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Abstract. In this work we will apply some of the Deep Learning models
that are currently obtaining state of the art results in several machine
learning problems to the prediction of wind energy production. In partic-
ular, we will consider both deep, fully connected multilayer perceptrons
with appropriate weight initialization, and also convolutional neural net-
works that can take advantage of the spatial and feature structure of the
numerical weather prediction patterns. We will also explore the effects
of regularization techniques such as dropout or weight decay and con-
sider how to select the final predictive deep models after analyzing their
training evolution.

1 Introduction

Having had a big first impact around 1990, Multilayer Perceptrons (MLPs)
started a mild decline after the second half of that decade. A particularly puz-
zling issue was the difficulty to build efficient MLPs with three or more layers,
in spite of the fact that the backpropagation computation of the gradient of the
MLP error function could be carried out in a rather straightforward fashion. The
reason behind this was the vanishing gradient phenomenon [8] which in turn was
in part a consequence of the inadequacy of weight initialization.

However, this changed radically with the seminal paper by G. Hinton and
R. Salakhutdinov [12] that showed how an unsupervised, stacking scheme based
on Boltzmann machines could yield a good initialization (or pretraining) of the
weights of a many-layered MLP, that could be then efficiently fine-tuned by
backpropagation. Shortly afterwards, Y. Bengio and his coworkers proposed a
similar and somewhat simpler pretraining using stacked autoencoders [4]. This
opened the way to the enormous attention that deep MLPs (i.e., MLPs with
three or more layers) or, in general, deep learning, have received in the past
years.

This attention has in turn resulted in a great simplification of the initial
schemes of Hinton and Bengio and has brought many new procedures and ideas
to the MLP field, such as new initializations, or the replacement of some of the
initial MLP recipes, such as sigmoid activations or weight decay regularization,
by new proposals like rectified linear unit (ReLU) activations [9] or dropout
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regularization [18]. Moreover, the very large datasets and deep MLP parame-
ters often rules out batch learning. This has resulted in a large emphasis on
online learning, usually over minibatches of randomly selected patterns, with
much work being devoted to the choice of learning rates (or how to avoid them)
or momentum methods such as Nesterov’s acceleration. This raises the issue of
when to stop training, something rather straightforward in the batch training of
classical MLPs if an adequate regularization and an efficient optimizer were used.
Furthermore, once the previous ingredients are in place, the need to specialized
(and costly) pretraining is less accute and several initialization methods have
been proposed that result in the training of effective deep models. A good exam-
ple of such a global approach is [19]. Another key ingredient in the successful
applications of deep learning is the use of convolutional layers, that concatenate
a purely convolutional sublayer that processes inputs using localized window
filters, and a pooling sublayer that aggregates the outputs of the previous sub-
layer. Starting with the work of Y. LeCun in the late 1990’s, this processing is
particularly natural when inputs have a spatial structure, as it is the case with
images, and it has led convolutional deep nets to achieve state-of-the-art results
in problems such as MNIST [7] or ImageNet [14].

All these advances have made possible the effective training of very large deep
networks with hundreds of thousands of weights which, in turn, makes impera-
tive the use of software that can take advantage of high performance hardware
endowed with parallelization (i.e., multicore machines) and vectorization (i.e.,
GPU units). Besides, the fast pace of change in the field and the fact that there
is still not an accepted multipurpose architecture makes it quite difficult to work
with self developed code; instead, it is well advised to rely on publicly available
libraries and environments such as the Caffe [13] deep learning framework or the
Pylearn2-Theano libraries [5] [3] [10] that we use here.

In any case, it seems that the bulk of deep learning research concentrates on
computer vision, speech recognition and natural language processing problems.
This is partially natural in view of the broad similarity between deep learning
architectures and the processing hierarchies in the visual cortex [15] (although
deep learning algorithms are quite different from the Spike-Timing-Dependent
Plasticity learning rule most accepted in neurobiology). As such, deep learn-
ing algorithms are increasingly seen as representation learning procedures that
yield at each layer increasingly more abstract representations in such a way that
features in the higher layers capture possibly more powerful data features.

