Skip to main content

Finding the Texture Features Characterizing the Most Homogeneous Texture Segment in the Image

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9094))

Included in the following conference series:

Abstract

We propose an algorithm for finding a set of texture features characterizing the most homogeneous texture area of an input image. The found set of features is intended for extraction of this segment. The algorithm processes any input images in the absence of any preliminary information about the images and, accordingly, without any learning. The essence of the algorithm is as follows. The image is covered with a number of test windows. In each of them, a degree of texture homogeneity is measured. The test window with maximal degree of homogeneity is determined and a representative patch of pixels is detected. The texture features extracted from the detected representative patch is considered as those that best characterize the most homogeneous texture segment. So, the proposed algorithm facilitates solution of the texture segmentation task by providing a segmentation technique with helpful additional information about the analyzed image. A computer program simulating the algorithm has been created. The program is tested on natural grayscale images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  2. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)

    Article  Google Scholar 

  3. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59, 167–181 (2004)

    Article  Google Scholar 

  4. Gao, C., Zhow, D., Guo, Y.: Automatic iterative algorithm for image segmentation using a modified pulse-coupled neural network. Neurocomputing 119, 332–338 (2013)

    Article  Google Scholar 

  5. Bhosle, V.V., Pawar, V.P.: Texture segmentation: different methods. International Journal of Soft Computing and Engineering (IJSCE) 3, 69–74 (2013)

    Google Scholar 

  6. Khan, M.W.: A survey: Image segmentation techniques. International Journal of Future Computer and Communication 3, 89–93 (2014)

    Article  Google Scholar 

  7. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. International Journal of Computer Vision (IJCV) 43, 7–27 (2001)

    Article  MATH  Google Scholar 

  8. Wolf, L., Huang, X., Martin, I., Metaxas, D.: Patch-Based Texture Edges and Segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 481–493. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Caenen, G., Ferrari, V., Zalesny, A., Van Gool, L.: Analyzing the layout of composite textures. In: 2002 International Workshop on Texture Analysis and Synthesis, pp. 15–20 (2002)

    Google Scholar 

  10. Alpert, S., Galun, M., Basri, R., Brandt, A.: Texture segmentation by multiscale aggregation of filter responses and shape elements. In: 2003 IEEE International Conference on Computer Vision (ICCV), pp. 716–723 (2003)

    Google Scholar 

  11. Donoser, M., Bischof, H.: Using covariance matrices for unsupervised texture segmentation. In: 2008 International Conference on Pattern Recognition (ICPR), pp. 1–4 (2008)

    Google Scholar 

  12. Todorovic, S., Ahuja, N.: Texel-based texture segmentation. In: 2009 IEEE International Conference on Computer Vision (ICCV), pp. 841–848 (2009)

    Google Scholar 

  13. Tivive, F.H.C., Bouzerdoum, A.: Texture classification using convolutional neural networks. In: 2006 IEEE Region 10 Conference, pp. 1–4 (2006)

    Google Scholar 

  14. Melendez, J., Puig, D., Garcia, M.A.: Multi-level pixel-based texture classification through efficient prototype selection via normalized cut. Pattern Recognition 43, 4113–4123 (2010)

    Article  MATH  Google Scholar 

  15. Al-Kadi, O.S.: Supervised texture segmentation: a comparative study. In: 2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–5 (2011)

    Google Scholar 

  16. Kussul, E.M., Rachkovskij, D.A., Baidyk, T.N.: On image texture recognition by associative-projective neurocomputer. In: Intelligent Engineering Systems through Artificial Neural Networks Conference (ANNIE), pp. 453–458 (1991)

    Google Scholar 

  17. Kussul, E.M., Baidyk, T.N., Lukovich, V.V., Rachkovskij, D.A.: Adaptive neural network classifier with multifloat input coding. In: 6-th Intern. Conf. on Neural Networks and their Industrial and Cognitive Applications (Neuro-Nimes 1993), pp. 25–29 (1993)

