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Abstract. Consider a sliding camera that travels back and forth along
an orthogonal line segment s inside an orthogonal polygon P with n
vertices. The camera can see a point p inside P if and only if there
exists a line segment containing p that crosses s at a right angle and
is completely contained in P. In the minimum sliding cameras (MSC)
problem, the objective is to guard P with the minimum number of sliding
cameras. In this paper, we give an O(n®?)-time (7/2)-approximation
algorithm to the MSC problem on any simple orthogonal polygon with n
vertices, answering a question posed by Katz and Morgenstern (2011). To
the best of our knowledge, this is the first constant-factor approximation
algorithm for this problem.

1 Introduction

In the classical art gallery problem, we are given a polygon and the objective is
to cover the polygon with the union of visibility regions of a set of points guards
while minimizing the number of guards. The problem was introduced by Klee
in 1973 [11]. Two years later, Chvatal [2] showed that |n/3] point guards are
always sufficient and sometimes necessary to guard the polygon. Since then, the
problem and its many variants have been studied extensively for different types
of polygons (e.g., orthogonal polygons [12] and polyominoes [1]), different types
of guards (e.g., points and line segments) and different visibility types.
Recently, Katz and Morgenstern [5] introduced a variant of the art gallery
problem in which sliding cameras are used to guard an orthogonal polygon. Let
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P be an orthogonal polygon with n vertices. A sliding camera travels back and
forth along an orthogonal line segment s inside P. The camera can see a point
p € P if the there is a point ¢ € s such that pq is a line segment normal to s
that is completely inside P. In the minimum sliding cameras (MSC) problem,
the objective is to guard P using a the minimum number of sliding cameras.

In this paper, we give an O(n%/?)-time (7/2)-approximation algorithm to the
minimum sliding cameras (MSC) problem on any simple orthogonal polygon. To
do this, we introduce the minimum guarded sliding cameras (MGSC) problem.
In the MGSC problem, the objective is to guard P using a set of minimum
cardinality of guarded sliding cameras. A sliding camera s is guarded by a sliding
camera s’ if every point on s is seen by some point on s’. Note that s and s’
could be perpendicular in which case s’ and s mutually guard each other if and
only if they intersect. If s and s’ mutually guard each other and have the same
orientation (e.g., both are horizontal), then the visibility region of s is identical to
that of s’. Consequently, when minimizing the number of sliding cameras in the
MGSC problem, it suffices to consider solutions in which each horizontal sliding
camera is guarded by a vertical sliding camera and vice-versa. We first establish
a connection between the MGSC problem and a related guarding problem on
grids.

A grid D is a connected union of vertical and horizontal line segments; each
maximal line segment in the grid is called a grid segment. A point guard = in grid
D is a point that sees a point y in the grid if the line segment zy C D. Moreover,
a sliding camera p € D is a point guard that moves along a grid segment s € D.
The camera p can see a point ¢ on the grid if and only if there exists a point
p’ € s such that the line segment p’q C D; that is, point ¢ is seen by camera p
if either ¢ is located on s or g belongs to a grid segment that intersects s. Note
that sliding cameras are called mobile guards in grid guarding problems [6, 7].
A guarded set of point guards and a guarded set of sliding cameras on grids are
defined analogously to a guarded set of sliding cameras in polygons. A simple
grid is defined as follows:

Definition 1 (Kosowski et al. [7]). A grid is simple if (i) the endpoints of
all of its segments lie on the outer face of the planar subdivision induced by the
grid, and (ii) there exists an € > 0 such that every grid segment can be extended
by € in both directions such that its new endpoints are still on the outer face.

Throughout the paper, we denote a simple orthogonal polygon by P; note
that the polygon P is a closed region. The rest of the paper is organized as fol-
lows. Section 2 presents related work. In Section 3, we give our (7/2)-approximation
algorithm to the MSC problem and we conclude the paper in Section 4.

2 Related Work and Definitions

The minimum sliding cameras problem was introduced by Katz and Morgen-
stern [5]. They first considered a restricted version of the problem in which only
vertical cameras are allowed; by reducing the problem to the minimum clique



cover problem on chordal graphs, they solved the problem exactly in polynomial
time. For the generalized case, where both vertical and horizontal cameras are
allowed, they gave a 2-approximation algorithm for the MSC problem under the
assumption that the polygon P is z-monotone. Durocher and Mehrabi [3] showed
that the MSC problem is NP-hard when the polygon P is allowed to have holes.
They also gave an exact algorithm that solves in polynomial time a variant of
the MSC problem in which the objective is to minimize the sum of the lengths
of line segments along which cameras travel.

