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On the Complexity of Various Parameterizations of Common

Induced Subgraph Isomorphism∗

Faisal N. Abu-Khzam† Édouard Bonnet‡ Florian Sikora§

Abstract

In the Maximum Common Induced Subgraph problem (henceforth MCIS), given two
graphs G1 and G2, one looks for a graph with the maximum number of vertices being both
an induced subgraph of G1 and G2. MCIS is among the most studied classical NP-hard
problems. It remains NP-hard on many graph classes including forests. In this paper, we
study the parameterized complexity of MCIS. As a generalization of Clique, it is W[1]-hard
parameterized by the size of the solution. Being NP-hard even on forests, most structural
parameterizations are intractable. One has to go as far as parameterizing by the size of
the minimum vertex cover to get some tractability. Indeed, when parameterized by k :=
vc(G1) + vc(G2) the sum of the vertex cover number of the two input graphs, the problem
was shown to be fixed-parameter tractable, with an algorithm running in time 2O(k log k). We
complement this result by showing that, unless the ETH fails, it cannot be solved in time
2o(k log k). This kind of tight lower bound has been shown for a few problems and parameters
but, to the best of our knowledge, not for the vertex cover number. We also show that
MCIS does not have a polynomial kernel when parameterized by k, unless NP ⊆ coNP/poly.
Finally, we study MCIS and its connected variant MCCIS on some special graph classes and
with respect to other structural parameters.

1 Introduction

A common induced subgraph of two graphs G1 and G2 is a graph that is isomorphic to an
induced subgraph of both graphs. The problem of finding a common induced subgraph with the
maximum number of vertices (or edges) has many applications in a number of domains including
bioinformatics and chemistry [17, 21, 25, 29, 30]. In the decision version of the problem, we are
given an integer k and the question is to decide whether there is a solution with at least k vertices.
We say that the solution size k is the natural parameter of the problem.

Concerning its classical complexity, Maximum Common Induced Subgraph is NP-complete,
and remains so on forests. When the common subgraph is required to be connected, the problem
is in P for trees [16]. Moreover, Maximum Common Induced Subgraph is also in P when the
two input graphs are connected and (both) have bounded treewidth and bounded degree [4].

A particular case of Maximum Common Induced Subgraph is the well known Induced
Subgraph Isomorphism (ISI) decision problem, where the question posed is whether G1 is
isomorphic to an induced subgraph of G2. In other words, it is equivalent to Maximum Common
Induced Subgraph where k = |G1|. In this case, G1 is called the pattern graph and G2 is
called the host graph. ISI is known to be NP-hard, even when G2 is an interval graph and
G1 is a proper interval graph, but it becomes polynomial-time solvable when G1 is in addition
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connected [19]. Unlike Subgraph Isomorphism, Induced Subgraph Isomorphism remains
NP-hard when both the host graph and the pattern graph consist of a disjoint union of paths
[11]. From the parameterized complexity viewpoint, the problem is W[1]-hard in general for
the natural parameter, by a straightforward reduction from k-Clique. Therefore MCIS is also
W[1]-hard. Moreover, ISI (and, therefore, MCIS) remains W[1]-hard even when both graphs are
interval graphs [24]. On the other hand, ISI is FPT on nowhere dense graphs, being expressible
by a first-order formula of length function of the natural parameter k [18]. This generalizes what
was previously known about ISI on H-minor free graphs [15] and graphs of bounded degree [8].
We observe that whenever ISI in FPT on a certain graph class, then so is MCIS. To see this, note
that an arbitrary instance (G1, G2, k) of MCIS can be reduced in fpt-time to instances of ISI by
enumerating each graph H on k vertices and checking whether H is an induced subgraph of G1

and G2. This implies that ISI and MCIS have the same parameterized complexity with respect to
the natural parameter.

Another way of dealing with the hardness of a problem is to study its complexity with respect
to auxiliary (or structural) parameters, to better understand its algorithmic behavior (see for
example [13]). Being NP-hard on disjoint union of chordless paths [11], MCIS is hard on graphs
with bounded treewidth as well as graphs where the size of the minimum feedback vertex set is
bounded. Thus the problem is paraNP-hard when parameterized by the treewidth of the input
graphs, or by a bound on the sizes of their minimum feedback vertex sets. Therefore, we need
to look for “bigger” parameters. And indeed, if the parameter k is a bound on the sizes of the
minimum vertex covers of the input graphs, then the problem is in FPT, with a running time
of O((24k)k) = 2O(k log k) [1]. In this paper, we show that this algorithm cannot be significantly
improved: unless the Exponential Time Hypothesis (ETH) fails, there is no algorithm solving
MCIS in time O∗(2o(k log k)), where the O∗ notation suppresses the polynomial factors. We also
prove that MCIS does not have a polynomial-size kernel in this case unless NP ⊆ coNP/poly.
These two latter results answer open problems raised in [1]. Finally, we show that Maximum
Common Connected Induced Subgraph (MCCIS), where the solution should be a connected
graph, is also fixed-parameter tractable when parameterized by k := vc(G1) + vc(G2).

