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Direct formal verification of liveness properties in
continuous and hybrid dynamical systems ?

Andrew Sogokon and Paul B. Jackson

LFCS, School of Informatics, University of Edinburgh, UK
a.sogokon@sms.ed.ac.uk, pbj@inf.ed.ac.uk

Abstract This paper is concerned with proof methods for the temporal property
of eventuality (a type of liveness) in systems of polynomial ordinary differential
equations (ODEs) evolving under constraints. This problem is of a more general
interest to hybrid system verification, where reasoning about temporal proper-
ties in the continuous fragment is often a bottleneck. Much of the difficulty in
handling continuous systems stems from the fact that closed-form solutions to
non-linear ODEs are rarely available. We present a general method for proving
eventuality properties that works with the differential equations directly, without
the need to compute their solutions. Our method is intuitively simple, yet much
less conservative than previously reported approaches, making it highly amenable
to use as a rule of inference in a formal proof calculus for hybrid systems.

1 Introduction

In computer science, by liveness one informally understands the property of something
“good” happening along the execution paths in a program. Thus, in stating that a pro-
gram is live one asserts that some desirable property will hold true as the program
runs. Liveness properties of discrete programs were studied by Lamport and Owicki
in [16,23] and formally defined by Alpern and Schneider in [1]. In this paper we will
be concerned with a particular type of liveness known as eventuality, which requires
that some target set of states is eventually attained. Furthermore, instead of discrete
computer programs, we will be working with continuous systems that are governed by
ordinary differential equations and have an uncountably infinite number of states.

Continuous systems have generated significant interest among computer science
and formal verification researchers over the past years as they form an important part
of a broader class of dynamical systems known as hybrid (or cyber-physical) systems.
Hybrid systems combine discrete and continuous behaviour; they are interesting be-
cause they provide the most general framework for modelling and verifying properties
of dynamic phenomena. To give but a few examples, hybrid systems have found ap-
plication in verifying safety of aircraft collision avoidance protocols [26], train control
systems [25,17], simulating control systems for oil drills working with discontinuous
friction [21] and many more.

? This material is based upon work supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under grant EP/I010335/1.
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Formally verifying temporal properties of hybrid systems is no easy enterprise [11],
in no small part due to their expressiveness, which makes most interesting questions
about their behaviour inherently undecidable [13]. However, this does not mean that
hybrid system verification is impossible and thus futile. On the contrary, formal verific-
ation tools have already been successfully applied in some impressive case studies, but
it is also true that there is great scope for improvement in what verification tools are cap-
able of. This is especially true of methods for verifying liveness properties, which are
typically more difficult to prove than safety. In this paper we seek to partially remedy
this by proposing a new deductive verification method for proving eventuality proper-
ties in continuous systems that can be implemented as a rule of inference in a theorem
prover for hybrid systems.

The method we propose is able to work directly with initial states and target regions
given by arbitrary semi-algebraic sets (that is, sets given by finite boolean combina-
tions of polynomial equalities and inequalities) and generalizes previously reported ap-
proaches reported in [30,31,33,26]. Our approach is not restricted to bounded evolution
domains (as e.g. [31]) and is able to prove eventuality properties for target regions de-
scribed by formulas featuring equations (unlike [26,30]). Finally, the presence of system
equilibria outside the target region presents an insurmountable obstacle for approaches
reported in [30,31,26] and requires the user to manually remove them from the evolu-
tion domain [30]. We work with weaker conditions that only require a semi-algebraic
over-approximation of the reachable set, which can be used to avoid equilibria without
the need to manually alter the system. The conditions we give are much more general
than in [33] and may be checked automatically using a decision procedure.

1.1 Contributions

In this paper we (I) describe a necessary condition for eventuality – the existence of
what we call a staging set – and use it to (II) formulate conditions for proving eventual-
ity properties in systems of polynomial ODEs without computing their solutions. (III)
We illustrate the proof principle using some basic examples and (IV) describe how our
approach can be used to construct formal proofs of certain liveness properties in a de-
ductive verification tool for hybrid systems. Lastly, we (V) generalize total derivatives
for formulas introduced in [26] by exploiting directional differentiability properties of
the minmax function.

2 Preliminaries

In what follows, we will work with autonomous 1 systems of ordinary differential equa-
tions defined on Rn and evolving under constraints, i.e.

ẋi = fi(x), 1 ≤ i ≤ n,
x ∈ H ⊆ Rn.

1 By this we mean that our ODEs have no explicit dependence on the time variable t. No general-
ity is lost because any system with explicit time dependence can be turned into an autonomous
system by adding a new ‘clock’ variable to model time evolution, e.g. if we let ẋn+1 = 1 and
replace every instance of t in the system with xn+1.
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We will write this more concisely as ẋ = f(x) &H . We will be interested in verifying
properties of evolutions that lie within the constraintsH , though in doing so we consider
evolutions that might go outside ofH . Furthermore, we will only work with polynomial
systems, i.e. f ∈ R[x]n, under evolution constraints H that are semi-algebraic sets.

Remark 1. To simplify our presentation we will interchangeably use the notation for
sets and formulas characterizing those sets. Thus, H will denote both a semi-algebraic
set H ⊆ Rn and a quantifier-free formula H of real arithmetic with free variables in
x1, . . . , xn that characterizes the set H .