The guard problem on grids was first formulated by Ntafos [10]. He proved
that a set of (stationary) point guards of minimum cardinality covering a grid of
n grid segments has nm guards, where m is the size of the maximum matching
in the intersection graph of the grid that can be found in O(n®/?) time. Malafi-
jeski and Zylinski [8] showed that the problem of finding a minimum-cardinality
set of guarded point guards for a grid is NP-hard. Katz et al. [4] showed that
the problem of finding a minimum number of sliding cameras covering a grid is
NP-hard. Moreover, Kosowski et al. [6] proved that the problem of finding the
minimum number of guarded sliding cameras covering a grid (we call this prob-
lem the MMGG problem) is NP-hard. Due to these hardness results, Kosowski
et al. [7] studied the MMGG problem on some restricted classes of grids. In
particular, they show the following result on simple grids:

Theorem 1 (Kosowski et al. [7].). There exists an O(n?)-time algorithm
for solving the MMGG problem on simple grids, where n is the number of grid
segments.

Throughout the paper, we denote optimal solutions for the MSC problem
and the MGSC problem on P by OPTp and OP1T¢p, respectively. We denote
the set of reflex vertices of P by V(P) and let H, and V, be the maximum-
length horizontal and vertical line segments, respectively, inside P through a
vertex u € V(P). Let L(P) = {Hy, |u e V(P)}U{Vy, |u e V(P)}. Let L and L’
be two orthogonal line segments (with respect to P not necessarily each other)
inside P; the wisibility region of L is the union of the points in P that are seen
by the sliding camera that travels along L. Moreover, we say that L dominates
L' if the visibility region of L’ is a subset of that of L.

3 A (7/2)-Approximation Algorithm for the MSC
Problem

In this section, we present an O(n®/?)-time (7/2)-approximation algorithm for
the MSC problem.

3.1 Relating the MGSC and MMGG problems

Consider an optimal solution X for the MSC problem and let X’ be the set of
line segments obtained by taking two instances every line segment in X. We
observe that X’ is a feasible solution for the MGSC problem and, therefore, we
have the following observation.



(a) (b) ©)

Fig.1: (a) A simple orthogonal polygon P. (b) Grid Gp with set T of grid
segments shown in red. (c) The set S = {s1, 82} (represented by solid red line
segments) is an optimal solution for the MMGG problem on Gp, but s; and s9
cannot guard P entirely; in particular, the hatched regions of P are not guarded.

Observation 1 An optimal solution for the MGSC problem on P is a 2-approximation
to an optimal solution for the MSC problem on P.

We first consider how to apply a solution for the MGSC problem to the MSC
problem. For the MGSC problem, the idea is to reduce the MGSC problem to the
MMGG problem. Given any simple orthogonal polygon P, we construct a grid
G p associated with P as follows: initially, let Gp be the set of all line segments
in L(P). Now, for any pair of reflex vertices v and v where H, dominates H,
(resp., V,, dominates V) in P, we remove H,, (resp., V) from G p; if two segments
mutually dominate each other, remove one of the two arbitrarily. Let T be the
set of remaining grid segments in Gp. Observe that Gp can be constructed in
O(n?) time, where n is the number of vertices of P. We first show the following
result:

Lemma 1. Grid Gp is a simple and connected grid.

Proof. 1t is straightforward from the construction of Gp that both endpoints of
each grid segment in T lie on the boundary of P; this means that the endpoints
of every grid segment in T lie on the outer face of Gp and, therefore, Gp is
simple. To show that Gp is connected, we first observe that the grid induced
by the line segments in L(P) is connected. We now need to show that the grid
remains connected after removing the set of grid segments that are dominated
by other grid segments. Let s € L(P) be a grid segment that is removed from
L(P) (i.e., s ¢ Tg). It is straightforward to see that the set of grid segments that
are intersected by s are also intersected by s’ € T, where s’ is the grid segment
that dominates s. Therefore, grid Gp is connected. a

The objective is to solve the MMGG problem on Gp exactly and to use
the solution S, the set of guarded grid segments computed, as the solution to
the MGSC problem. However, S is not always a feasible solution to the MGSC



problem since some regions in P might remain unguarded; see Figure 1 for an
example. In the following, we characterize the regions of P that may remain
unguarded by the line segments in S; we call these the critical regions of P.

Consider S and choose any unguarded point p inside P. Let R, be a maximal
axis-aligned rectangle contained in P that covers p and is also not guarded by the
line segments in S. We observe that (i) some line segments in T can guard R,
and that (ii) no such line segments are in S since R, is unguarded. Consider the
maximal regions in P that lie immediately above, below, left, and right of R,; any
sliding camera that sees any part of R, must intersect one of these regions. See
Figure 2(a) for an example; note that the hatched region cannot contain any line
segment in S since R, is unguarded. Moreover, the hatched region must contain
at least one line segment of T in both horizontal and vertical directions and
without loss of generality we can assume that the length of these line segments
is maximal (i.e., both endpoints are on the boundary of P).

The rectangle R, defines a partition of P into three parts: the vertical slab
through R,, (i.e., the slab whose sides are aligned with the vertical sides of R,,),
the subpolygon of P to the left of the vertical slab and the subpolygon of P to
the right of the vertical slab. Similarly, another partition of P can be obtained
by considering the horizontal slab through R,; see Figure 2(b) for an example.
We know that the union of the visibility regions of the line segments in S is
a connected subregion of the plane. Therefore, the set S can only be found on
one side of each of the partitions of P and so S must be in one corner of the
partitioned polygon. Without loss of generality, assume that S is on the bottom
left corner of the partitioned polygon (see Figure 2(b)).

Let S C T be the set of line segments that can see R,. Note that S is non-
empty since H, or V,, sees P entirely where u denotes the nearest reflex vertex
to Ry, in the horizontal or vertical slabs. Therefore, polygon P is partitioned into
three subpolygons (see Figure 2(c)): the lower-left corner that is the location of
S denoted by Pg, the lower-right and upper-left corners that correspond to line
segments in S denoted by Pg, and the upper-right corner of the polygon that
is unguarded denoted by Py. Each line segment in S intersects at least one line
segment in S since the line segments in S are not in S and S is feasible solution
for the MMGG problem (see Figure 2(c)).

Lemma 2. No line segment in T that is orthogonal to a line segment in S can
intersect Py .

Proof. To derive a contradiction, suppose without loss of generality that there
is one such vertical line segment s intersecting Py (as shown in Figure 2(c)).
Since S is connected and is a feasible solution for the MMGG problem, there
must be a line segment in S that guards s. So, S must contain a line segment in
Pg, which is a contradiction. a

By Lemma 2, we conclude that R, is guarded by the line segments in S, but
not by any line segment in S, and, furthermore, S is restricted to a corner as
described above (i.e., the subpolygon Pg). We now show that each of the regions
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Fig. 2: (a) Point p inside the polygon P with rectangle R, hatched in gold. The
purple hatched region indicates the subregion of P covered by growing R, or-
thogonally towards the boundaries of P; the boundary of P is shown in blue.
(b) The horizontal rectangle and the vertical histogram shown in red indicate,
respectively, the horizontal and vertical slabs of the partitions induced by rect-
angle R,. The hatched region of P on the bottom left corner of the partition
indicates the location of the set S. (¢) The partition of P into three subpolygons
Ps, Pg and Py. The line segments in S (i.e., the set of line segments that can
see R,) are shown in red; observe that each line segment in S intersects at least
one line segment in S. The line segment s illustrates Lemma 2 and vertex w is
in support of Lemma 3.

of P that are not guarded by the line segments in S must be a staircase with
the reflex vertices oriented towards S.

To derive a contradiction, suppose that there exists a reflex vertex u (as
shown in Figure 2(c)) in the unguarded subpolygon Py of P. However, no line
segment in T can intersect Py by Lemma 2. This contradicts the existence of
u. Therefore, any unguarded region of P by S must be bounded by the line
segments in L(P)! on adjacent horizontal and vertical sides, and by a staircase
of P on the other sides; we call these regions the critical regions of P, and denote
R¢ to be the set of critical regions of P. We now have the following lemma.

Lemma 3. Ewvery point of P that is not inside a critical region of P is visible to
at least one line segment in S. Moreover, each critical region of P is a staircase.

Let OPT¢ ¢ denote an optimal solution for the MMGG problem on Gp. We
first prove that |OPTgq| < |OPTgp|.

Lemma 4. For any feasible solution M for the MGSC problem on P, there
exists a feasible solution S’ for the MMGG problem on Gp such that |S'| < |M].

Proof. Let M be a feasible solution to the MGSC problem on P; that is, M is a
guarded set of orthogonal line segments inside P that collectively guard P. We

L If the bounding line segment is not in T¢ then a dominating line segment must be
in T. See Figure 4 for an example.



construct a feasible solution S’ for the MMGG problem such that |S’| < |M|. To
compute S, for each horizontal line segment s € M (resp., vertical line segment
s € M), move s up or down (resp., to the left or to the right) until it is collinear
with a line segment s € L(P). If s € T, then add s to S’; otherwise, add s’ to
S’, where s’ € L(P) is the line segment that dominates s. Note that there exists
at least one such line segment s’ because otherwise the line segment s would
have not been removed from L(P). It is straightforward to see that the union
of visibility regions of line segments in M is a subset of the visibility regions
of line segments in S’. Since the camera travelling along each line segment in
M is seen by at least one other camera (see the definition of a guarded set of
sliding cameras) and the grid Gp is entirely contained in P, we conclude that S’
is a feasible solution for the MMGG problem on Gp. The inequality |S’| < | M|
follows from the fact that each line segment in M corresponds to at most one
line segment in S’. This completes the proof of the lemma. O

Next we need to find a set of minimum cardinality of orthogonal line segments
inside P that collectively guard the critical regions of P.