2 Preliminaries

Two finite graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection π :
V1 → V2 such that ∀u, v ∈ V1 : uv ∈ E1 ⇔ π(u)π(v) ∈ E2. Given a graph G = (V,E), a graph
G′ = (V ′, E′) is an induced subgraph of G if V ′ ⊆ V and E′ = E(V ′) = {uv ∈ E | u, v ∈ V ′}, i.e.
E′ is the edge set with both extremities in V ′. We also say that G′ is the subgraph of G induced
by V ′.

The girth of a graph G is the length of the shortest cycle contained in G. Contracting an edge
uv consists of deleting uv and replacing the vertices u and v by a single vertex w in the incidence
relation (edges incident on u or v become incident on w). A graph H is a minor of graph G if H
is obtained from a subgraph of G by applying zero or more edge contractions. Given a fixed graph
H , a family F of graphs is said to be H-minor free if H is not a minor of any element of F .

The Maximum Common Induced Subgraph problem is defined formally as follows.

Maximum Common Induced Subgraph (MCIS):
• Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2).
• Output: An induced subgraph G′

1 of G1 isomorphic to an induced subgraph G′

2 of G2 with
a maximum number of vertices.

Maximum Common Connected Induced Subgraph (MCCIS) is defined as MCIS with the
additional restriction that the solution must be connected.

For completeness, we also give the definition of Induced Subgraph Isomorphism:
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Induced Subgraph Isomorphism (ISI):
• Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2).
• Output: An induced subgraph G′

2 of G2 isomorphic to G1 if it exists.

Induced Connected Subgraph Isomorphism (ICSI) is defined as ISI but G1 must be
connected.

Parameterized complexity A parameterized problem (I, k) is fixed-parameter tractable (or
in the class FPT) with respect to parameter k if it can be solved in f(k) · |I|c time (i.e. in fpt-
time), where f is any computable function and c is a constant (see [12, 27] for more details about
fixed-parameter tractability). The parameterized complexity hierarchy is composed of the classes
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. The class XP contains problems solvable in time f(k) · |I|g(k),
where f and g are unrestricted functions. A problem is said to be paraNP-hard if it is NP-hard
even for a constant value of the parameter (it hence cannot be in XP). A W[1]-hard problem is
not fixed-parameter tractable, unless FPT = W[1], and one can prove W[1]-hardness by means of
a parameterized reduction from a W[1]-hard problem. This is a mapping of an instance (I, k) of a
problem A1 in g(k) · |I|O(1) time (for any computable function g) into an instance (I ′, k′) for A2

such that (I, k) ∈ A1 ⇔ (I ′, k′) ∈ A2 and k′ ≤ h(k) for some function h.
A powerful technique to design parameterized algorithms is kernelization. In short, kerneliza-

tion is a polynomial-time self-reduction algorithm that takes an instance (I, k) of a parameterized
problem P as input and computes an equivalent instance (I ′, k′) of P such that |I ′| 6 h(k) for
some computable function h and k′ 6 k. The instance (I ′, k′) is called a kernel in this case. If
the function h is polynomial, we say that (I ′, k′) is a polynomial kernel. It is well known that
a problem is in FPT iff it has a kernel, but this equivalence yields super-polynomial kernels (in
general). To design efficient parameterized algorithms, a kernel of polynomial (or even linear) size
in k is important. However, some lower bounds on the size of the kernel can be shown unless some
polynomial hierarchy collapses. To show this result, we will use the cross composition technique
developed by Bodlaender et al. [7].

Definition 1 (Polynomial equivalence relation [7]). An equivalence relation R on Σ∗ is said to be
polynomial if the following two conditions hold: (i) There is an algorithm that given two strings
x, y ∈ Σ∗ decides whether x and y belong to the same equivalence class in time (|x|+ |y|)O(1). (ii)
For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes.

Definition 2 (OR-cross-composition [7]). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ × N be a pa-
rameterized problem. We say that L cross-composes into Q if there is a polynomial equivalence
relation R and an algorithm which, given t strings x1, x2, . . . , xt belonging to the same equivalence
class of R, computes an instance (x∗, k∗) ∈ Σ∗ ×N in time polynomial in

∑t

i=1 |xi| such that: (i)
(x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 6 i 6 t. (ii) k∗ is bounded by a polynomial in maxti=1 |xi|+log t.

