arXiv:1503.00295v2 [cs.FL] 22 Apr 2015

Regular realizability problems and context-free
languages

A. Rubtsov*?? and M. Vyalyi**123

! Computing Centre of RAS
2 Moscow Institute of Physics and Technology
3 National Research University Higher School of Economics
rubtsov99@gmail.com
vyalyi@gmail.com

We investigate regular realizability (RR) problems, which are the prob-
lems of verifying whether the intersection of a regular language — the
input of the problem — and a fixed language, called a filter, is non-empty.
In this paper we focus on the case of context-free filters. The algorithmic
complexity of the RR problem is a very coarse measure of the complexity
of context-free languages. This characteristic respects the rational dom-
inance relation. We show that a RR problem for a maximal filter under
the rational dominance relation is P-complete. On the other hand, we
present an example of a P-complete RR problem for a non-maximal filter.
We show that RR problems for Greibach languages belong to the class
NL. We also discuss RR problems with context-free filters that might
have intermediate complexity. Possible candidates are the languages with
polynomially-bounded rational indices. We show that RR problems for
these filters lie in the class NSPACE (log? n).

1 Introduction

The context-free languages form one of the most important classes for formal
language theory. There are many ways to characterize complexity of context-free
languages. In this paper we propose a new approach to classification of context-
free languages based on the algorithmic complexity of the corresponding regular
realizability (RR) problems.

By ‘regular realizability’ we mean the problem of verifying whether the inter-
section of a regular language — the input of the problem — and a fixed language,
called a filter, is non-empty. The filter F' is a parameter of the problem. Depend-
ing on the representation of a regular language, we distinguish the deterministic
RR problems RR(F) and the nondeterministic ones NRR(F'), which correspond
to the description of the regular language either by a deterministic or by a non-
deterministic finite automaton.

* Supported in part by RFBR grant 14-01-00641.
** Supported in part RFBR grant 14-01-93107 and the scientific school grant
NSh4652.2012.1.

http://arxiv.org/abs/1503.00295v2

The relation between algorithmic complexities of RR(F') and NRR(F) is still
unknown. For our purpose — the characterization of the complexity of a context-
free language — the nondeterministic version is more suitable. One of the reasons
for this choice is a rational dominance relation <, (defined in Section [2). We
show below that the dominance relation on filters F} <;.; F5 implies the log-space
reduction NRR(£1) <,,, NRR(£2). So our classification is a very coarse version
of the well-known classification of CFL by the rational dominance relation (see
the book [2] for a detailed exposition of this topic).

Depending on a filter F', the algorithmic complexity of the regular realiz-
ability problem varies drastically. There are RR problems that are complete
for complexity classes such as L, NL, P, NP, PSPACE [II11]. In [12] a huge
range of possible algorithmic complexities of the deterministic RR problems was
presented. We prove below that for context-free nonempty filters the possible
complexities are in the range between NL-complete problems and P-complete
problems. Examples of P-complete RR problems are provided in Section [3l The
filter consisting of all words provides an easy example of an NL-complete RR
problem. In this case, the problem is exactly the reachability problem for di-
graphs. The upper bound by the class P follows from the reduction of an arbi-
trary NRR-problem specified by a context-free filter to the problem of verifying
the emptiness of a language generated by a context-free grammar. We prove it
in Section [3l

We will call a context-free language L easy if NRR(L) € NL and hard if
NRR(L) is P-complete. In Section 3] we present an example of a non-generator
of the CFLs cone, which is hard in this sense. In Section @ we provide examples of
easy languages. They cover a rather wide class — the so-called Greibach languages
introduced in [7].

The exact border between hard and easy languages is unknown. Moreover,
there are candidates for an intermediate complexity of RR problems. They are
languages with polynomially-bounded rational indices.

The rational index was introduced in [B]. Recall that rational index pr(n)
of a language L is a function that returns the maximum length of the shortest
word from the intersection of the language L and a language L(A) recognized
by an automaton A with n states, provided L(A) N L # @:
min{|u||u € L(A)NL}. (1)

n)= max
pL() A:|Qa|=n, L(A)NL#AD

The growth rate of the language’s rational index is an another measure of the
complexity of a language. This measure is also related to the rational dominance
(see Section [H for details).