A solution to the initial value problem (ẋ = f(x), x0) is a functionϕ : (a, b)→ Rn
such that ϕ(t)|t=0 = x0 and d

dtϕ(t)|t=τ = f(ϕ(τ)) for all τ in some non-empty exten-
ded real interval (a, b) including 0. We will denote solutions to the initial value problem
at time t ∈ (a, b) by ϕt(x0), where x0 is the initial value. The interval (a, b) is known
as the interval of existence of a given solution; in what follows we will always consider
the largest such interval, i.e. the maximal interval of existence.

In general, solutions to initial value problems need not be unique or even exist for
all time t ≥ 0, i.e. the maximal interval of existence need not be of the form (a,∞).
For instance, solutions to simple non-linear systems, such as ẋ = x2, already exhibit
finite time blow-up, i.e. diverge to infinity in finite time. In this paper we will work with
differential equations whose solutions are unique and of sufficient duration to allow us
to prove properties of interest. For simplicity we sometimes assume that solutions exist
for all t ≥ 0. In such cases, refinements of the arguments are needed if the solutions are
of sufficient duration but do not exist for all t ≥ 0. To remove this problem entirely, it is
common (but not necessary) to require the system of ODEs to be Lipschitz continuous.
Under these assumptions, we will refer to the solution ϕ as the flow of the system.

If the solution is available in closed-form, by which we informally understand a
finite expression in terms of polynomials or elementary functions, then one can an-
swer questions pertaining to the temporal behaviour of the system by working with the
closed-form expression. In practice, however, closed-form solutions to non-linear ODEs
are rarely available; even when they are, their form is often much more involved than
the differential equations themselves. For instance, transcendental functions, such as
sin, cos, exp, log, etc., frequently occur in solutions to very simple polynomial ODEs.
This introduces a source of undecidability [32], which further undermines approaches
to formal verification that rely on the knowledge of closed-form solutions.

Rather than working with the solution, it is sometimes possible to prove properties
of interest by working with the differential equations directly 2. This approach has been
applied to formal safety verification (e.g. in [29,27,34]) and verification of progress and
eventuality properties (e.g. see [33,30,26,31]). Direct methods for proving eventuality
properties in ODEs have to date been rather conservative, i.e. they often fail even if
the property is indeed true in a given system. Our interest in this paper is in exploring
a direct verification approach that generalizes those previously reported and is at the
same time less conservative.

2 This idea is at the heart of the qualitative theory of differential equations and has its intellectual
origins in the late nineteenth-century work of Henri Poincaré, published in [28].
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In what follows, we will often write temporal properties as formulas of differential
dynamic logic (dL ) [25], which provides a specification and verification language for
hybrid systems, using hybrid programs [25] as operational models. The logic dL ex-
tends first-order logic with modalities 〈 〉 and [ ] for hybrid programs. We will only be
concerned with hybrid programs that define continuous systems; these are always of the
form ẋ = f(x) & H . To a significant extent, our work will build upon results about
invariant sets, which we discuss next.

2.1 Continuous Invariants

A fundamental property that provides the foundation for reasoning about safety in dy-
namical systems (be they discrete, continuous or hybrid) is that of set invariance. For
continuous dynamical systems, by invariants we understand sets of states that remain
invariant under the flow ϕt(·) for all t ≥ 0. Flow-invariant (or positively invariant) sets
are a very well-established concept in control and dynamical systems (see e.g. [4,3])
and can be used to prove safety properties for flows in a way analogous to program
invariants in discrete programs. Platzer and Clarke in [27] generalized flow-invariant
sets to continuous invariants for verifying safety of continuous systems under evolution
constraints.

Definition 2. A semi-algebraic set I ⊆ Rn is a continuous invariant for ẋ = f(x) &H
if and only if

∀ x ∈ I. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (x) ∈ H)→ (∀ τ ∈ [0, t]. ϕτ (x) ∈ I).

We may write a continuous invariance assertion as a formula in dL as follows:

I → [ẋ = f(x) & H] I.

This formula asserts that if evolution starts anywhere inside I , then by following any
solution (box modality [ ]) to the system ẋ = f(x) & H for any length of time, the
system always remains inside I .

One useful way of thinking about continuous invariants (this will become apparent later)
is as sets that “can only be left by entering ¬H first”.

Liu, Zhan and Zhao in [18] reported necessary and sufficient conditions for check-
ing whether a given semi-algebraic set is a continuous invariant; their conditions are
direct, i.e. do not require explicit knowledge of the solutions, and decidable if the sys-
tem of ODEs is polynomial and H is semi-algebraic. This result leads to a decision
procedure for semi-algebraic continuous invariant assertions, which can be expressed
using dL formulas of the form I → [ẋ = f(x) & H] I . The decision procedure de-
scribed in [18] involves computing a finite number of higher-order Lie derivatives and
exploits the ascending chain condition of Noetherian rings; see [18] for details and
also [12] for related work on algebraic invariants. A Lie derivative of a real-valued dif-
ferentiable function is the directional derivative of that function in the direction of the
vector field induced by the system of ODEs. We denote the first-order Lie derivative
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of a function p : Rn → R with respect to the vector field f : Rn → Rn as Lf (p).
Formally, the first Lie derivative is defined as

Lf (p) ≡
n∑
i=1

∂p

∂xi
fi ≡ ∇p · f.