However, the successful exploitation of such a processing may also take place
in simpler regression problems that, nevertheless, have input patterns with a spa-
tial structure. The goal of this work is the prediction of wind energy production.
Spain is among the world leaders in wind energy with a very high penetration
that in some special days and hours can meet a very high percentage of Spain’s
electricity demand. Obviously, this high penetration makes it very important
to provide accurate prediction of wind energy, with standard MLPs (usually at
the farm level) and Support Vector Regression (SVR) (for large scale prediction)
being the models of choice. The inputs for such models are the forecasts provided
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by numerical weather prediction (NWP) systems such as the ECMWF [1] or the
GFS [2]. These predictions are forecasts of several weather variables given at the
points of a rectangular grid that covers the areas under study and that reflects
some underlying orographic model. One may thus view an area wide NWP fore-
casts as a set of feature maps (the individual weather variables) having a spatial
structure (that of the underlying geography) in much the same way that the
RGB channels of an image correspond to feature maps with a two dimensional
structure.

Under the previous scheme, the consideration of convolutional networks to
derive wind energy forecast arises as a natural option and they will be one of the
models considered in this paper. Our main purpose is to develop a methodology
to build models that can provide accurate predictions from the original data
with as little pre-processing and expert knowledge as possible. Given the very
wide range of proposals in the literature, this implies we must make beforehand
concrete choices of network initialization, online training procedure, activation
function and regularization scheme. Of course, on top of this, a more or less
general network architecture also has to be selected.

We will develop the choices we make in the next sections. Besides standard
“small” MLPs and SVR models that we use as reference benchmarks, we will
consider deep MLPs with a standard multilayer structure, general deep convolu-
tional networks (CNNs) and also an adaptation of the well-known LeNet [16], one
of the most successful architectures for character recognition. In all those deep
nets we will use Glorot—Bengio weight initialization [8], ReLUs as activation
functions [9], dropout regularization [18] complemented with standard weight
decay in the final fully-connected layers, random mini-batch gradient descent
over batches of moderate size and conjugate gradient as the training algorithm.
This enables us to work with a fixed, fairly general learning rate, that is no
longer a parameter to explore. Summing things up, our main contributions are:

— We review some of the latest proposals in DNNs and propose general guide-
lines to apply deep MLPs in regression problems.

— We thoroughly explore the application of the two main paradigms in DNNs
to the problem of local and large scale wind energy prediction.

— We introduce a variant of the well known LeNet convolutional neural network
adapted to wind energy prediction and show it to be very competitive with
other DNN architectures or state of the art methods such as Support Vector
Regression.

As mentioned before, we will use Pylearn2 [10]-Theano [3] [5] platform as it
includes a wide variety of already tested neural networks and allows us to explore
several of the latest and most effective proposals for deep network training.
An important advantage of having Theano as the underlying numerical library
is that we can exploit its capabilities for code execution on GPUs, something
crucial given the network sizes and input dimensions we work with. We run our
experiments on a machine equipped with a NVidia Tesla K40 GPU which makes
possible reasonable execution times and, hence, the capability of exploring a
fairly large number of deep model configurations.
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The rest of the paper is organized as follows. In Section 2 we review our
choices for deep network configuration and discuss some of its details. Section 3
contains a succinct description of the framework for wind energy prediction over
NWP inputs, a description of our experimental setup and the prediction results
for both the Sotavento wind farm and the entire wind energy prediction over
peninsular Spain that is overseen by Red Eléctrica de Espana (REE). Finally, in
Section 4 we briefly discuss our results and offer pointers to further work.

2 Deep Neural Networks

We briefly review here some of the key issues when configuring and training
Deep Neural Networks.

2.1 Initialization

There have been several heuristic proposals for weight initialization in “classical”
MLPs. For instance, a common choice is to take them from a uniform distribution

U [—ﬁ, ﬁ}, with M the fan-in of the neuron, i.e., the number of weights

feeding into it. However, it was found experimentally in [8] that in a deep MLP
initialized in such a way, back-propagated gradients were progressively smaller
when moving from the output layer towards the input layer and, in addition, their
variances also decrease. In other words, backpropagating such an initialization
may result in vanishing gradients in the first layers following the input and, thus,
in a network which is insensitive to its inputs and unable to “learn” them.