Proposition 3 ([7]). Let L ⊆ Σ∗ be a set which is NP-hard under Karp reductions. If L
cross-composes into the parameterized problem Q, then Q has no polynomial kernel unless NP ⊆
coNP/poly.

The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. asserting that
there is no 2o(n)-time algorithm for 3-SAT on instances with n variables [20]. The ETH, together
with the sparsification lemma [20], even implies that there is no 2o(n+m)-time algorithm solving
3-SAT. Many algorithmic lower bounds have been proved under the ETH, see for example [22].

We say that a parameterized problem is fixed-parameter enumerable if all feasible solutions can
be enumerated in O(f(k)|I|c) time, where f is a computable function of the parameter k only,
and c is a constant.
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3 Parameterized Complexity with respect to the natural

parameter

We study the parameterized complexity of Induced Subgraph Isomorphism, Maximum Com-
mon Induced Subgraph, Induced Connected Subgraph Isomorphism, and Maximum
Common Connected Induced Subgraph with respect to the natural parameter. We will in
particular study these problems in graphs of bounded degeneracy, chordal graphs, and graphs of
large girth.

Theorem 4. MCIS, MCCIS, ISI, and ICSI are W[1]-complete.

Proof. Since those problems are W[1]-hard by a straightforward reduction from k-Clique, it
suffices to show membership in W[1]. In [9], it is shown that if a problem can be reduced in FPT
time to simulating a non-deterministic single-taped Turing machine halting in at most f(k) steps,
for some function f , then it is in W[1]. The Turing machine can have an alphabet and a set of
states of size depending on the size of the input of the initial problem. In our case, we can design
a Turing machine that guesses in 2k steps the corresponding right k vertices in G1 (for I(C)SI
this part is not necessary) and the right k vertices in G2 (our alphabet being isomorphic to an
indexing of V (G1)∪V (G2)) and then check in time O(k2) whether the two induced subgraphs are
isomorphic (and that they are connected for ICSI and MCCIS).

In [26] it was shown that Maximum Induced Matching1 is W[1]-hard on bipartite graphs.
This implies that MCIS is W[1]-hard on bipartite graphs. In fact, we show that MCIS remains
W[1]-hard on more restricted graph classes, namely C4-free bipartite graphs with degeneracy 2.
In particular, those graphs have girth at least 6. This result tells us two things about MC(C)IS.
The first is that the fixed-parameter algorithm of Cai et al. [8, Theorem 1] cannot be extended
from bounded degree to bounded degeneracy (note that some W-hard problems on general graphs
become FPT on graphs with bounded degeneracy, such as the W[2]-complete Dominating Set
problem [5]). The second is that short cycles are not making MC(C)IS W[1]-hard; they are W[1]-
hard even without them. In [28], the authors present fixed-parameter algorithms on graphs of girth
5, for some problems which are W-hard on general graphs. MCIS and MCCIS are also resistant
to this approach.

Theorem 5. Induced Subgraph Isomorphism and Induced Connected Subgraph Iso-
morphism are W[1]-complete even when both graphs are C4-free bipartite graphs with degeneracy
at most 2.

Proof. The incidence graph I(G) of any graph G = (V,E), obtained by subdividing each edge of
G once, has degeneracy 2. Indeed, graph I(G) is the bipartite graph (V ⊎ E,F ) where the edges
of F are all the ue for which u ∈ V , e ∈ E, and u is an endpoint of e. All the vertices e ∈ E
of I(G) have degree 2. Therefore, they can be removed first. Then, what is left in I(G) is the
independent set V .

We transform any input G = (V,E), k > 3 of k-Clique, into the instance I(Kk), I(G) of
I(C)SI, where both graphs have degeneracy 2. The problem consists of finding the incidence
graph of a k-clique within the incidence graph of G. We show that it is equivalent to finding a
k-clique in G. Obviously, if there is a k-clique S in G, then the graph I(G)[S∪E(S)] is isomorphic
to I(Kk). Now, let us assume that I(Kk) is isomorphic to an induced subgraph of I(G). We
denote by a1, . . . , ak the vertices of I(Kk) with degree k − 1, and by b1, . . . , b(k

2
) the vertices of

I(Kk) with degree 2. We denote by ψ : V (I(Kk)) → V (I(G)) the isomorphism from graph I(Kk)
to an induced subgraph of I(G). Let ui = ψ(ai) for each i ∈ [k], and vj = ψ(bj) for each j ∈ [

(

k
2

)

].
We set S = {u1, . . . , uk, v1, . . . , v(k

2
)}. For every i ∈ [k], ui ∈ V since the degree of ai in I(Kk) is

k − 1 > 2 (hence, the degree of ui in S is also k − 1 > 2). Now, for every j ∈ [
(

k
2

)

], vj ∈ E since

1where one looks for a largest subset of vertices that induce a disjoint union of edges
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vj has two neighbors in V (recall that I(G) is bipartite). Therefore, u1, . . . , uk are k vertices in V

inducing precisely
(

k
2

)

edges. Hence, {u1, . . . , uk} is a k-clique in G.
Membership in W[1] comes from Theorem 4.

Corollary 6. Maximum Common Induced Subgraph and Maximum Common Connected
Induced Subgraph remain W[1]-complete on bipartite graphs of girth 6 and degeneracy 2.

The absence of triangles and cycles of length four in the input graphs does not make the
problems tractable. We show that the absence of a long induced cycle does not help either (in [6],
the authors show that the W[2]-hard problem Dominator Coloring is in FPT when the input
graph is chordal). More specifically, all four problems are W[1]-hard on chordal graphs. In fact,
we can even show that these problems remain W[1]-hard on a proper subclass of chordal graphs
called split graphs. A split graph is a graph whose vertex set can be partitioned into a set inducing
a clique and an independent set.

Theorem 7. ISI (hence MCIS) and ICSI (hence MCCIS) remain W[1]-hard on split graphs.

Proof. Similarly to the previous construction, we define I ′(G) as the graph (V ⊎E,F ) where the
edges of F are the edges ue for which u ∈ V , e ∈ E, and u is an endpoint of e, plus all the
edges uv with u, v ∈ V . The graph I ′(G) is split: V induces a clique in I ′(G) and E induces an
independent set. From an instance G of k-Clique with k > 3, we build the equivalent instance
I ′(Kk), I

′(G) of MC(C)IS and I(C)SI. The soundness can be obtained in the same way as in the
previous proof.

Let us now say some words about the complexity of the connected version. First we note
that MCIS is NP-hard on forests while MCCIS is solvable in polynomial-time in this case: given
two forests G1 and G2, run the polynomial-time MCIS algorithm of Akutsu on every pair of
trees from G1 and G2 [3]. From the parameterized complexity standpoint, Maximum Common
Connected Induced Subgraph is FPT whenever Induced Subgraph Isomorphism is FPT

since the enumeration of all O(2k
2

) possible induced connected subgraphs can be used as described
in the introduction. The converse is true on classes of graphs which are closed by adding a universal
vertex (i.e., a vertex linked to all the other vertices). An instance (G1, G2, k) of ISI can be reduced
to an equivalent instance (G′

1, G
′

2, k+1) of MCCIS by letting G′

i be the graph obtained by adding
a vertex to Gi that is made adjacent to all other vertices of Gi.

4 Structural parameterization

Let us first recall that tw(G) 6 fvs(G) + 1 6 vc(G) + 1, where tw(G) (resp. fvs(G), vc(G))
represents the treewidth (resp. the feedback vertex set number, the vertex cover number) of
G [14]. As noted before, if the parameter is the combination of tw(G1) and tw(G2) then MCIS is
known to be W[1]-hard. Even more, if the parameter is the combination of fvs(G1) and fvs(G2)
(which is bigger than the combination of the treewidth), then the problem is not even in XP since
Maximum Common Induced Subgraph and Induced Subgraph Isomorphism are NP-hard
on disjoint union of chordless paths, a case where the parameter is equal to 0 [11, 16].

Theorem 8 ([11, 16]). Maximum Common Induced Subgraph is paraNP-hard when param-
eterized by fvs(G1) + fvs(G2) (and hence by tw(G1) + tw(G2)).

One can extend this result to make it valid for the connected version.

Theorem 9. Induced Connected Subgraph Isomorphism, and as a corollary Maximum
Common Connected Induced Subgraph, are paraNP-hard when parameterized by fvs(G1) +
fvs(G2).

Proof. Given an instance of Induced Subgraph Isomorphism on forests G1 and G2 (each with
at least 2 trees), we build an instance of Induced Connected Subgraph Isomorphism by
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adding a universal vertex (connected to every node) in G1 and in G2. Both graph have thus a
feedback vertex set of value one. One can see that these two universal vertices must be matched
together since they are the only ones with sufficiently high degree. Then, there is a solution for
Induced Subgraph Isomorphism iff there is a solution for Induced Connected Subgraph
Isomorphism. The result of course holds for MCCIS, too.

It was shown in [1] that MCIS is in FPT if the parameter is the combination of vc(G1) and
vc(G2). Accordingly, the problem has a kernel, but no polynomial bound is known on its size. We
show that, in this case, the kernel cannot be polynomial unless NP ⊆ coNP/poly.

Theorem 10. Unless NP ⊆ coNP/poly, Maximum Common Induced Subgraph has no poly-
nomial kernel when parameterized by the sum of the sizes of vertex covers in the two input graphs.