In Section Bl we prove that the RR problem for a context-free filter hav-
ing polynomially-bounded rational index is in the class NSPACE (log® n). Note
also that there are many known CFLs having polynomially-bounded rational
indices [10]. But the RR problems for these languages are in NL. It would be
interesting to find more sophisticated examples of CFLs having polynomially-
bounded rational indices.

2 Preliminaries

The main point of our paper is investigation of the complexity of the NRR-
problem for filters from the class of context-free languages CFL.

Definition 1. The regular realizability problem NRR(F') is the problem of ver-
ifying non-emptiness of the intersection of the filter F' with a regular language
L(A), where A is an NFA. Formally

NRR(F) = {A| Ais an NFA and L(A) N F # o}.

It follows from the definition that the problem NRR(A*) for the filter con-
sisting of all words under alphabet A is the well-known NL-complete problem
of digraph reachability. We will show below that NRR(L) € P for an arbitrary
context-free filter L. So it is suitable to use deterministic log-space reductions
in the analysis of algorithmic complexity of the RR problems specified by CFL
filters. We denote the deterministic log-space reduction by Slog-

Let us recall some basic notions and fix notation concerning the CFLs. For
a detailed exposition see [2I3]. We will refer to the empty word as €. Let A,
and A, be the n-letter alphabets consisting of the letters {ai,as,...,a,} and
{@1,as,...,a,} respectively. A well-known example of a context-free language,
the Dyck language D, is defined by the grammar

S—>SS|E |a18£_L1|~-~|CLnSC_Ln.

Fix alphabets A and B. A language L C A* is rationally dominated by
L' C B* if there exists a rational relation R such that L = R(L’), where R(X) =
{ue A* | Jv € X (v,u) € R}. We denote rational domination as <;,;. We say
that languages L, L’ are rationally equivalent if L <oy L' and L’ <4 L.

A rational relation is a graph of a multivalued mapping 7. We will call the
mapping Tr with a rational graph as a rational transduction. So L <;4; L’ means
that L = 7r(L’). Such a transduction can be realized by a rational transducer
(or finite-state transducer) T', which is a nondeterministic finite automaton with
input and output tapes, where e-moves are permitted. We say that u belongs to
T'(v) if for the input v there exists a path of computation on which T" writes the
word u on the output tape and halts in the accepting state. Formally, a rational
transducer is defined by the 6-tuple T' = (A, B, Q, qo, J, F'), where A is the input
alphabet, B is the output alphabet, @ is the (finite) state set, go is the initial
state, F' C @ is the set of accepting states and §: @ x (AU¢e) x (BU¢) x Q is
the transition relation.

Let two rational transducers 77 and T» correspond to rational relations Ry
and Ry, respectively. We say that a rational transducer T = Tj o T5 is the
composition of 77 and T3 if the relation R corresponding to T such that R =
{(u,v) | Ely(uay) € Ry, (y,’U) € RQ}

Define the composition of transducer 7" and automaton A in the same way:
automaton B = T o A recognizes the language {w|3Jy € L(A) (w,y) € R}.

The following proposition is an algorithmic version of the Elgot-Mezei theo-
rem (see, e.g., [2, Th. 4.4]).

Proposition 1. The composition of transducers and the composition of a trans-
ducer and an automaton are computable in deterministic log space.

A rational cone is a class of languages closed under rational dominance.
Let T(L) denote the least rational cone that includes language L and call it
the rational cone generated by L. Such a cone is called principal. For example,
the cone Lin of linear languages (see [2] for definition) is principal: Lin = T (.5),
where the symmetric language S over the alphabet X = {x1, x2, Z1, T2} is defined
by the grammar

S — 1157 | 29STo | E.

For a mapping a — L, the substitution o is the morphism from A* to the
power set 287 such that o(a) = L,. The image o(L) of a language L C A* is
defined in the natural way. The substitution closure of a class of languages L is
the least class containing all substitutions of languages from £ to the languages
from L. We need two well-known examples of the substitution closure. The class
Qrt of the quasirational languages is the substitution closure of the class Lin.
The class of Greibach languages [7] is the substitution closure of the rational
cone generated by the Dyck language D; and the symmetric language S.

It is important for our purposes that rational dominance implies a reduction
for the corresponding RR problems.