    Google Scholar 

  18. Goltsev, A.: An assembly neural network for texture segmentation. Neural Networks. 9, 643–653 (1996)

    Article  Google Scholar 

  19. Lukovich, V.V., Goltsev, A.D., Rachkovskij, D.A.: Neural network classifiers for micromechanical equipment diagnostics and micromechanical product quality inspection. In: 5-th European Congress on Intelligent Techniques and Soft Computing (EUFIT 1997), vol. 1, pp. 534–536 (1997)

    Google Scholar 

  20. Kussul, E.M., Kasatkina, L.M., Rachkovskij, D.A., Wunsch, D.C.: Application of random threshold neural networks for diagnostics of micro machine tool condition. In: IJCNN 1998, vol. 1, pp. 241–244 (1998)

    Google Scholar 

  21. Goltsev, A.D.: Neural Networks with the Assembly Organization, Naukova Dumka, Kiev, Ukraine, p.. 200 (2005). (in Russian)

    Google Scholar 

  22. Baidyk, T., Kussul, E., Makeyev, O.: Texture recognition with random subspace neural classifier. In: WSEAS International Conference on Systems Science and Engineering, pp. 319–325 (2005)

    Google Scholar 

  23. Makeyev, O., Sazonov, E., Baidyk, T., Martin, A.: Limited receptive area neural classifier for texture recognition of mechanically treated metal surfaces. Neurocomputing 71, 1413–1421 (2008)

    Article  Google Scholar 

  24. Kussul, E.M., Baidyk, T.N., Wunsch, D.C.: Neural Networks and Micro Mechanics, p. 210. Springer (2010). ISBN 978-3-642-02534-1

    Google Scholar 

  25. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: 2003 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 699–704 (2003)

    Google Scholar 

  26. Clausi, D.A., Deng, H.: Design-based texture feature fusion using Gabor filters and co-occurrence probabilities. IEEE Transactions on Image Processing 14, 925–936 (2005)

    Article  Google Scholar 

  27. Wei, H., Bartels, M.: Unsupervised segmentation using Gabor wavelets and statistical features in LIDAR data analysis. In: 2006 International Conference on Pattern Recognition (ICPR 2006), vol. 1, pp. 667–670 (2006)

    Google Scholar 

  28. Yang, A.Y., Wright, J., Ma, Y., Shakar, S.: Sastry, Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding 110, 212–225 (2008)

    Article  Google Scholar 

  29. Comaniciu, D.: An algorithm for data-driven bandwidth selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1–8 (2003)

    Article  Google Scholar 

  30. Mahbubur Rahman, M.: Unsupervised natural image segmentation using mean histogram features. Journal of Multimedia 7, 332–340 (2012)

    Google Scholar 

  31. Rachkovskij, D.A., Misuno, I.S., Slipchenko, S.V.: Vector data transformation using random binary matrices. Cybernetics and Systems Analysis 48, 146–156 (2012)

    Article  MATH  Google Scholar 

  32. Rachkovskij, D.A., Kussul, E.M., Baidyk, T.N.: Building a world model with structure-sensitive sparse binary distributed representations. Biologically Inspired Cognitive Architectures 3, 64–86 (2013)

    Article  Google Scholar 

  33. Gritsenko, V.I., Rachkovskij, D.A., Goltsev, A.D., Lukovych, V.V., Misuno, I.S., Revunova, E.G., Slipchenko, S.V., Sokolov, A.M., Talayev, S.A.: Neural distributed representation for intelligent information technologies and modeling of thinking. Cybernetics and Computer Engineering 173, 7–24 (2013). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Goltsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Goltsev, A., Gritsenko, V., Kussul, E., Baidyk, T. (2015). Finding the Texture Features Characterizing the Most Homogeneous Texture Segment in the Image. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9094. Springer, Cham. https://doi.org/10.1007/978-3-319-19258-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19258-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19257-4

  • Online ISBN: 978-3-319-19258-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics