specific values of firing times
and sometimes even a small changes of firing times can have a significant effect
on the behavior of a net (e.g., a bounded net becomes unbounded or a deadlock
is created).

This paper proposes symbolic analysis of timed Petri nets which analyzes the
behavior for the whole spectrum of temporal properties, so the results do not
depend upon specific temporal properties.

Section 2 recalls a few basic concepts of Petri nets and timed Petri nets.
Section 3 introduces symbolic analysis while an illustrative example is presented
in Section 4. Several concluding remarks are in Section 5.

2 Petri nets and timed Petri nets

Place/transition Petri nets are bipartite directed graphs in which the two types
of vertices are called places and transitions. Place/transition nets are also known
as condition/event systems.

A Petri net (sometimes also called net structure) N is a triple N = (P, T,A)
where:

• P is a finite set of places (which represent conditions);
• T is a finite set of transitions (which represent events), P ∩ T = ∅;
• A is a set of directed arcs which connect places with transitions and transitions

with places, A ⊆ P × T ∪ T × P , also called the flow relation or causality
relation (and sometimes represented in two parts, a subset of P × T and a
subset of T × P ).

For each transition t ∈ T , and each place p ∈ P , the input and output sets
are defined as follows:

Inp(t) = {p ∈ P | (p, t) ∈ A},
Inp(p) = {t ∈ T | (t, p) ∈ A},
Out(t) = {p ∈ P | (t, p) ∈ A},
Out(p) = {t ∈ T | (p, t) ∈ A}.



Symbolic analysis of timed Petri nets 595

The dynamic behavior of nets is represented by markings, which assign non-
negative numbers of tokens to the places of a net. Under certain conditions these
tokens can “move” in the net, changing one marking into another.

A marked Petri net M is a pair M = (N ,m0), where:

• N is a net structure, N = (P, T,A);
• m0 is the initial marking function, m0 : P → {0, 1, ...} which assigns a

nonnegative number of tokens to each place of the net.

Marked nets are also equivalently defined as M = (P, T,A,m0).
In a marked net M, a transition t is enabled by a marking m iff:

∀p ∈ Inp(t) : m(p) > 0.

An enabled transition t can fire (or occur) transforming a marking m into a
directly reachable marking m′:

∀p ∈ P : m′(p) =







m(p)− 1, if p ∈ Inp(t)−Out(t),
m(p) + 1, if p ∈ Out(t)− Inp(t),
m(p), otherwise.

A timed Petri net T is a pair, T = (M, f) where:

• M is a marked net, M = (N ,m0);
• f is the firing–time function, f : T → R+, which assigns the (average) firing

times (or occurrence times) to transitions of the net.

For performance analysis of timed nets, an additional component is needed
to describe random decisions in (nondeterministic) nets. Usually it is a conflict–
resolution function, c : T → [0, 1], which assigns the probabilities of firings to
transitions in free–choice classes of transitions, and relative frequencies of firings
to transitions in conflict classes [16], [17]. This function c is not needed for
symbolic analysis.

3 Symbolic analysis

For symbolic analysis, only relations between the firing times of transitions are
needed, so the state descriptions can be simpler than for the detailed behavioral
analysis [16]. The states can be represented by pairs of functions, current firing
function n : T → {0, 1, ...} and current (residual) marking function m : P →
{0, 1, ...}.

For each state s = (n,m), the next states correspond to all possible relations
between the durations of currently firing transitions. This is described by all
(nonempty) subsets of transitions which finish their firings (and initiate new
firings if any transitions become enabled):

next(s) =
⋃

Ti⊆Tf (s)

Next(s, Ti)
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where Tf (s) (or equivalently Tf (n,m) as s = (n,m)) is the set of transitions
which are firing in state s, i.e., transitions with nonzero entries in n:

Tf (n,m) = {t ∈ T | n(t) > 0},

and Next(s, Ti) is the set of states which can be reached from s by ending the
firings of all transitions in Ti (and then initiating all possible firings).

Finding the set Next(s, Ti) is done in two steps:

1. Terminating the firings of all transitions in Ti, which creates an intermediate
state s′ = (n′,m′ where:

∀t ∈ T : n′(t) =

{

n(t)− 1, if t ∈ Ti;
n(t), otherwise;

∀p ∈ P : m′(p) = m(p) +
∑

t∈Inp(p)∩Ti
n(t).