Lemma 1. If Fi <ia¢ Fy then NRR(F}) <, NRR(F).

Proof. Let T be a rational transducer such that F; = T'(F») and let A be an
input of the NRR(F}) problem. Construct the automaton B8 = T o A and use
it as an input of the NRR(Fy) problem. It gives the log-space reduction due to
Proposition []

In particular, this lemma implies that if a problem NRR(F) is complete in
a complexity class C, then for any filter F from the rational cone T (F) the
problem NRR(F”) is in the class C.

We will use the following reformulation of the Chomsky-Schiitzenberger the-
orem.

Theorem (Chomsky, Schiitzenberger). CFL = T(D,).

In the next section, we prove that NRR(D3z) is P-complete under deterministic
log-space reductions. Thus, it follows from the Chomsky-Schiitzenberger theorem
and Lemma [Tl that any problem NRR/(F) for a CFL filter F lies in the class P.

3 Hard RR problems with CFL filters

In this section we present examples of hard context-free languages. The first
example is the Dyck language Da.

By use of Lemma [Il and the Chomsky-Schiitzenberger theorem, we conclude
that any generator of the CFL cone is hard. But there are additional hard lan-
guages. We provide such an example, too.

We start with some technical lemmas. The intersection of a CFL and a ra-
tional language is a CFL. We need an algorithmic version of this fact.

Lemma 2. Let G = (N, X, P,S) be a fized context-free grammar. Then there
exists a deterministic log-space algorithm that takes a description of an NFA A =
(Qua,X,04,q0,Fa) and constructs a grammar G' = (N', X, P',S") generating
the language L(G) N L(A). The grammar size is polynomial in |Q 4|

This fact is well-known. We provide the proof because the construction will
be used in the proof of Theorem [l below.

Proof (of Lemma [3). First, to make the construction clearer, we assume that
automaton A has no e-transitions. Let N’ consist of the axiom S’ and nonter-
minals [¢gAp], where A € N and ¢,p € Q4. Construct P’ by adding for each rule
A— X1 X5+ X, from P the set of rules

{lgAp] — [gX1m][ri Xora] - [rn—1Xnp] | ¢, 0,71, 72,1 € Qa}

to P’. Also add to P’ rules [gop] — o if 64(q,0) = p and S’ — [goS¢y] for each
gy from Fl4.

Now we prove that L(G') = L(G) N L(A). Let G derive the word w =
wiws - - - wy,. Then grammar G’ derives all possible sentential forms

[(Jowlﬁ][ﬁw27“2] s [Tn—lanf]u

where g € Fq andr; € Q4. And [gowim][riwars] - - - [Fn—1wWngy] =" wiwa - - wy
iff there is a successful run for the automaton A on w. If G’ derives a word w
then each symbol w; of the word has been derived from some nonterminal [qw;p].
Due to the construction of the grammar G’ the word w has been derived from
some sentential form [gowy71][r1ware] - - - [rn—1wnqys], which encodes a successive
run of A on w. Thus G’ derives the word w only if G does as well.

The size of G’ is polynomial in Q4. The size of N’ is [N| - |Q4|?> + 1. Let k
be the length of the longest rule in P. Then for each rule from P there are at
most |Q4|**! rules in P’ and for rules in the form [gop] — o or S’ — [g0Sqy]
there are at most O(|Q4|?) rules in P’.

Finally, the grammar G’ is log-space constructible, because the rules of
P’ corresponding to the particular rule from P can be generated by inspect-
ing all (k + 1)-tuples of states of A and k = O(1). Adding e-transitions just
increases k + 1 to 2k. For each rule A — X;---X, we add rules [¢gAp] —
[¢X1q1][g2X243] - - - [q2n—1 X np), where ¢; = giy1 or ¢; = giy1 for all i. In the case
of [qop] — o rules we add all such rules that ¢ = ¢/, p’ = p and §(¢/,0) =p'.

Note that if grammar G is in Chomsky normal form, then the number of
nonterminals of the grammar G’ is O(|Q4|?). Recall that for a grammar in the
Chomsky normal form, the right-hand side of each rule consists of either two
nonterminals, or one terminal. The empty word may be produced only by the
axiom and the axiom does not appear in a right-hand side of any rule.