The more detailed analysis in [17], also oriented to “classical” MLPs and
where properly normalized hyperbolic tangents were used, pursued a goal of
keeping the (linear) activations and (non linear) outputs of a neuron in the
[—1, 1] active range of the (normalized) hyperbolic tangent. Assuming inputs
normalized to zero mean and unit variance component-wise, it is suggested in [17]

to use an uniform distribution U [—\/%, \/i%} . This analysis was extended in [§],

where, assuming again the neuron outputs z; of the i-th layer also to be in the
[-1, 1] active range, initialization should ensure first that Var(z;) ~ Var(z])

across the successive layers and also that Var (g—;i) ~ Var (%Ii)’ where J

denotes the MLP cost function. This translates into the following equations for
the initial weights W;

M;Var(W;) =1; My Var(W;) =1

where M; and M, are the fan-in and fan-out of the units in the i-th layer.

An approximation to both is to take Var(W;) = m, i.e., to initialize the

W; using an uniform distribution U |— V6 , V6 . Note that when
\/Mi+Mi+1 \/Mi+Mi+1

M; = M1, we get back the initialization proposed in [17].
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We will use the initialization in [8] but working with Rectified Linear Unit
(ReLU) activations, discussed next, instead of the hyperbolic tangent ones. While
the rationale in [8] may not apply, the recent analysis in [11] of weight initializa-
tion for ReLU activation suggests to dilate the Glorot—Bengio uniform intervals
by a factor of 1.5, and, in fact, we have observed that this usually yields better
results.

2.2 Activation Function

As mentioned, we have used ReLLUs for all hidden layer activations and linear
units in the output layer. The ReLU transfer function is r(x) = max(0, z), that
is, their response to the opposite of a positive excitatory input is just 0; in partic-
ular, ReLLUs do not have a sign antisymmetry, as is the case with the hyperbolic
tangent. On the other hand, ReLUs share some similarities with the functions
relating neuronal input currents and firing rates that appear in the leaky inte-
grate and fire models used in biological neuron models [9]. Besides, ReLUs induce
sparsity in the representations of the successive layers; for instance, right after
the uniform weight initialization, the outputs of about half the network neurons
should be zero, as they would correspond to negative (inhibitory) inputs. This
may partially explain the fact that ReLUs seem to be less affected than other
activations by poor initializations. In any case, this point deserves further study.

2.3 Regularization

It is obvious that the extremely large number of weights in a deep MLP makes
regularization mandatory to avoid overfitting. The standard regularization tech-
nique in classical MLPs is weight decay applied across all the layers; i.e., the
square norm weight penalty considered for all layer weights is added to the MLP
cost function. It has an obvious place in a last layer with linear outputs, as it
performs ridge regression on the features induced in that last layer by the deep
processing of the inputs.

However, for the other layers we will use dropout [18], that we briefly describe
next. If al denotes the i-th activation of the I-layer and z! the corresponding out-
put, the standard feedforward processing would yield 2! = f(al) = f(wlz!=1+b!),
where f is the activation function. However, with dropout, a 0-1 vector ! is
first generated applying a Bernoulli distribution componentwise. The feedfor-
ward process becomes

2= flah) = f (wi(z' " or) + 0],

where ® denotes the componentwise product. Each element in ! has a probabil-
ity p of being 1, so dropout can be seen as sub-sampling a larger network at each
layer. The output errors are backpropagated as in standard MLPs for gradient
computations and the final optimal weights w* are downscaled as w} = pw™ to
yield the final weights used for testing.
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Dropout clearly induces a regularization of the network’s weights. Moreover, it
is reminiscent to the well known bagging technique for ensembles that repeatedly
subsamples data to build specific models and then takes the average. However, in
dropout all the “models” (i.e., the particular feedforward Bernoulli realizations)
share weights and they are “trained” in a single step. Although we will not use
it, in [18] it is also suggested that network performance improves when dropout
is combined with a bound on the Ls norm of the weights, i.e., when they are con-
strained as ||w||2 < ¢, with ¢ a second tunable parameter on top of the Bernoulli
probability p.