Higher-order Lie derivatives are defined inductively, i.e. Lkf (p) = Lf (L
k−1
f p) for k > 0

and L0
f (p) = p. Note also that in vector fields generated by ODEs, since fi = ẋi =

dxi

dt ,
we have Lf (p) =

∑n
i=1

∂p
∂xi

dxi

dt = dp
dt , i.e. the Lie derivative gives the total derivative

of p with respect to time t. We will be using Lie derivatives in this capacity in the
following sections.

3 Direct Method for Eventuality Verification

As a first attempt, one may define eventuality for continuous systems as follows:

∀ x0 ∈ X0. ∃ t ≥ 0.
(
ϕt(x0) ∈ XT

)
,

where X0 ⊆ Rn is the set of initial states and XT ⊆ Rn is the target set. As with
invariants, because continuous systems we consider may impose evolution domain con-
straints H ⊆ Rn, the formal definition of eventuality needs an additional clause stip-
ulating that continuous evolutions remain within the constraint until the target set is
attained. Below we give a general definition of eventuality for continuous systems.

Definition 3. Given a system ẋ = f(x) & H , where H ⊆ Rn is the evolution con-
straint, X0 ⊆ H is the set of initial states from which solutions are unique and of
sufficient duration and XT ⊆ Rn is the target set of states that we wish the system to
attain by starting anywhere inside X0, then the eventuality property holds if and only if

∀ x0 ∈ X0. ∃ t ≥ 0.
(
(∀τ ∈ [0, t]. ϕτ (x0) ∈ H) ∧ ϕt(x0) ∈ XT

)
,

By solutions of sufficient duration we understand solutions that may blow up in finite
positive time, but only after reaching XT (finite time blow up in negative time is innoc-
uous for showing eventuality).

We may phrase the eventuality property using a dL formula as follows:

X0 → 〈ẋ = f(x) & H〉 XT .

The above formula asserts that if we start anywhere inside X0, then by following the
solution to the system ẋ = f(x) & H , we eventually (diamond modality 〈 〉) reach a
state which lies inside XT . In using the above formula, we assume that each of the sets
H , X0 and XT is semi-algebraic and is thus characterized by a quantifier-free formula
in the theory of real arithmetic.
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3.1 Staging Sets

We now introduce staging sets, which are a particular kind of continuous invariants that
we use to give an over-approximation of the continuous behaviour in a system with a
view to proving eventuality properties without computing solutions to ODEs.

Figure 1: Staging set (intuitively). Initial set of states X0 is shown in green, the target
set XT in red and possible choice for a staging set S in grey; H is taken to be R2.

Definition 4. Given a system ẋ = f(x) & H , a set of initial states X0 ⊆ H and a
target set of states XT ⊆ Rn, we say that a set S ⊆ Rn is a staging set if we have
S ⊆ H , X0 \XT ⊆ S and

∀ x0 ∈ S. ∀ t ≥ 0. (∀τ ∈ [0, t]. ϕτ (x0) 6∈ XT ∩H) → (∀τ ∈ [0, t]. ϕτ (x0) ∈ S).

One could write this formally using dL as(
X0 ∧ ¬XT → S

)
∧
(
S → [ẋ = f(x) & ¬(XT ∧H)] S

)
∧
(
X0 ∨ S → H

)
.

Intuitively, a staging set is any set within the evolution constraint H that includes the
non-trivial initial states X0 \XT and that “can only be left by entering the target region
XT within the constraint H”, or provides a “continuous exit window into XT within
H”. Fig. 1 illustrates this intuition. Let us remark that staging sets are very natural
because their existence is a necessary pre-requisite for the eventuality property to hold.

Proposition 5. If the eventuality property holds for ẋ = f(x) & H with initial and
target sets X0 ⊆ H,XT ⊆ Rn as before, then there exists a staging set for the system.

Proof. Assuming the eventuality property holds true in the system, we have X0 ⊆ H
and for each x0 ∈ X0 \ XT there exists some t > 0 such that ϕt(x0) ∈ XT and
∀ τ ∈ [0, t]. ϕτ (x0) ∈ H . Now define γ(x0) ≡ {ϕt′(x0) | t′ ∈ [0, t)} to construct a
staging set S ≡

⋃
x0∈X0

γ(x0). ut

Remark 6. The construction in the proof above gives a staging set which may not pos-
sess a closed-form description. In practice, by restricting attention to semi-algebraic
sets, one can decide whether a given candidate set constitutes a staging set for the sys-
tem at hand. Also, note that if S is a staging set, then S′ ≡ S \ XT is also a staging
set.
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Searching for a staging set is in principle no different to searching for a continuous
invariant for safety verification. Methods for continuous invariant generation can there-
fore be applied to search for staging sets. Techniques for continuous invariant genera-
tion are still an active area of research, with complete 3 (albeit intractable) procedures
available to search for semi-algebraic continuous invariants based on enumerating para-
metric semi-algebraic templates and using a decision procedure for continuous invariant
checking described in [18] together with real quantifier elimination [35] (see [9] for a
survey of more recent methods). In practice, certain incomplete invariant generation
methods may offer more scalable alternatives. For instance, sum-of-squares techniques
for computing polynomial sub-level set approximations of the finite-time reachable set
due to Wang, Lall & West [36] are promising in this regard.