2. Initiating new firings of transitions which are enabled by m′i. These new
firings can be described by a set of functions bj : T → {0, 1, ...} such that:

– ∀p ∈ P : m′(p)−
∑

t∈Out(p) bj(t) ≥ 0, and

– ∀t ∈ T ∃p ∈ Inp(t) : m′(p)−
∑

t∈Out(p) bj(t) = 0.

These two conditions guarantee that all transitions which can fire, initiate
their firings (free–choice nets and nets with conflicts have more than one
function bj).

The set of states reachable from s = (n,m) by a set of transitions Ti is
described by procedure Next(n,m, Ti) which first finds the intermediate state
(n′,m′) and then uses a recursive function Find to find all possible states by
firing transitions enabled by m′ (and adjusting n′ accordingly):

proc Next(n[1:k], m[1:ℓ], T0);
begin

n′ := n;
m′ := m;
for each ti ∈ T0 do

n′[i] := n′ − 1;
for each pj ∈ Inp(ti) do m′[j] := m′[j] + 1 od

od;
New := ∅;
Find(n′

i,m
′
i);

States := States ∪New

od

end

States is a global variable which stores the set of reachable states.
Recursive function Find(n,m) finds all states which are derived from s =

(n,m) by initiating the firings of enabled transitions. It is assumed that n and
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m are the firing and marking functions, respectively, represented by k-element
and ℓ-element vectors (k is the number of transitions and ℓ is the number of
places); moreover, Find uses a nonlocal set variable New:

proc Find(n[1 : k],m[1 : ℓ]);
begin

E := ∅;
for each ti ∈ T do

check := true;
for each pj ∈ Inp(ti) do

if m[j] = 0 then check := false fi

od;
if check then E := E ∪ {ti} fi

od;
if E = ∅ then New := New ∪ {(n,m)}
else

for each ti ∈ E do

n′ := n;
n′[i] := n[i] + 1;
m′ := m;
for each pj ∈ Inp(ti) do m′[j] := m[pj ]− 1 od;
Find(n′,m′)

od

fi

end

The initial state (or states) of a marked net is (or are) determined by an
invocation Find(n0,m0), where n0 is zero for all t ∈ T , while m0 is the initial
marking function.

The procedures are shown as a simple illustration of the approach; they can
be improved in many ways.

4 Example

A timed Petri net model of a producer–consumer system with an unbouded
buffer is shown in Fig.1.

p5

t1 t2

p2

p1

t3

p3

p4

t4

Fig.1. Model of a producer–consumer system with an unbounded buffer.
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The two cyclic subnets, (t1, p1, t2, p2) and (p3, t2, p4, t4), represent the pro-
ducer and the consumer, respectively, while place p5 is the buffer. It is known
that for some values of firing times the behavior of this system is finite while
for others the model becomes unbounded. For example, for f(t1) = 3.0, f(t2) =
f(t3) = 0.5, f(t4) = 2.0, the state transition graph is shown in Fig.2.

s1 s2

s3

s4

t2

t3

t1,t4

t1

Fig.2. State transition graph for the net shown in Fig.1
with f(t1) = 3.0, f(t2) = f(t3) = 0.5, f(t4) = 2.0.

Symbolic analysis of the model shown in Fig.1 is presented in Tab.1 where
si is the current state, ni and mi are the two components of si, Ti is the set of
transitions which terminate their firings in state si, bj is the function describing
new firings and sj is the next state.

It can be traced in Tab.1 that s11 is reached from s10 by t2 and that s10
is reached from s8 by t1. The states s8 and s11 are identical except of marking
of p5. Consequently, if t1 and t2 can fire several times before t3 and t4 fire, the
marking of p5 can increase arbitrarily, so the model is unbounded.

Similarly, s12 is reached from s9 by t2, and s9 is reached from s7 by t1.

A timed net is unbounded is there are two states, si = (ni,mi) and sj(nj ,mj)
such that sj is reachable from si and si is reachable from an initial state, and sj is
componentwise greater or equal to si, i.e., for all values of k and ℓ, nj [k] ≥ ni[k]
and mj [ℓ] ≥ mi[ℓ].

Moreover, a timed net contains a deadlock if there is a state si reachable
from an initial state, for which the set of next states is empty.

The conditions for unboundedness and deadlock can be easily recognized
during symbolic analysis.