Also we need an algorithmic version of the Chomsky-Schiitzenberger theorem.

Lemma 3. There exists a deterministic log-space algorithm that takes a de-
scription of a context-free grammar G = (N, X, P,S) and produces a rational
transducer T' such that T'(D2) = L(G).

Now we are ready to prove hardness of the Dyck language Ds.
Theorem 1. The problem NRR(D3) is P-complete.

Proof. To prove P-hardness we reduce the well-known P-complete problem of
verifying whether a context-free grammar generates an empty language [6] to
NRR(D3). Based on a grammar G, construct a transducer T' such that T'(D3) =
L(G) using Lemma Bl Let A be a nondeterministic automaton obtained from
the transducer T by ignoring the output tape. Then L(A) N Dy is nonempty iff
L(G) is nonempty. The mapping G — A is the required reduction.

To prove that NRR(D3) lies in P we reduce this problem to the problem of
non-emptiness of a language generated by a context-free grammar.

For an input A construct the grammar G such that L(G) = L(A)N D, using
Lemma

Corollary 1. Any generator of the CFL cone is a hard language.

Now we present another example of a hard language. Boasson proved in [4]
that there exists a principal rational cone of non-generators of the CFL cone
containing the family Qrt of the quasirational languages.

Below we establish P-completeness of the nondeterministic RR problem for
a generator of this cone. The construction follows the exposition in [3].

For brevity we denote the alphabet of the Dyck language Dy by A = {a,a}*.
Recall that the syntactic substitution of a language M into a language L is

Lt M = {mizimaza---mpxz. | my,...,m. € M, x129- -2, € L} U ({e} N L).

We also use the language Sy = S 1 #* which is the syntactic substitution of the
language #* in the symmetric language S.

Let M = aSgaUce. The language M () is defined recursively in the following
way: x € M () iff either z € M or

T = ay1a21a4Y2022a -+ * Yn—102n—10Yna,

where y1,y, € X*, y; € XT for2<i<n—1,azac M) and ay1ys -+ - Yna €
M.

Let mx: (X U A)* — A* be the morphism that erases symbols from the
alphabet X. The language M () is defined to be 7' (A* \ D).

Finally, we set SL = M©) y M),

Note that the languages S and Sx are rationally equivalent. So Sx is a
generator of the cone Lin of the linear languages.

By combining this observation with Propositions 3.19 and 3.20 from [3], we
get the following fact.

Theorem 2. S’L s not a generator of the CFL cone, but the cone generated by

S; contains all quasirational languages.

The language S; is the union of two languages. In the proof of the P-
completeness for the problem NRR(S’L), we will use automata that do not accept
words from the language M (). For this purpose we need a notion of a marked
automaton.

Definition 2. An NFA A over the alphabet A, U A, is marked if there exists
a function h: Q4 — Z satisfying the relations

h(q) + 1, if there exists a transition ¢ — ¢’ in A,

>
—~
=,
~

Il

h(q') = h(q) — 1, if there exists a transition q 4, q in A,

h(q) =0, if ¢ is either the initial state or an accepting state of A.
(2)

In what follows we will identify for brevity the (directed) paths along the
graph of an NFA and the corresponding words in the alphabet of the automaton.
The vertices of the graph, i.e., the states of the automaton, are identified in this
way with the positions of the word.

The height of a position is the difference between the number of the sym-
bols a; and the number of the symbols a; preceding the position. In terms of
the position heights, the words in D; are characterized by two conditions: the
height of any position is nonnegative and the height of the final position is 0.

Proposition 2. Let A be an NFA such that Do N L(A) # @. Then there exists
a word w € Dy N L(A) # @ such that the height of any position in the word w

is O(|Qal)?.

Proof. The heights of positions are upperbounded by the height of the derivation
tree in the grammar generating the language Do N L(A) # .

It is easy to see that for any grammar generating a non-empty language there
is a word such that the height of a derivation tree for the word is at most the
number of nonterminals in the grammar.

To finish the proof, we use the grammar constructed by Lemma [from
the grammar generating Dy in the Chomsky normal form. This grammar has
O(]Q 4]?) nonterminals.

In the proof below we need a syntactic transformation of automata over the
alphabet A U As.