Proof. We will define an OR-cross-composition from the NP-complete Clique, problem, where
the given instance is a tuple (Gc, l) and the question is whether the graph Gc contains a clique on
l vertices.

Given t instances, (Gc
1, l1), (G

c
2, l2), . . . , (G

c
t , lt), of Clique, where Gc

i is a graph and li ∈
N, ∀1 6 i 6 t, we define our equivalence relation R such that any strings that are not encod-
ing valid instances are equivalent, and (Gc

i , li), (G
c
j , lj) are equivalent iff |V (Gc

i )| = |V (Gc
j)|, and

li = lj . Hereafter, we assume that V (Gc
i ) = {1, . . . , n} and li = l, for any 1 6 i 6 t. We will

build an instance of Maximum Common Induced Subgraph parameterized by the vertex cover
(G1, G2, l

′, Z) where G1 and G2 are two graphs, l′ ∈ N and Z ⊆ V (G2) is a vertex cover of G2

computed in fpt-time, such that there is a solution of size l′ for Maximum Common Induced
Subgraph iff there is an i, 1 6 i 6 t such that there is a solution of size l in Gc

i . We will now
describe how to build G1 and G2.

To build G2 (see also Figure 1):

• V (G2) = {p, q, r} ∪ {ai | 1 6 i 6 t} ∪ {euv | 1 6 u < v 6 n} ∪ {xi | 1 6 i 6 n},

• E(G2)1 = {pq, pr, qr},

• E(G2)2 = {rai | 1 6 i 6 t},

• E(G2)3 = {aieuv | uv ∈ E(Gc
i )},

• E(G2)4 = {euvxu, euvxv | ∀1 6 u < v 6 n},

• E(G2) = E(G2)1 ∪ E(G2)2 ∪ E(G2)3 ∪E(G2)4.

r

p q

a1 a2 . . . at

e1,2 e1,3 . . . e1,n e2,3 . . . en−1,n

x1 x2 . . . xn

aieuv ∈ E(G2) ⇔ uv ∈ E(Gc
i )

euvvu, euvvv ∈ E(G2), ∀1 6 u < v 6 n

Figure 1: Illustration of the construction of G2.

To build G1 (see also Figure 2):

6



• V (G1) = {p, q, r, a} ∪ {ei | 1 6 i 6
(

l

2

)

} ∪ {xi | 1 6 i 6 l},

• E(G1)1 = {pq, pr, qr, ra},

• E(G1)2 = {aei | 1 6 i 6
(

l

2

)

},

• E(G1)3 = {eixu, eixv | ∀1 6 i 6
(

l

2

)

, ei = uv},

• E(G1) = E(G1)1 ∪ E(G1)2 ∪ E(G1)3.

r

p q

a

e1 e2 . . . e(l2)

x1 x2 . . . xl

eivu, eivv ∈ E(G1), ∀1 6 i 6
(

l
2

)

, ei = uv

Figure 2: Illustration of the construction of G1.

We set l′ = |V (G1)|, and Z = {p, r} ∪ {euv|1 6 u < v 6 n}. It is easy to see that Z is indeed

a vertex cover for G2 and that its size is equal to n(n−1)
2 + 2, which is polynomial in n and hence

in the size of the largest instance. Note that the size of the graph G1 does not depend on t and is
polynomial in n, so the size of its vertex cover is also polynomial in n and independent of t.

Let us show that G1 is an induced subgraph of G2 iff at least one of the Gc
i ’s has a clique of

size l.
(⇐) Suppose that Gc

i has a clique of size l. We denote by S ⊆ V (Gc
i ) a clique of size exactly

l in Gc
i . We show that there is an induced subgraph S′ of G2 of size l′, isomorphic to G1. We

set V (S′) = {p, q, r} ∪ {ai} ∪ {euv | ∀uv ∈ E(S)} ∪ {xu|u ∈ S}. One can easily check that this
subgraph is isomorphic to G1.

(⇒) Assume now that G1 is an induced subgraph of G2. Denote by S′ the subgraph of G2

isomorphic to G1. Note that the only triangle in G2 is pqr. Indeed, T (V (G2) \ {p}) is bipartite.
The triangle pqr in G1 has therefore to match pqr in G2. Moreover, r in G1 has to match r in
G2 since p and q have no edges besides the clique pqr. The vertex a in G1 can only match a
vertex ai for some i ∈ {1, . . . , t}. Then, e1 up to e(l

2
) in G1 has to match

(

l
2

)

vertices in {euv |

1 6 u < v 6 n} of G2 which correspond to actual edges in Gc
i . Finally, x1 up to xl in G1 has

to match l vertices among the xj ’s in G2. Note that the number of edges in E(G1)3 between the

ej ’s and the xj ’s is exactly 2
(

l
2

)

= l(l− 1). More precisely, each ej touches 2 edges in E(G1)3 and

each xj touches l− 1 edges in E(G1)3. In order to get a match in G2, one should find a set of
(

l

2

)

edges inducing exactly l vertices. So, this set of l vertices is a clique in Gc
i .