2.4 Convolutional Layers

Standard deep MLP architectures tend to favor layers with a high number of
hidden units. This also leads to a high number of weights, M x M’ if we fully
connect an M unit layer with an M’ one, a number that can become rather large
if, for instance, inputs have a two dimensional structure, as it is the case with
images. Convolutional layers arise in part as a way to avoid this by limiting the
fan—in of a hidden unit to come from a localized subset of units in the previous
layer. Of course, how to define such a restricted fan—in is, in general, problem—
dependent, but when data have an intrinsic spatial structure a natural approach
to localize the connections is to work over small patches.

More precisely, assume inputs or layer outputs to be one channel structured as
an M7 x My matrix, and consider in them K x K submatrix patches. They could
be either disjoint or partially overlapping; we can parameterize this considering
a stride value S that gives the displacement applied when we move horizontally
and vertically from one patch to the next one. Assuming for simplicity a S =1
stride, there are such (M; — K + 1) x (My — K + 1) (overlapping) patches z;.
A first transform is to derive a patch feature p; = f(w * x; + b) where f is
the activation function, * denotes the convolution operator between the K x K
filter w and the patch z; and b is the bias of the filter. This transforms an
M; x M input X into an (M; — K + 1) x (M3 — K + 1) convolutional output
X' and usually a number L of filter pairs (w;,b;) (or of feature maps) have
to be learned. Thus, the number of weights in a convolutional sub—layer is a
rather modest L x K2 but, on the other hand, the output dimension would
be L x (M1 — K +1) x (M3 — K + 1), which for L > K might greatly increase
the number of hidden units in the next layer. To curb this (and avoid a possible
overfitting), a second pooling (or subsampling) sub—layer is applied in which an
operation such as averaging or computing the max is applied on P x P patches of
X'’ to derive the final output X¢ of the convolution—pooling combined process;
Xchasa Lx (My — K —P+2)x (My— K — P+ 2) dimension.

This combined convolution—pooling process is called a convolutional layer; it
allows for a localized processing of the layer’s input using a moderate number of
weights (note that there are no weights in the pooling sub—layer) while arriving at
a number of units in the next layer similar to that of the previous one. Of course,
we stress again that, to be effective, a convolutional layer must act on inputs
that have a spatial structure (such as images) and are naturally distributed in
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feature channels (such as the RGB decomposition). This is also happens in our
case, where weather prediction has an obvious spatial structure in which different
meteorological features (pressure, temperature, wind components, etc.) can be
seen as corresponding to different channels.

3 Experiments

In this section we will apply DNNs to the problem of predicting wind energy
production, first on the Sotavento wind farm and then over peninsular Spain.

3.1 NWP and Production Data

We will work with the following eight meteorological variable forecasts given by
the European Centre for Medium-Range Weather Forecasts (ECMWF) system
for Numerical Weather Prediction (NWP):

— P, the pressure at surface level.

— T, the temperature at 2m.

— V&, the z wind component at surface level.
~ Vy, the y wind component at surface level.
— V, the wind norm at surface level.

— V199 the x wind component at 100m.

- Vyloo, the y wind component at 100m.

— V100 the wind norm at 100m.

In the Sotavento case they are taken on 15 x 9 rectangular grid centered
on the Sotavento site (43.34°N, 7.86°W); input dimension in this case is thus
15 x 9 x 8 = 1,080. For peninsular Spain we consider a 57 x 35 rectangular grid
that covers entirely the Iberian peninsula; input dimension is now a very large
57 x 35 x 8 = 15, 960.

Wind energy data for Sotavento are publicly available; those for peninsular
Spain were kindly provided by Red El?ctrica de Espa?a (REE). In both cases we
normalize them to the [0, 1] interval by dividing actual wind energy production
by the maximum possible value in each case. We will work with data for the years
2011, 2012 and 2013, that we will use as training, validation and test subsets
respectively. Since NWP forecasts are given every three hours, each subset will
approximately have (24/3) % 365 = 2,920 patterns.