Proposition 3. There exists a transformation p that takes a description of an
automaton A over the alphabet Ay U Ay and produces a description of a marked
automaton A" = p(A) such that (i) L(A) N Dy # & iff L(A") N Dy # @ and (it)
for any w € L(A") the height of any position is nonnegative and the height of the
final position is 0. The transformation p is computed in deterministic log space.

Proof. Let m be an upper bound on the heights of the positions in a word
w € L(A)NDy. By Proposition 2, m is O(|Q 4|?) . Note that m can be computed
in deterministic log space.

The state set of the automaton A" is Q4 % {0,...,m} U {r}, where r is the
specific absorbing rejecting state.

If ¢ & ¢/, where a € {a1,as}, is a transition in the automaton A then there
are transitions (g,7) < (¢/,i+1) for all 0 < i < m and the transition (¢, m) = r
in the automaton A’.

If ¢ % ¢/, where o € {@1, @}, is a transition in the automaton A then there
are transitions (q,i) < (¢’,i — 1) for all 0 < i < m and the transition (¢,0) = r
in the automaton A’.

The initial state of the automaton A’ is (go,0), where g is the initial state
of the automaton 4. The set of accepting states of the automaton A’ is F' x {0},
where F' is the set of accepting states of the automaton A.

It is clear that the description of the automaton A’ is constructed in deter-
ministic log space.

Condition (ii) is forced by the construction of the automaton A’. It remains
to prove that condition (i) holds.

Note that if L(A)N Dy = & then L(A")N D2 = & too. In the other direction,
if L(A)N Dy # @, then by Proposition 2] there exists a word w € L(A) N Dy such
that the height of any position in the word does not exceed m. So the word is
accepted by the automaton A’.

Theorem 3. NRR(S;) 1s P-complete under deterministic log space reductions.

Proof. We reduce NRR(D2) to NRR(SL).

Let A be an input of the problem NRR(D2) and A’ = p(A) be the marking
transformation of the automaton A.

We are going to construct the automaton B over the alphabet AU X U {#}
such that L(A') N Dy # @ iff L(B)N S, # @.

The morphism ¢: (Ay U A3)* — (AU X U {#})* is defined as follows:

Lap —ary,
A fla’##a
T ag — ara,

D Qo — Toa#H#.

(3)

€ € € €

The automaton B accepts words of the form axizowZsT1a, where w = ¢(u).
It simulates the behavior of the automaton A’ on the word u and accepts iff A’
accepts the word u.

It follows from the definitions that if u € Dy then az2zo@(u)Tezia € M),
Soif L(A") N Dy # @ then L(B)N S, # @.

Now we are going to prove the opposite implication. Let

w = ax1x2p(u)T2T1a € S; N L(B).

The automaton A’ is marked and B simulates the behavior of A’ on w. So the
heights of positions in w are nonnegative and the height of the final position is 0.

Thus w ¢ M) = 7' (A* \ Dy). Take a pair of the corresponding parentheses
a, @ in the word w:
W = Wax;W1T;aws.

If i # j then w ¢ M), So i = j for all pairs of the corresponding parentheses.
This implies u € Do N L(A").

We just have proved the correctness of the reduction. It can be computed in
log space due to the following observations. To produce the automaton B from
the automaton A we need to extend the state set by a finite number of pre- and
postprocessing states to operate with the prefix ax;xo and with the suffix Z>Z1a.
Also we need to split all states in Q4 in pairs to organize the simulation of A’
while reading the pairs of symbols ax; and Z;a. The transitions by the symbol

are trivial: ¢ i q for all q.

4 Easy RR problems with CFL filters

Now we present examples of easy languages. The simplest example is rational
languages. Next we prove that the symmetric language and the language D; are
easy. A simple observation shows that a substitution of easy languages into an
easy language is easy. Thus we conclude that Greibach languages are easy.

Lemma 4. NRR(S) € NL.

The proof of Lemmalis a slight modification of the arguments from [1] that
prove a similar result for the language of palindromes.

Lemma 5. Let L. be a context-free language recognizable by a counter automa-
ton. Then problem NRR(L.) lies in NL.

In the proof we will use the following fact.

Lemma 6 ([13]). Let M be a counter automaton with n states. Then the short-
est word w from the language L(M) has length at most n® and the counter of M
on processing the word w doesn’t exceed the value n?.

We now return to the proof of Lemma

Proof. Let M be a counter automaton that accepts by reaching the final state
such that M recognizes the language L.. Let A be an automaton on the input
of the regular realizability problem.

Construct the counter automaton M 4 with the set of states @ X Q 4, the
initial state (g}, gg'), with the set of accepting states Fys x F4 and with the
transition relation da7, such that da(q,0,2) F (¢, 2'), da(p,0) = p' implies
Onm,((g,p),0,2) F ((¢,p),2"). This is the standard composition construction.

The automaton M 4 is a counter automaton with |Qas| - |Q 4| = ¢ X n states.
Using Lemma [6 we obtain that the value of M 4’s counter does not exceed (cn)?
on the shortest word from L(M 4). Then construct automaton B such that L(B)

contains all such words from L(M4) such that the counter of M4 does not
exceed (cn)?. The automaton B has O(n?) states and can be constructed in log
space in the straightforward way similar to the proof of Proposition 3l Note that
L(My4) # @ iff L(B) # &. So the map A — B gives a reduction of the problem
NRR(L.) to the problem NRR(X™*), which is in NL.

The language D, is recognized by a counter automaton in the obvious way.
Corollary 2. NRR(D;) € NL.
Lemma 7. If L, L, for all a € A, are easy languages then o(L) is also easy.

Proof. Let A be an input for the problem NRR(o(L)). Define the automaton
A’ over the alphabet A with the state set Q4 = Q4. There is a transition
¢ % ¢ in the automaton A’ iff there exists a word w € L, such that ¢ — ¢’ in
automaton A.

It is clear from the definition that L(A) No(L) # @ iff L(A')N L # @. To
apply an NL-algorithm for NRR(L) one needs the transition relation of A’. The
transition relation is not a part of the input now. But it can be computed by
NL-algorithms for NRR(L,). It is clear that the resulting algorithm is in NL.

Applying Lemma [l Lemma [and Corollary 2] we deduce with the theorem.

Theorem 4. Greibach languages are easy.

5 The case of polynomially-bounded rational index

We do not know whether there exists a CFL that is neither hard nor easy.
In this section we indicate one possible class of candidates for an intermediate
complexity: the languages with polynomially-bounded rational indices.

Rational index appears to be a very useful characteristic of a context-free
language because rational index does not increase significantly under rational
transductions.

Theorem (Boasson, Courcelle, Nivat, 1981, [5]). If L' <;a L then there
exists a constant ¢ such that pr(n) < cn(pr(cn) + 1).

Thus the rational index can be used to separate languages w.r.t. the rational
dominance relation. Note that the rational index of a generator of the CFL cone
has rather good estimations.

Theorem (Pierre, 1992, [9]). The rational index of any generator of the
rational cone of CFL belongs to exp(©(n?/logn)).

The examples of easy languages in Section E] have polynomially-bounded
rational indices. Moreover, context-free languages with rational index ©(n?) for
any positive algebraic number v > 1 were presented in [I0]. All of them are easy.
The proof is rather technical and is skipped here. Thus it is quite natural to
suggest that any language with polynomially-bounded rational index is easy.

Unfortunately we are able to give only a weaker bound on the algorithmic
complexity in the case of polynomially-bounded rational index.

Theorem 5. For a context-free filter F' with polynomially-bounded rational in-
dex, the problem NRR(F) lies in NSPACE(log®n).

We use a technique quite similar to the technique from [8]. First we need an
auxiliary result.

Lemma ([8]). For a grammar G in the Chomsky normal form and for an ar-
bitrary string w = xyz from L(G) of length n there is a nonterminal A in the
derivation tree, such that A derives y and n/3 < |y| < 2n/3.

Let us return to the proof of the theorem.

Proof (of Theorem [3). Consider a grammar G’ in the Chomsky normal form
such that L(G') = F. Fix an automaton A with n states such that the minimal
length of w from L(A)NF equals pr(n). The length of the word w is polynomial
in n. Consider the grammar G such that L(G) = L(A) N F obtained from the
grammar G’ by the construction from Lemma

The algorithm does not construct the grammar G itself, since such a con-
struction expands the size of grammar G’ up to n3 times. Instead, the algorithm
nondeterministically guesses the derivation tree of the word w in the grammar
G, if it exists. Informally speaking, it restores the derivation tree starting from
its ‘central” branch.