Note that the parameter of MCIS in the previous reduction is exactly the size of G1 and the
graphs used in the proof are connected. Therefore, we have the following:

Corollary 11. Induced Subgraph Isomorphism and Maximum Common Connected In-
duced Subgraph, parameterized by a bound on the minimum vertex covers of input graphs, do
not have a polynomial-size kernel unless NP ⊆ coNP/poly.

The algorithm of [1] is not single-exponential for parameter sum of the vertex cover numbers.
In fact, we show that a single-exponential algorithm is very unlikely. This is, to the best of our
knowledge, the first result of this type for parameter vertex cover.
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Theorem 12. Under the ETH, IS(C)I cannot be solved in time 2o(k log k) when parameter k is the
sum of the vertex cover number of both graphs.

Proof. We give a reduction from k×k Permutation Clique which linearly preserves the parame-
ter k. It is known that this problem does not admit an algorithm with running time 2o(k log k) unless
the ETH fails [23]. In the k×k Permutation Clique problem, one is given a graph over the set
of vertices [k]×[k] and the goal is to find a clique of size k such that in each row and in each column
exactly one vertex is part of the clique, where a row is the set of vertices {(i, 1), (i, 2), . . . , (i, k)}
for some i ∈ [k], and a column is the set of vertices {(1, j), (2, j), . . . , (k, j)} for some j ∈ [k].

We first describe how the graph G2 is built from any instance G = ([k] × [k], E) of k × k
Permutation Clique. For each row (resp. column) index i ∈ [k], we add two vertices r1i and

r2i (resp. c1i and c2i ) that we link by an edge. For j ∈ [2], we set Rj = {rj1, r
j
2, . . . , r

j
k} (resp.

Cj = {cj1, c
j
2, . . . , c

j
k}) and R = R1 ∪ R2 (resp. C = C1 ∪ C2). Then, to distinguish row indices

from column indices, we add a clique Dr of size 6, and we link one designated vertex r of Dr to
all the vertices in R. We also add a clique D of size 5 with a special vertex v in D such that v is
linked to all the vertices in R1 ∪ C1.

Finally, for each edge e = (i, j)(i′, j′) of G with i 6= i′ and j 6= j′ 2, we add a vertex v(e, 1) that
we link to the four vertices r1i , c

1
j , r

2
i′ , and c

2
j′ , and a vertex v(e, 2) that we link to the four vertices

r2i , c
2
j , r

1
i′ , and c

1
j′ . This ends the construction of G2 (see Figure 3). The pattern G1 depends only

on k and is defined as the graph one obtains following the above construction when G have all the
edges of the form (i, i)(i′, i′) and no other edges (in other words, G has a k-clique on the diagonal
and nothing else).

BothG1 andG2 haveR∪C∪Dr∪D as a vertex cover of size 4k+11. G2 has |E|+4k+11 = O(k4)
vertices and G1 has 2

(

k
2

)

+ 4k + 11 = O(k2) vertices. To avoid confusion about vertices in G1

and G2 we will denote the vertices and sets of vertices of G1 with a tilde. We now show that the
reduction is valid.

Suppose there is a solution {(a1, b1), . . . , (ak, bk)} to the instance of k × k Permutation
Clique. Then, G1 is an induced subgraph of G2 with the following mapping. We map r̃ to r and
ṽ to v. We map D̃r \ {r̃} to Dr \ {r} and D̃ \ {ṽ} to D \ {v} in an arbitrary way. Then, for each
i ∈ [k] and j ∈ [2], we map r̃ji to rjai

and c̃ji to rjbi . We observe that this mapping is one-to-one
since (a1, b1), . . . , (ak, bk) is a permutation clique, i.e., {a1, a2, . . . , ak} = [k] = {b1, b2, . . . , bk}.
Finally, for any j ∈ [2], and any i 6= i′ ∈ [k] we map ṽ(e, j) to v((ai, bi)(ai′ , bi′), j). Note that
vertex v((ai, bi)(ai′ , bi′), j) always exists precisely because {(a1, b1), . . . , (ak, bk)} is a clique.

Conversely, if there is a solution to the IS(C)I instance, we will show that there is a permutation
k-clique in G. There is only one clique of size 6 in G2, so the clique D̃r of size 6 has to be mapped
to Dr. Then, r̃, as the unique vertex of D̃r of degree larger than 5, should be mapped to r. Now,
for the same reasons, D̃ should be mapped to D and ṽ to v. Vertices of R̃1 ∪ C̃1 are the only
2k unmatched vertices having ṽ as a neighbor, so those vertices should be matched to the only
2k unmatched vertices having v as a neighbor, namely R1 ∪ C1. For similar reasons, R̃ should
be mapped to R. Now, R̃2 ∪ C̃2 can only be mapped to R2 ∪ C2 as the only unmatched vertices
having exactly one neighbor in R̃1 ∪ C̃1 (R1 ∪ C1).