3.2 Deep Models

We will consider deep networks with either all their layers being fully connected,
which we call deep MLPs, or with a number of initial convolutional layers fol-
lowed by fully connected ones; we call these models deep convolutional neural
networks, or deep CNNs. As reference models we will work with “standard”
one hidden layer MLPs and also with Support Vector Regression (SVR) models,
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Algorithm 1 Hyper-parameter search

1: procedure HYPER-PARAMETER SEARCH(n,m) > n X m iterations
2: randomly initialize an hyper—parameter vector p

3: pr=p > p*: optimal hyper—parameter vector
4: fori=1,...,ndo

5: for j=1,...,m do

6: k < random value in {1,...,m}

T pr, — random value in {vf,... ,vf\fk}

8: evaluate the p—parameterized model and update p* if needed

9: end for
10: end for

11: return p*

12: end procedure

among the most powerful modelling methods in wind energy prediction. The
number of possible architectures and the many choices available for them would
result in an unmanageable number of model hyperparameters to explore when
looking for the best ones. To limit this, we have first fixed some of them to
reasonable values that give good results in a first coarse model exploration.

A first such choice is that of the deep architectures to be considered. For deep
MLPs we will consider two hidden layers with the same number of units. Our first
choice for deep CNNs, which we call standard deep CNN or sdCNN, will have
an initial convolutional layer followed by two fully connected layers again with
the same number of units. Our second CNN choice, which we call LeNet CNN
or InCNN, will be an adaptation of the well known LeNet—5 architecture [16],
that was specifically designed for the MNIST character recognition problem.

We will use the non-symmetric ReLUs at the hidden layers and, as discussed
before, for network initialization we will apply the Glorot—Bengio heuristic pro-
posed in [8] of using a O-symmetric uniform distribution with a width adjusted
to the layers’ fan-in, scaling then up these initial weights by a factor of 1.5.

The training algorithm we are going to use for all the experiments is conjugate
gradient descent (CGD) over random mini-batches. In other words, over each
new mini—batch we apply CGD starting at the weights derived over the previous
mini-batch; their size clearly affects the performance of the network and we have
used sizes of either 200 or 250, i.e., about 6% and 9% of the training sample size.
Our error measure is the mean absolute error (MAE)

1 N
MAE:N |D(5En7p)_yn|v

n=1

where D(x; P) denotes the value on pattern x of the current deep network D
built using the hyperparameter set P. We use the MAE instead of the more
often used squared error as it is the measure of choice in renewable energy, for
it represents energy deviation and, thus, the energy to be shed or obtained from
other generation sources to compensate errors in wind energy estimates.
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As we shall see in the next subsection, the overall MAE evolution during
training is decreasing but it often presents spikes due to the use of mini-batches,
and this carries on to validation MAE values. In addition, validation MAE seems
to stabilize even while training MAE keeps decreasing. Because of this, our model
selection strategy is to train a deep NN while there is at least a 1% drop in MAE
in the last 100 epochs, with a a maximum of 1,000 epochs (i.e., goes throught
the entire training set). For convolutional networks we will consider each weather
variable to define an input feature map; there are thus 8 such features. The above
choices leave us with the following hyperparameters to be selected:

— For deep MLPs (which we denote by MLP2) we have to decide on the number
(one or two) of hidden layers, the number of hidden units per layer, the weight
decay and dropout coefficients, and mini-batch size.

— For the standard deep CNN (which we denote by CNN) we add to the
previous deep MLP parameters the convolutional filter and pooling sizes,
and their strides.

— For the LeNet CNN (which we denote by LeNet) we also have to decide on
the deep MLP parameters but we simplify the other choices by selecting filter
and pooling sizes and strides as adequately scaled versions to our problem
of the choices made for LeNet—5.