3.2 Progress Functions

The existence of a staging set only provides a necessary condition for eventuality. In
this section we will give a sufficient condition that will allow us to soundly conclude
the eventuality property. Because we already require the sets we work with to be semi-
algebraic, we can invoke the following lemma.

Lemma 7. If H, I ⊆ Rn are semi-algebraic and I is a continuous invariant for the
system ẋ = f(x) & H then any solution that starts in I ∩H and subsequently leaves
I either (i) leaves H while still in I or (ii) has a non-empty segment immediately on
leaving I that is wholly contained in Rn \H (i.e. ¬H).

Proof (sketch). Case (i) is obvious and follows from the definition of continuous in-
variants. For case (ii) we need to show that if I and H are left at the same time,
then ¬H is sustained for some non-empty time interval. If there is a time t′ such that
∀ τ ∈ [0, t′). ϕτ (x0) ∈ H ∩ I and ϕt′(x0) 6∈ H ∪ I , then ¬H is sustained for [t′, t′]
immediately upon leaving I . If no such t′ exists, consider a point x1 ∈ I ∩ H from
which the system can no longer evolve inside I without violating the constraint H . It
is necessarily the case that ∀ ε > 0. ∃ t ∈ (0, ε).ϕt(x1) 6∈ H holds, i.e. no further
motion of the system can sustain the constraint. We need to show the stronger property
∃ ε > 0. ∀ t ∈ (0, ε).ϕt(x1) 6∈ H . For any semi-algebraic set, let P ⊂ R[x] be the col-
lection of polynomials appearing in its description. At the point x1 for each pi ∈ P we
have that pi(x1) ∼ 0, where ∼∈ {<,=, >}. For those pi ∈ P such that pi(x1) > 0 or
pi(x1) < 0, there is guaranteed to be an open neighbourhood Ui around x1 for which
pi(Ui) > 0 or pi(Ui) < 0 holds (since polynomials are continuous functions). There-
fore, there is some non-empty time neighbourhood (0, ε) for which the solution will
sustain the strict sign conditions. When pi(x1) = 0, one either has Lkf (pi(x1)) = 0 for
infinitely many orders k, or there exists an k ≥ 1 such that Lkf (pi(x1)) 6= 0. Since poly-
nomials and solutions to polynomial ODEs are analytic functions, there is some open
time neighbourhood (0, ε) where the sign condition on the polynomial pi is sustained
under the solution (see e.g. [18, Proposition 9]). Thus, if a semi-algebraic set cannot be
sustained, then its semi-algebraic complement is sustained for some non-empty open
time interval following the solution. ut

3 In the sense that an appropriate continuous invariant (if it exists) will always be found.
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If one can show that any trajectory starting inside a staging set S eventually leaves S,
one can use Lemma 7 to conclude the eventuality property. An obvious way of showing
S is eventually left without computing the solution to the system of ODEs is to search
for an appropriate function, whose derivative can be used as a measure of “progress in
leaving S”.

Proposition 8. Given a staging set S for some polynomial system ẋ = f(x) &H with
initial and target sets X0 ⊆ H , XT ⊆ Rn respectively and whose solutions are of
sufficient duration, if there exists a continuously differentiable function P : Rn → R
such that

∃ ε > 0. ∀ x ∈ S. Lf (P (x)) ≤ −ε ∧ P (x) ≥ 0,

then, provided the sets are semi-algebraic, the eventuality property holds and P is
known as a progress function for S.

Proof. Fix a start point x0 ∈ X0 \ XT from which we want to argue there is a finite
flow with end point in XT and which is fully contained in H . First we show that there
is a finite flow from x0 with end point outside of S. Assume that the solution with
initial condition x0 is of sufficient duration such that either (i) the trajectory exits S
at some point or (ii) the trajectory is inside S up to and including at least some time
τ > P (x0)/ε. In case (ii), a simple application of the fundamental theorem of calculus
yields

P (ϕτ (x0))− P (ϕ0(x0)) =

∫ τ

0

d

dt
P (ϕt(x0)) dt =

∫ τ

0

Lf (P (ϕt(x0))) dt

≤
∫ τ

0

−ε dt

= −ετ.

Given P (ϕ0(x0)) = P (x0) we have that P (ϕτ (x0)) < 0 which is impossible since
P (x0) ≥ 0 for all x0 ∈ S. Hence case (i) must hold. Using case (i), we now ap-
ply Lemma 3 to the invariance property of the staging set S. We have that either the
trajectory reaches XT ∩ H within S and the eventuality property obviously holds, or,
on exiting S we immediately have a non-empty segment of the trajectory contained in
XT ∩H and the eventuality property holds too. ut

Remark 9. Of course, given some set Ŝ such that S ⊆ Ŝ, where S is a staging set, if
one shows that Ŝ is left in finite time by following the solutions, then one can also con-
clude that XT is eventually attained. This may seem like a complete waste of effort, but
methods developed for verified integration of ODEs [2,22] can compute enclosures of
finite-time reachable sets where the enclosure itself is not a staging set but is guaranteed
to enclose one; in this case, the enclosure can act as Ŝ. Formally verified implementa-
tions of enclosure construction algorithms have been reported by Immler [14,15].

Polynomial progress functions may be generated automatically using pre-defined poly-
nomial templates of bounded degree with parametric coefficients. The templates can be
enumerated (e.g. by successively increasing the polynomial degree) and checked using
a real quantifier elimination procedure (such as e.g. CAD [6]), leaving the parameters
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as free variables. The result is a semi-algebraic constraint on the coefficients that will
yield a progress function. Of course, the computational complexity of real quantifier
elimination [7] makes this approach infeasible and therefore practically uninteresting;
however, theoretically, one has a semi-decision procedure for checking whether a poly-
nomial progress function exists for a given semi-algebraic staging set and a polynomial
ODE. Methods based on sum-of-squares techniques (e.g. [30]) may offer more practical
(albeit incomplete) alternatives for finding progress functions.

4 Proof Rule for Eventuality in ODEs

We are now ready to formalize the proof method for eventuality properties using staging
sets and progress functions, as described in the previous section, into a rule of inference.

Proposition 10. The rule of inference given below (with four premises) is sound with
the proviso that solutions are of sufficient duration.

(SP)

` ∃ ε > 0. ∀ x. S →
(
P ≥ 0 ∧ Lf (P ) ≤ −ε

)
X0,¬XT ` S ` S → [ẋ = f(x) & ¬(H ∧XT )] S X0 ∨ S ` H

` X0 → 〈ẋ = f(x) & H〉 XT
.

Proof. Corollary to Prop. 8. The sufficient duration proviso is soundness-critical (see [26,
Counterexample 9] for an example of why this is important). A stronger requirement,
e.g. Lipschitz continuity of f (if not globally, then within some compact subset of Rn
containing XT and S) may be used to give a formal criterion for ensuring the proviso
holds, but this can be restrictive in practice. ut

Example 11 (System with limit cycle and equilibrium). Consider the system of ODEs
with an equilibrium and a limit cycle

ẋ1 = x2 − x1
(
x21 + x22 − 1

)
, ẋ2 = −x1 − x2

(
x21 + x22 − 1

)
,

with H ≡ x1 ≤ 2 ∧ x1 ≥ −2 ∧ x2 ≤ 2 ∧ x2 ≥ −2 and let the initial set of states and
the target region be as follows:

X0 ≡ x2 > 0 ∧ x1 ≥ −
1

4
∧ x1 ≤

1

4
∧ (x21 + x22 − 1)2 ≤ 1

30
,

XT ≡ x2 < 0 ∧ x1 ≥ −
1

4
∧ x1 ≤

1

4
∧ (x21 + x22 − 1)2 ≤ 1

30
.

Consider also the following sets (depicted in Fig. 2):

S1 ≡ ¬XT ∧ x1 ≥ −
1

4
∧ (x21 + x22 − 1)2 ≤ 1

30
,

S2 ≡ ¬X0 ∧ x1 ≤
1

4
∧ (x21 + x22 − 1)2 ≤ 1

30
.

One may check using a decision procedure that S1 is indeed a staging set for this system.



10 A. Sogokon, P. B. Jackson

x1

x 2

x1

x 2

Figure 2: (left) Initial states X0 (in green), target region XT (in red) and staging sets
S1 (in grey and green, i.e. S1 includes X0) and S2 (dark grey and red, i.e. S2 includes
XT ). (right) Level sets of the progress function P1 for showing eventual exit out of S1

and the region where ∃ ε > 0. Lf (P1) ≤ −ε holds (includes S1; shaded in blue).

A possible progress function for S1 is P1(x) = −
(
x1 − 6

5

)
2 + (x1 − x2 − 2) 2 +

10. Computing the total derivative of P1 (i.e. Lie derivative with respect to the vector
field) we obtain Lf (P1(x)) =

2 (x1 − x2 − 2)
(
x32 + x21x2 − x2 + x1

)
+

2

5
(5x2 + 4)

(
x31 +

(
x22 − 1

)
x1 − x2

)
.

Using a decision procedure for real arithmetic to check that the sentence

∃ ε > 0. ∀ x ∈ S1. Lf (P1(x)) ≤ −ε ∧ P1(x) ≥ 0

is true is sufficient to conclude the eventuality property

X0 → 〈ẋ1 = x2 − x1
(
x21 + x22 − 1

)
, ẋ2 = −x1 − x2

(
x21 + x22 − 1

)
& H〉 XT

using the proof rule SP with S1 as the staging set and P1 acting as the progress function.
Similarly, one may instead take XT to be the initial set of states and X0 to be the target
region. By using S2 as a staging set and taking the progress function

P2(x) = −
(
−x1 −

6

5

)
2 + (−x1 + x2 − 2) 2 + 10

one may use the proof rule SP, instantiating S2 and P2 appropriately, to prove

XT → 〈ẋ1 = x2 − x1
(
x21 + x22 − 1

)
, ẋ2 = −x1 − x2

(
x21 + x22 − 1

)
& H〉 X0.

The proof rule SP can be used as part of a formal verification calculus for hybrid
systems in which liveness properties of hybrid systems are reduced using rules of infer-
ence to proving liveness properties for discrete and continuous sub-components. When
working in a proof calculus, the following proof rule, formalizing the transitivity of the
eventuality relation between sets of states, is often convenient:

(〈〉 Trans) ` X0 → 〈ẋ = f(x) & H〉 T ` T → 〈ẋ = f(x) & H〉 XT

` X0 → 〈ẋ = f(x) & H〉 XT
.
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Let us note also that proving the property of set reachability reduces to proving the ex-
istence of a non-empty set of initial states R ⊆ X0 from which the eventuality property
holds. We may formalize this fact in the following proof rule:

(Reach)
` R ∧X0 6≡R False ` R→ 〈ẋ = f(x) & H〉 XT

` ∃ x ∈ X0. 〈ẋ = f(x) & H〉 XT
.

To show that a given set XT is eventually attained from some initial set X0 in a
hybrid system, one can apply the rule SP to e.g. first show that some guard set within
a mode is attained and then proceed to compute the sets reachable from the guard set
by following the enabled discrete transitions, using these (or their semi-algebraic over-
approximation) as the new initial sets in subsequent applications of SP.

The next section will discuss the relationship between SP and an existing proof
method called differential induction using differential variants [26] that is part of the
logic dL and has been applied to hybrid system liveness verification problems.

5 Non-differentiable Progress Functions

In this section we will use directional differentiability properties of the minmax func-
tional with differentiable arguments [8,10] to broaden the class of progress functions at
our disposal and discuss how this generalizes the definition of total derivative for for-
mulas that was used for differential variants in [26]. We will also show how the proof
rule SP serves to remove certain limitations inherent in differential variants.

5.1 Derivatives of Formulas and Differential Variants

Differential induction using differential variants (and differential invariants) is a direct
proof method introduced by Platzer in [26] for proving eventuality (invariance) proper-
ties in ODEs, as part of a verification calculus for hybrid systems. The method allows
one to work with arbitrary semi-algebraic sets represented by quantifier-free formulas.
In order to work in this general setting, differential induction requires the notion of total
derivative to be lifted to formulas, which is achieved through the use of the derivation
operator D (see [26, Def. 13]); it is given as follows: D(r) = 0 for numbers, D(x) = ẋ
for variables, D(a + b) = D(a) + D(b), where a, b stand for numbers or variables,
D(a · b) = D(a) · b+ a ·D(b) (product rule), D

(
a
b

)
= D(a)·b−a·D(b)

b2 (quotient rule),

D(F ∧G) ≡ D(F ) ∧D(G), for quantifier-free formulas F and G,
D(F ∨G) ≡ D(F ) ∧D(G), ∧ needed for soundness in proving invariance [26]
D(a ≤ b) ≡ D(a) ≤ D(b), accordingly for ≥, >,<,= .

The formula (D(F ) ≥ ε)
f(x)
ẋ is obtained by applying the derivation operator to

formula F , performing a substitution where each ẋi in D(F ) is replaced with the cor-
responding right-hand side in the differential equation and replacing all inequalities
a ≥ b by a ≥ b+ ε (accordingly for <,≤, >; see [26, Section 4.6]).

(DV)
` ∃ ε > 0(¬XT ∧H → (D(XT ) ≥ ε)f(x)ẋ )

[ẋ = f(x) & ∼XT ]H ` 〈ẋ = f(x) & H〉XT
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The formula∼XT is the weak negation ofXT [26, Section 4.6] defined by the negation
of XT in which every strict inequality is made non-strict. Formulas XT provable using
the rule DV 4 are called differential variants. Like our proof rule SP, the rule DV may
be applied under the proviso that solutions are of sufficient duration (see [26, Section
4.7]).

In practice, DV is rather conservative because it is incapable of proving eventu-
ality properties for target regions described by equations [26, Counterexample 7]. In
Example 12 we demonstrate a simple proof of such a property using staging sets and
progress functions.

Example 12 (Target region with equational description). Let the dynamics be given by
the non-linear system ẋ1 = −1, ẋ2 = (x2−x1)2, H = R2 and consider a target region
described an equation XT ≡ x2 − x1 = 0 (see Fig. 3).

x1

x 2

x1

x 2

Figure 3: (left) Target region XT ≡ x2 − x1 = 0 (in red) and any initial set such
that X0 → x2 − x1 < 0 (anywhere below the red line, not shown). (right) Staging set
S ≡ x2− x1 < 0 (in grey) and level sets of the progress function P (x) = −(x2− x1).

Suppose the initial set of states X0 is any subset of {x ∈ R2 | x2 − x1 < 0}.
To show the eventuality property let us take S ≡ x2 − x1 < 0, which can be easily
shown to be a staging set, and use P (x) = −(x2 − x1) as a progress function. The
total derivative of P is given by Lf (P (x)) = − (x2 − x1) 2 − 1, which satisfies the
ε-progress property inside the staging set S. An application of the rule SP proves the
property X0 → 〈ẋ1 = −1, ẋ2 = (x2 − x1)2 & H〉 XT .