Thus, the 4k vertices of R̃∪C̃ can only be mapped to R∪C, such that for j ∈ [2], R̃j is mapped

to Rj and C̃j is mapped to Cj . The edges r̃1i r̃
2
i and r1i r

2
i (resp. c̃1i c̃

2
i and c11c

2
i ) further constrains

the mapping: if r̃1i is mapped to r1i′ then r̃
2
i has to be mapped to r2i′ (resp. if c̃

1
i is mapped to c1i′

then c̃2i has to be mapped to c2i′). Hence, we can see the mapping from R̃ ∪ C̃ to R ∪ C as two

permutations σr and σc on k elements, such that for j ∈ [2], for i ∈ [k], r̃ji is mapped to rj
σr(i)

and

c̃ji is mapped to cj
σc(i)

. Then, the current partial mapping can be extended to a solution only if

{(σr(1), σc(1)), . . . , (σr(k), σc(k))} is a clique in G. Indeed, ∀j ∈ [2], ∀i 6= i′ ∈ [k], ṽ((i, i)(i′, i′), j)
can only be mapped to a potential v((σr(i), σc(i))(σr(i

′), σc(i
′)), j) so that vertex has to exist,

meaning that there should be an edge in G between (σr(i), σc(i)) and (σr(i
′), σc(i

′)).
An algorithm solving IS(C)I in time poly(|G1|, |G2|)2

o(k log k) with k := vc(G1)+ vc(G2) would
therefore translate into an algorithm running in time 2o(k log k) for k × k Permutation Clique

2We ignore the other edges since they are not relevant in finding a permutation clique.
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r11
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r12

r22

r13

r23

r14

r24

R1

R2

R

c11 c21c12 c22c13 c23c14 c24
C1 C2C

v(e1, 1)

v(e1, 2)

v(e2, 1)

v(e2, 2)

Figure 3: The overall construction of G2. We represented only two edges of G: e1 = (2, 1)(3, 2)
and e2 = (3, 1)(4, 3). For the sake of readability, the edges encoding e1 are enhanced to distinguish
them easily from the edges encoding e2.
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and contradict the ETH.

Despite the fact that ISI and MCIS have the same parameterized complexity with respect to
the natural parameter, they exhibit different behaviors when considering structural parameters.
In fact, the latter is paraNP-hard when parameterized by the vertex cover of only one of the two
graphs, whereas ISI is FPT when parameterized by the vertex cover of the second (host) graph.
To see this, note that when the host graph has a vertex cover of size k, the minimum size of
a vertex cover in the pattern graph must be bounded by the parameter k; otherwise we have a
NO-instance. The claim follows from the fixed-parameter tractability of MCIS in this case [1].

Given the negative result of Theorem 9, the next question we pose is whether MCCIS is in FPT

with respect to the size of a minimum vertex cover. In [1], a parameterized algorithm is presented
for MCIS when the parameter is a bound on the minimum vertex cover number of the input graphs.
However, that algorithm cannot help us much for solving MCCIS since it relies on the existence
of a feasible solution of size at least ≈ n − k which consists of mapping the two big independent
sets of the two graphs onto each other. Of course, this is not a feasible solution for MCCIS. In
the following we prove that MCCIS is fixed-parameter tractable w.r.t. k := vc(G1) + vc(G2).

Theorem 13. Maximum Common Connected Induced Subgraph parameterized by k :=
vc(G1) + vc(G2) is fixed-parameter tractable.

Proof. In time O∗(2k) (even O∗(1.2738k) [10]), we can find minimum vertex covers C1 and C2 in
G1 and G2 respectively. Let I(j) be the independent set V (Gj)\Cj for j ∈ {1, 2}. By assumption,
our parameter k is max(C1, C2), so we can enumerate all tripartitions of C1 and C2 in time O∗(9k).
We denote by C1,m, C1,u and C1,i (respectively C2,m, C2,u and C2,i) the three sets of a tripartition
of C1 (respectively C2). For j ∈ {1, 2}, Cj,u corresponds to the vertices of Cj that are not matched,
so they may be deleted. Cj,m comprises the vertices matched to C3−j,m (that is, to the vertex
cover of the other graph), and Cj,i are the vertices matched to I(3−j), the independent set of the
other graph. See Figure 4.