In any case, it is clear that even after the previous simplifications, the number
of hyperparameters is too large for an exhaustive grid search. To alleviate this we
have used a greedy approach in which we fix first the number of fully connected
hidden layers as 2 and then apply Algorithm 1, in which models are evaluated
in terms of the MAE over the validation subset. The algorithm performs n = 50
external iterations on each of which a concrete hyper—parameter vector p is
evaluated. The hyper—parameters considered are the number of hidden units in
fully connected layers, the weight decay multipliers used in them, the dropout
fraction and the minibatch size. On each external iteration m random choices
are made of hyper—parameter indices k and for each a possible updating value
pr, is randomly selected from the list {vf, ... ,vak} of values of the k—th hyper—
parameter to be explored. Both random selections are uniform. Actual tested
values were

— Hidden unit numbers: 50, 100, 150, 200, 250, 300, 350, 400.
— Weight decay multipliers: 0.1, 0.2, 0.3, 0.4, 0.5.

Dropout fractions: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.

— Minibatch size: 50, 100, 150, 200, 250, 300.

For the deep CNNs we fixed the stride to 1 and adjusted filter and pooling
sizes by a limited heuristic search; notice that these sizes imply at least four
more parameters and a fully random search over the entire parameter set is
nearly impossible. The same is true for the number of convolutional feature
maps. The just described hyperparameter search results in the following deep
NN definitions:
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Table 1. Mean Absolute Errors for the Sotavento and REE problems

MAE Sotavento MAE REE
Test Validation Train Test Validation Train

SVR 7.80 6.73 5.62 3.13  3.30 1.01
LeNet 7.63  6.25 5.82 3.13 3.01 2.48
CNN 776 6.26 5.39 3.31 3.05 1.96
MLP2 7.76  6.33 5.86 3.37 296 1.97
MLP1 8.25 6.41 5,51 3.70  3.10 1.81

— Deep MLPs (MLP2) for Sotavento will have two hidden layers of 250 units,
a weight decay coefficient of 0.3 and dropout coefficient of 0.7; mini—batch
size is 200. The REE ones will have the same weight decay and dropout
coefficients, two hidden layers of 300 units and mini-batch size is 250.

— Standard deep CNNs (CNN) for Sotavento will have a first convolutional
layer with 2 x 6 filters and max pooling is performed over 2 x 2 patches.
This layer is followed by two fully connected layers of 200 units, no weight
decay, dropout coefficient of 0.7 and mini—batch size 250. The REE CNN
has the same structure; the first layer has now 3 x 3 filters, max pooling is
done over 3 x 5 patches. This is followed by two fully connected layers of 400
units, weight decay and dropout coefficients are 0.3 and 0.7 respectively and
mini—batch size is 200. We used 16 convolutional feature maps for Sotavento
and 8 for REE.

— The adapted LeNet—5 (LeNet) network for Sotavento has a first convolutional
layer with 2 x 2 filters and max pooling, and a second one with 4 x 2 filters
and 2 x 2 max pooling. They are followed by two fully connected 200 unit
layers, no weight decay, dropout coefficient of 0.7 and mini—batch size 250.
For REE, the LeNet network has a first convolutional layer with 6 x 8 filters,
2 x 2 max pooling, and a second one with 6 x 6 filters and 2 x 2 max pooling.
They are followed by two fully connected 200 unit layers, weight decay and
dropout coefficients of 0.3 and 0.7 respectively, and mini—batch size is 200.
For both problems we used 16 convolutional feature maps in the first layer
and 32 in the second.

3.3 Results

For comparison purposes, we also consider a Gaussian SVR model and a “stan-
dard” one-hidden layer, 10—unit MLP. We have used the very well known LIB-
SVM library [6] and the SVR hyperparameters C,~ and € have been established
by a grid search; their optimal values were C=128.0, v = 3.0518 x 10~° and
e = 0.0625 for Sotavento and C=128.0, v = 12.2078 x 107° and € = 0.01 for
REE. For the standard MLPs we used again Pylearn2-Theano and the opti-
mal parameters were 0.001 weight decay coefficient and 200 mini—batch size in
Sotavento and 0.1 weight decay coefficient and 250 mini—batch size for REE.
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Table 2. Training complexity parameters and times in seconds for the Sotavento (top)
and REE (bottom) deep models

Model #Params. #Iters. Time Time/Iter.