In general, finding an appropriate progress function P for use with the rule SP
can be rather non-trivial; however, sometimes the description of the target region itself
may suggest a progress function. Indeed, this is how the rule DV checks the ε-progress
property towards the target region: by considering the total derivative of the formula
giving the target region itself. This is not guaranteed to work even if the eventuality
property is true, but one may think of DV as generating a “progress formula” from the
description of the target region. Because DV relies on the derivation operator D for
its notion of ε-progress for formulas, the resulting conditions are very strong. In what

4 Note that XT is required to define a closed set for the rule DV to be sound.
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follows, we will seek to relax them, while still using the description of the target region
to suggest a progress function that can be used with our proof method.

5.2 Non-differentiable Progress Functions

Given a quantifier-free formula XT characterizing a semi-algebraic set, the weak neg-
ation of its negation, ∼¬XT (∼ defined as for DV), gives a formula characterizing
a closed semi-algebraic set that over-approximates the closure of XT . Note that any
closed semi-algebraic set can always be put into the form

n∨
i=1

m(i)∧
j=1

pij ≤ 0,

where pij are polynomials. The set of states satisfying such a formula can equivalently
be expressed as a sub-level set of a continuous function, i.e.

min
i∈[1,n]

max
j∈[1,m(i)]

pij ≤ 0.

Although this function need not be differentiable, for ensuring the property of ε-progress,
viz. Lf (·) ≤ −ε, we are merely interested in a certain condition on its directional de-
rivative in the direction of the vector field. Directional differentiability properties of the
minmax function have previously been investigated in non-smooth analysis [10,8] and
it was shown that under certain mild assumptions (see [10]), the minmax function has
a directional derivative that can also be expressed as a minmax function. Furthermore,
these assumptions are guaranteed to hold if the ε-progress property is satisfied. The dir-
ectional derivative of minmax (see [10]) in the direction of the vector field f , may be
used to define

Lf ( min
i∈[1,n]

max
j∈[1,m(i)]

pij) = min
i∈I∗

max
j∈J∗

(Lf (pij)) ,

where pij are differentiable real-valued functions and

J∗ = {j∗ ∈ [1,m(i)] | pij∗ = max
j∈[1,m(i)]

(pij)},

I∗ = {i∗ ∈ [1, n] | pi∗j = min
i∈[1,n]

max
j∈[1,m(i)]

(pij)}.

The above definition may at first sight appear rather opaque; the following illustrative
example is useful in exposing some of the intuition.

Example 13. Suppose that we have a formula F ≡ p1 ≤ 0 ∧ p2 ≤ 0. Then we have
F ≡R max(p1, p2) ≤ 0 and the directional derivative along f given by

Lf max(p1, p2) =


Lf (p1) p1 > p2

Lf (p2) p2 > p1

max(Lf (p1),Lf (p2)) p1 = p2
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Intuitively, when there is only one differentiable “active component” (i.e. a function pj
which evaluates to the same value as the whole max function), the directional deriv-
ative is simply given by Lf (pj); however, when there are many, the index set J∗ con-
tains more than one element and the directional derivative is given by maxj∈J∗ Lf (pj)
where all pj are currently active. More generally, once the directional derivative of
minmax pij is computed and an ε-progress condition is imposed, the resulting expres-
sion will feature conditionals involving min, max, ε and pijs and can thus be converted
back into a formula giving precisely the conditions for the ε-progress of the minmax
function. The resulting formulas will often be long and unwieldy, but for this simple
example we can write the condition in full:

Lf max(p1, p2) ≤ −ε ≡
(
p1 > p2 → Lf (p1) ≤ −ε

)
∧
(
p2 > p1 → Lf (p2) ≤ −ε

)
∧
(
p1 = p2 →
(Lf (p1) ≥ Lf (p2)→ Lf (p1) ≤ −ε) ∧
(Lf (p1) < Lf (p2)→ Lf (p2) ≤ −ε)

)
.

Similarly, if one wanted to impose the ε-progress property towards the formula F ≡
p1 ≤ 0 ∨ p2 ≤ 0, encoded as F ≡R min(p1, p2) ≤ 0, one would obtain

Lf min(p1, p2) ≤ −ε ≡
(
p1 < p2 → Lf (p1) ≤ −ε

)
∧
(
p2 < p1 → Lf (p2) ≤ −ε

)
∧
(
p1 = p2 →
(Lf (p1) ≤ Lf (p2)→ Lf (p1) ≤ −ε) ∧
(Lf (p1) > Lf (p2)→ Lf (p2) ≤ −ε)

)
.

By nesting these definitions appropriately, using facts such as e.g. min(p1, p2, p3) =
min(p1,min(p2, p3)), one can arrive at ε-progress conditions for more complicated
closed semi-algebraic sets.

Remark 14. Similar tools and ideas have been employed in sufficient conditions for
positive invariance of certain sets with non-smooth boundaries (e.g. practical sets in [5]
and closed semi-algebraic sets [34]). These approaches are based on Nagumo’s the-
orem [20] and require computing/under-approximating the contingent cone, which can
be defined in terms of limits of directional derivatives. The interested reader is invited
to consult [10] for a more detailed exposition of the technical assumptions used in for-
mulating the directional derivative of minmax.