The main part of the algorithm is a recursive procedure that checks cor-
rectness for a nonterminal A = [gA’p] of the grammar G. We say that the
nonterminal A = [qA’p] is correct if A produces a word w in the grammar G.

If a nonterminal is [gop], where o is a terminal then the procedure should
check that ¢ < p in the automaton A.

In a general case the procedure of checking correctness nondeterministically
guesses a nonterminal A; = [¢1A]r] such that w = pjuisy, and A; derives
the word w; and 1/3|w| < |ui| < 2/3|w|. Then it is recursively applied to the
nonterminal A;. If successful the procedure sets i := 1 and repeats the following
steps:

1. Nondeterministically guess the ancestor A; 1 = [lj414;4175+1] of A; in the
derivation tree. There are two possible cases:
(i) either A;y1 — [¢'C"liy1]A; in the grammar G (set up C := [¢'C"¥;11])
(i) or A;11 — Ai[rit1C'p'] (set up C := [r;11C'pP']).

2. Recursively apply the procedure of checking correctness to the nonterminal
C.

3. If successful set up i := i + 1.

Repetitions are finished and the procedure returns success if 4; = A. If
any call of the procedure of checking correctness returns failure then the whole
procedure returns failure.

In recursive calls the lengths of words to be checked diminish by a factor at
most 2/3. So the total number of recursive calls is O(log n), where n is the input
length. Data to be stored during the process form a list of triples (an automaton

state, a nonterminal of the grammar G’, a automaton state). Each automaton
state description requires O(logn) space and nonterminal description requires
a constant size space since grammar G’ is fixed. Thus the total space for the
algorithm is O(log? n).

Acknowledgments

We are acknowledged to Abuzer Yakaryilmaz for pointing on the result of Lemmaldl
and for reference to a lemma similar to Lemma

References

1. Anderson, T., Loftus, J., Rampersad, N., Santean, N., Shallit, J.: Detecting palin-
dromes, patterns and borders in regular languages. Information and Computation
207, 1096-1118 (2009)

2. Berstel, J.: Transductions and context-free languages. Teubner Verlag, Stuttgart /
Leipzig / Wiesbaden (1979)

3. Berstel, J., Boasson, L.: Context-Free Languages. In: Leeuwen, van J. (ed.) Hand-
book of Theoretical Computer Science, Vol. B, pp. 59-102. Elsevier, Amsterdam
(1990)

4. Boasson, L.: Non-générateurs algébriques et substitution. RAIRO Informatique
théorique 19, 125-136 (1985)

5. Boasson, L., Courcelle, B., Nivat, M.: The rational index, a complexity measure
for languages. SIAM J. Comput. 10(2), 284-296 (1981)

6. Greenlaw, R., Hoover, H. J., Ruzzo, L.: Limits to Parallel Computation: P-
completeness Theory. Oxford Univ. Press, Oxford (1995)

7. Greibach, Sh.A.: An infinite hierarchy of context-free languages. J. of the ACM 16,
91-106 (1969)

8. Lewis, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of
context-free and context-sensitive languages. In: Switching Circuit Theory and
Logical Design, pp. 191-202. IEEE, New York (1965)

9. Pierre L.: Rational indexes of generators of the cone of context-free languages.
Theoretical Computer Science 95, 279-305 (1992)

10. Pierre, L., Farinone, J.M.: Rational index of Context-free languages with rational
index in ©(n”) for algebraic numbers ~. Informatique théorique et applications
24(3), 275-322 (1990)

11. Vyalyi M.N.: On regular realizability problems. Problems of Information Trans-
mission 47(4), 342-352 (2011)

12. Vyalyi M.N.: Universality of regular realizability problems. In: Bulatov, A.A., Shur,
A M. (eds) CSR 2013. LNCS, vol. 7913, pp. 271-282 Springer, Heidelberg (2013)

13. Yakaryilmaz, A.: One-counter verifiers for decidable languages. In: Bulatov, A.A.,
Shur, A.M. (eds) CSR 2013. LNCS, vol. 7913, pp. 366-377 Springer, Heidelberg
(2013)

	Regular realizability problems and context-free languages