LeNet 140808 426 1175 2.76
CNN 105736 500 705 1.41
MLP2 332750 259 276 1.07
LeNet 224776 949 19494 20.54
CNN 548176 717 6880 9.60
MLP2 4878300 258 1208 4.68

Table 1 gives training, validation and test errors for the optimal models
and the two problems. As it can be seen, the SVR and LeNet—5 models have
a similar in performance in the REE problem, followed by the other two deep
models; the standard MLP is in a distant last place. However, in Sotavento the
LeNet—5 model is clearly the best model while the SVR and the two deep models
essentially tie for second place; again, the standard MLP comes in last place.
We point out that although we follow a straightforward train—validation—test
scheme for model evalution, a more accurate comparison should be made using
an appropriate statistical test such as the well known Wilcoxon Rank Sum test,
that takes into account not only MAE values but also standard deviations. This
requires larger training periods and will be considered in further work.

Figure 1 shows the evolution of the train, test and validation errors for the
optimal CNN and LeNet-5 networks for Sotavento (top) and REE (bottom).
The large error variations are caused by mini—batch training; while at first sight
validation and test error evolution appears smoother for Sotavento, this is par-
tially due to a scale effect (about twice as large for Sotavento than for REE). For
Sotavento the smallest errors seem to have essentially reached stable values; this
is also the case for the validation and test errors in REE although training error
would keep on decreasing, probably because the higher dimensionality of this
problem. In both cases the vertical dotted line indicates the epoch with a lowest
validation error and the horizontal dotted lines indicate the training, validation
and test errors in that epoch. These are the values reported in Table 1.

Finally, in Table 2 we give the give the complexity parameters and training
times in seconds for the deep models used in the Sotavento (top) and REE
(bottom) problems. As it can be seen, all models are rather large, and more
so those used for REE (remember that input dimensions are respectively 1,080
and 15,960). Besides, while the convolutional networks have less parameters
than MLP2, their feedforward passes are much costlier due to the convolution
operations and the same is true for the backpropagation of gradients. We observe
that the smaller number of weights in LeNet for REE is due to the larger filters
used.

It follows that deep training is rather costly and must take advantage of
all possible hardware—based improvements available. In our case experiments
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Fig. 1. Training, validation and test evolution of the optimal CNN and LeNet—5 net-
works for Sotavento (top) and REE (bottom)

have been run on a machine equipped with a NVidia Tesla K40 GPU and the
Pylearn2—Theano framework. Working with Pylearn2 eases somewhat the devel-
opment process, since most of it is written in Python.

There are other platform alternatives with the already mentioned Caffe being
an interesting one, as its core is written in C++ and CUDA, which should result
in a performance improvement. Another important improvement comes from
the NVidia cuDNN library, that inter—operates perfectly with Pylearn2—-Theano
(more than doubling the performance of the previous version) and Caffe.

4 Conclusions

While undeniably very powerful, the optimal architectures and best hyper—
parameters of deep neural networks are also quite hard to set up and select.
However, when properly tuned, they can often produce better results than other
classical models, as we have demonstrated here on two wind energy problems.
The use of weather variables gives to both problems a bi—dimensional input struc-
ture; moreover, these variables can be naturally seen as input channels. This may
suggest a reason why the best deep results were obtained using convolutional
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layers. Deep network training is also very computationally demanding but, on
the other hand, lends itself extremely well to the use of GPUs and the large
speed-ups that they allow.

In any case, the work presented here has to be considered as a first step. A first
line of further work is to consider other convolutional architectures, specially of
the AlexNet type ([14]). Another natural option is to try to reduce variance
by combining several deep models (notice that they have naturally a low bias).
The usual choice in standard MLPs is to repeat training from different random
initializations but given the high validation variability during training, a simpler,
less costly possibility is to select a certain number M of the models with smallest
validation that were obtained in a single training run as the ones followed here.

Furthermore, the tremendous activity in deep learning is producing a large
number of proposals for network initialization and architectures as well as model
training and regularization. We are also pursuing some of these options.
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