The part of the state transition diagram described in Tab.1 is shown in Fig.3.
The regular structure of state transitions can be systematically extended which
indicates the unboundedness of the model. Moreover, the behavior shown in
Fig.2 can be easily traced in Fig.3 following the same transitions involved in the
changes of states:

t1 → t2 → t3 → t1, t4 → t2 → t3 → t1, t4 → · · ·

so the corresponding state transitions (in Fig.3) are:

s1 → s2 → s3 → s5 → s2 → s3 → · · ·
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Table 1. Symbolic analysis of the producer–consumer model.

ni mi bj
si 1 2 3 4 1 2 3 4 5 Ti 1 2 3 4 sj

s1 1 0 0 0 0 0 1 0 0 t1 0 1 0 0 s2
s2 0 1 0 0 0 0 1 0 0 t2 1 0 1 0 s3
s3 1 0 1 0 0 0 0 0 0 t1 0 1 0 0 s4

t3 0 0 0 1 s5
t1, t3 0 1 0 1 s6

s4 0 1 1 0 0 0 0 0 0 t2 1 0 0 0 s7
t3 0 0 0 1 s6

t2, t3 1 0 0 1 s8
s5 1 0 0 1 0 0 0 0 0 t1 0 1 0 0 s6

t4 0 0 0 0 s1
t1, t4 0 1 0 0 s2

s6 0 1 0 1 0 0 0 0 0 t2 1 0 0 0 s9
t4 0 0 0 0 s2

t2, t4 1 0 1 0 s3
s7 1 0 1 0 0 0 0 0 1 t1 0 1 0 0 s9

t3 0 0 0 1 s8
t1, t3 0 1 0 1 s10

s8 1 0 0 1 0 0 0 0 1 t1 0 1 0 0 s10
t4 0 0 1 0 s3

t1, t4 0 1 1 0 s4
s9 0 1 1 0 0 0 0 0 1 t2 1 0 0 0 s12

t3 0 0 0 1 s10
t2, t3 1 0 0 1 s11

s10 0 1 0 1 0 0 0 0 1 t2 1 0 0 0 s11
t4 0 0 1 0 s4

t2, t4 1 0 1 0 s7
s11 1 0 0 1 0 0 0 0 2 ...
s12 1 0 1 0 0 0 0 0 2 ...

Structural analysis [18] of the net shown in Fig.1 provides a simple condition
for unboundedness for this particular net:

f(t1) + f(t2) ≤ f(t3) + f(t4).

This condition is clearly not satisfied when f(t1) = 1.5, f(t2) = f(t3) = 0.5 and
f(t4) = 3.5), so net’s unbounded behavior is expected in this case. Indeed, the
sequence of transitions involved in consecutive state changes is:

t1 → t2 → t3 → t1 → t2 → t1 → t2, t4 → t3 → t1 → t2 → t1 → t2, t4 → t3 · · ·

with the pattern:

t1 → t2 → t1 → t2, t4 → t3
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repeated. The sequence of (symbolic) state changes, shown in Fig.4, is more
convoluted than in the bounded case:

s1 → s2 → s3 → s5 → s6 → s8 → s10 → s7 → s8 → s10 → s11 → · · ·
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s11 s9
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t3t4
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t2,t4

Fig.3. State transition graph for symbolic analysis of net in Fig.1.
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Fig.4. State transitions for net in Fig.1 with

with f(t1) = 1.5, f(t2) = f(t3) = 0.5, f(t4) = 3.5.
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5 Concluding remarks

The behavior of a timed Petri net depends upon the specific values of temporal
parameters associated with transitions of a net, and can change in a significant
way for even a small changes of these temporal parameters. Symbolic analy-
sis provides general information about the behavior of all nets with the same
structure. For example, if symbolic analysis creates a finite space of (symbolic)
states, no temporal parameters can result in unbounded behavior. Similarly, if
symbolic analysis indicates deadlock freeness, no temporal parameters can create
a deadlock in the net.

For large models, symbolic analysis can be quite complex. Therefore analy-
sis of real–life applications is not feasible without efficient software tools. It is
expected that such tools will be added to existing software packages for analysis
of timed Petri net models.

Symbolic analysis presented in this paper is similar to reachability analysis
of marked nets [8], [17]. The obvious difference is that reachability analysis does
not consider simultaneous multiple firings. The effects of this difference need to
be carefully explored.

Fig.5. shows the initial part of the marking graph for the net in Fig.1.
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m10 m5
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Fig.5. Marking graph for the net in Fig.1.

The similarity of Fig.3 and Fig.5 can be misleading because there is no
straightforward correspondence between the markings (Fig.5) and the states
(Fig.3). In particular, there are no changes due to multiple transitions in Fig.5
(like t1, t4 or t2, t4 in Fig.3).
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It is believed that symbolic analysis presented in this paper can be extended
to other classes of Petri nets, such as inhibitor Petri nets or high–level Petri nets
[6].
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