Example 15 (Non-differentiable progress function). Consider the continuous system
ẋ1 = −x1, ẋ2 = −x2, H = R2 and let the target set of states correspond to a 2 × 2
box centred at the origin, i.e. XT ≡ x1 ≤ 1 ∧ x1 ≥ −1 ∧ x2 ≤ 1 ∧ x2 ≥ −1. From
the phase portrait in Fig. 4 (left) it is clear that the eventuality property is true, i.e. by
starting the system outside the box, we are guaranteed to eventually enter the box by
following the flow.
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x1

x 2

x1

x 2

Figure 4: (left) Phase portrait, target set XT (in red). (right) Level curves of a non-
differentiable progress function (black) and a staging set S ≡ ¬XT (grey).

This property cannot be proved directly using the rule DV because the definition
of the derivation operator for formulas requires one to show that each conjunct is a
differential variant. In this case,

D(XT ) ≥ ε ≡ ẋ1 ≤ ε ∧ ẋ1 ≥ ε ∧ ẋ2 ≤ ε ∧ ẋ2 ≥ ε.

Upon substituting the dynamics, this leads to unsatisfiable conditions (since ε > 0):

(D(XT ) ≥ ε)f(x)ẋ ≡ −x1 ≤ ε ∧ −x1 ≥ ε ∧ −x2 ≤ ε ∧ −x2 ≥ ε ≡R False.

Instead, one may write down the formula for the box as a sub-level set, i.e.

XT ≡ max(x1 − 1,−x1 − 1, x2 − 1,−x2 − 1) ≤ 0

and taking the complement of XT to be the staging set, i.e. S ≡ ¬XT , check that

∃ ε > 0. ∀x ∈ S.
(
max(x1 − 1,−x1 − 1, x2 − 1,−x2 − 1) ≥ 0

∧ Lf max(x1 − 1,−x1 − 1, x2 − 1,−x2 − 1) ≤ −ε
)

is valid, which is sufficient to conclude the eventuality property for any X0 ⊆ S.

6 Related Work

Prajna and Rantzer investigated automatic verification of eventuality properties for
ODEs in [30]; their approach ensures that evolution occurs within the domain constraint
by imposing extra constraints on the function used to demonstrate progress along the
solutions. Furthermore, the ε-progress property is required to hold everywhere outside
the target region. System equilibria lying outside the target region present a problem for
this approach and need to be manually removed from the evolution domain. Ratschan
and She introduced set-Lyapunov functions to study attraction to target regions in [31],
considering only bounded domains and also imposing conditions for ensuring progress
along the solutions everywhere outside the target region, which suffers from the same
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problem. The proof method we have proposed works with a more general class of even-
tuality verification problems (as it makes fewer assumptions about the problem state-
ment and the nature of the system) and can handle systems with equilibria outside the
target region by appropriately over-approximating the reachable set using staging sets.

Our approach is fundamentally different from that used by Platzer in [26], e.g. al-
lowing target regions with equational descriptions (among other things; see Section 5).

Ideas broadly similar to staging sets were explored by Stiver et al. in [33] using
common flow regions. Informally, common flow regions are sets bounded by invariant
manifolds and an “exit boundary”. The conditions given in [33] require the target and
the common flow regions to be given by a conjunction of sub-level sets of smooth func-
tions and the defining polynomials (except the exit boundary) to be conserved quantities
of the system. Conditions for staging sets are more general and less conservative.

Lastly, unlike previous approaches, we completely decouple the progress property
(using progress functions) from conditions for over-approximating the reachable set of
the system (using staging sets).

7 Conclusion

In this paper we have presented a very general proof principle for eventuality properties
of continuous systems governed by polynomial ODEs under semi-algebraic evolution
constraints that works without computing the solutions and can be shown to both extend
and generalize previous approaches in [30,31,26,33]. We have presented a formalization
of our method in a proof rule (SP) which is very well suited for use as part of a formal
verification calculus for hybrid systems.

Our work addressed some important theoretical limitations inherent in available
methods for eventuality verification; however, much future work remains before scal-
able formal verification tools can emerge and be applied in practice to large, indus-
trially relevant verification problems. The two most important practical obstacles are
manifested in the current dearth of scalable methods for continuous invariant (staging
set) generation and limited tool support for searching for progress functions. As we
have discussed, searching for staging sets is no different to generating continuous in-
variants, so improved invariant generation tools developed for safety verification of
continuous systems can be applied to search for staging sets. Automatically generat-
ing progress functions is likewise a difficult problem and would greatly benefit from
improved tools for non-linear optimization. We should note that these problems are
pervasive in direct methods and are not limited to safety and liveness verification. In the
control and dynamical systems community, direct methods for proving the property of
stability [19] are considered standard, but do not provide the means of computing the
stability-proving (Lyapunov) function; this task is delegated to the user and is the focus
of much ongoing work to facilitate their automatic discovery (see e.g. [24]).
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Proceedings of the Physico-Mathematical Society of Japan. vol. 24, pp. 551–559 (May 1942)
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