We observe that for j ∈ {1, 2}, I(j) can be partitioned into at most 2k classes of twins:

I
(j)
1 , I

(j)
2 , . . . I

(j)

2k
. A class of twins in this context is a set of vertices with an identical neighborhood

in the vertex cover and there are at most 2k subsets of Cj . Potentially, some classes can be empty:
they correspond to a subset of the vertex cover Cj that is not the (exact) neighborhood of any
vertex in I(j).

At this point, we can enumerate the mappings between C1,m and C2,m in time O∗(kk) and

the mappings between Cj,i and I
(3−j) in time O∗((2k)k) = O∗(2k

2

). Indeed, to match a vertex u

with a vertex v or a twin of v is equivalent. Thus, in time O∗((9k)k2k
2

) we can enumerate all the
solutions of MCIS where only vertices of I(1) could still be matched to vertices of I(2). The optimal
map of the independent sets can be done in polynomial time by matching the greatest number of
vertices in each equivalent twin class (which is the size of the smaller of the two equivalent twin

classes), where a twin class I
(j)
r in I(j) is equivalent to a twin class I

(3−j)
s in I(3−j) if the vertices

of N(I
(j)
r ) \ Cj,u and N(I

(3−j)
s ) \ C3−j,u are in one-to-one correspondence.

To find a solution for MCCIS, the algorithm described in the above proof enumerates all
possible maximal common induced subgraphs in time O∗((9k)k2k

2

). The current bottleneck to
improve it is when we try to match vertices of the vertex cover with vertices of the independent
set. For the not connected version of the problem, a trivial argument can bound the size of
the independent set (if this one is big, there is a trivial solution), which cannot be used for the
connected version. As such, it can be used as an enumeration algorithm for MCIS.

Corollary 14. Maximum Common Induced Subgraph parameterized by k := vc(G1)+vc(G2)
is fixed-parameter enumerable.

Let us finish this section with some general considerations. Note that for ISI, the parameter
vc+ fvs is not the same as fvs+ vc. In the latter, the parameter is a bound on the vertex cover of
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C1

I(1) = G1[V1 \ C1]

C1,u

C1,m

C1,i

G1

I
(1)
1

. . . I
(1)

2k

C2

I(2) = G2[V2 \ C2]

C2,u

C2,m

C2,i

G2

I
(2)
1

. . . I
(2)

2k

Figure 4: Illustration of the proof of Theorem 13. Dashed boxes represent the classes inside the
independent set. Arrows represent the matching between sets of vertices. Sets C1 (resp. C2)
represents a vertex cover for G1 (resp. G2).

G2 (as well as the feedback vertex set of G1) which makes ISI in FPT, while it remains open for
vc+fvs. We also note that ISI is not in XP w.r.t. vc(G1) by a simple reduction from Independent
Set: let G2 be an edgeless graph on k vertices, then its vertex cover number is 0.

We now turn our attention to the case where MCIS is parameterized by a combination of the
natural parameter and some structural parameter. We note that, in general, such parameterization
reduces the problem’s complexity. This is most often due to the fixed-parameter tractability of
MCIS in H-minor free graphs (again, since ISI is FPT in this case [15]). For example, consider the
case where the parameter is the sum of some bound t on the feedback vertex set of the input graphs
and the natural parameter k. The problem is FPT in this case since graphs of t-feedback vertex
set are H-minor free where H is the “fixed” graph consisting of a disjoint union of t+1 triangles.
The same applies to parameterization by treewidth and the natural parameter by considering H
to be the complete graph on t+ 2 vertices, for example.

5 Conclusion

We studied the Maximum Common Induced Subgraph and Maximum Common Connected
Induced Subgraph problems with respect to the solution size on special graph classes such as
forests, bipartite graphs, bounded degree graphs, bounded degeneracy graphs, graphs without
small (length 3 or 4) cycles. The two problems are fixed-parameter tractable on H-minor free
graphs, which include forests, and bounded degree graphs, but they are W[1]-complete on bipartite
graphs of girth 6 and degeneracy 2. This ruled out at the same time two approaches to get fixed-
parameter algorithms on subclasses of graphs for W-hard problems.

We then considered the use of structural parameters, such as a bound on the minimum vertex
covers of the input graphs. Although both MCIS and MCCIS are in FPT in this case, we proved
that no kernel of polynomial bound can be obtained unless NP ⊆ coNP/poly and that they cannot
be solved in time 2o(k log k) under the ETH. We noted that MCIS is not even in XP with respect
to other (smaller) auxiliary parameters, such as treewidth and feedback vertex set. A few open
problems remain to be addressed. For example, is MCIS/MCCIS in FPT when parameterized
by the combination of the vertex cover number and the feedback vertex set number, or by the
vertex cover number and the treewidth? Moreover, it would be interesting to know whether the
algorithm for MCCIS of Theorem 13 can be improved to match the lower bound.
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