3.2 Guarding Critical Regions: A (3/2)-Approximation Algorithm

In this section, we give an approximation algorithm for the problem of guarding
the critical regions of P. The algorithm relies on reducing the problem to the
minimum edge cover problem in graphs. The minimum edge cover problem in
graphs is solvable in O(n°/2) time, where n is the number of graph vertices [9].
We first need the following result:

Lemma 5. FEvery critical region in Rc is guarded entirely by some orthogonal
line segment in L(P).

Proof. Observe that if P is a rectangle, then the MSC problem is trivial to
solve. Suppose that P is not a rectangle and so it has at least one reflex vertex.
Furthermore, suppose that some regions of P are not guarded by S (the set of
segments returned by solving the MMGG problem on Gp), i.e., the set R of
critical regions of P is non-empty. Let R € R¢ be a critical region of P. The
lemma is implied by the fact that there exists at least one reflex vertex on the
boundary of R; this is because P is not a rectangle and the set of line segments
in S do not guard R. It is now straightforward to see that one of the orthogonal
line segments in L(P) that passes through either the lowest or the highest reflex
vertex of R can see the critical region R entirely. a

Recall R¢, the set of critical regions of P. We construct a graph Hp associ-
ated with P as follows: for each critical region R € R¢c, we add a vertex rgy to
Hp. Two vertices rg and r; are adjacent in Hp if and only if there exists an
orthogonal line segment inside P that can guard both critical regions R and R’
entirely. Finally, we add a self-loop edge for every isolated vertex of Hp.

Lemma 6. Any orthogonal line segment inside P can guard at most two critical
regions of P entirely.
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Fig.3: Any orthogonal line segment inside P can guard at most two critical
regions of P entirely.

Proof. Let s be an orthogonal line segment inside P. Observe that the only way
for s to guard a critical region R entirely is that at least one of its endpoints
lies on the boundary of P, covering one entire edge of R; see Figure 3 for an
example. Therefore, s can guard at most two critical regions of P. a

Lemma 7. The problem of guarding the critical regions of P using only those
line segments that may individually gquard a critical region reduces to the mini-
mum edge cover problem on Hp.

Proof. We prove that (i) for any solution S to the minimum edge cover problem
on Hp, there exists a solution S’ for guarding the critical regions of P such that
|S’] = |S|, and that (ii) for any solution S’ to the problem of guarding the critical
regions of P, there exists a solution S to the minimum edge cover problem on
Hp such that |S| = |5'|.

Part 1. Choose any edge cover S of Hp. We construct a solution S’ for guarding
the critical regions of P as follows. For each edge e = (rg,r}) € S let s. be the
line segment in P that can see both critical regions R and R’ of P; we add s,
to S’. It is straightforward to see that the line segments in S’ collectively guard
all critical regions of P.

Part 2. Choose any solution S’ for guarding the critical regions of P. We now
construct a solution S for the minimum edge cover problem on Hp. By Lemma 6,
we know that every line segment in S’ can see at most two critical regions of P.
First, for each line segment in S’ that can see exactly one critical region R of
P, we add the self-loop edge of Hp that corresponds to R in S. Next, for each
line segment s € S’ that can see two critical regions of P, we add to S’ the edge
in Hp that corresponds to s. Since any line segment in S’ can see at most two
critical regions of P, we conclude that every vertex of Hp is incident to at least
one edge in S and, therefore, S is a feasible solution for the minimum edge cover
problem on Hp. a

In general, it is possible for the solution S’ to be non-optimal. Only those
edges which may individually guard a critical region were considered, while an
optimal guarding solution may use two line segments to collectively guard a
critical region, as shown in Figure 4. By Lemma 5, S’ requires at most one
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Fig.4: An example of a polygon for which two line segments may collectively
guard a critical region. (a) The polygon has unguarded critical regions after find-
ing an optimal MMGG solution. The thick red line segments indicate guarding
lines, light gray line segments are unused, and the shaded regions are unguarded.
(b) A possible solution (solid red line segments) for guarding the critical regions
using the edge guarding approach. (¢) An optimal critical region guarding solu-
tion for the polygon.

edge for each critical region and, therefore, the number of guards returned y our
algorithm is at most equal to the number of critical regions. If an optimal solution
uses two segments to collectively guard one critical region, these two edges suffice
to guard three critical regions, while our solution uses three segments to guard
the same three critical regions. This results in an approximation factor of 3/2 in
the number of segments used to guard the set of critical regions.

We now examine the running time of the algorithm. Let n denote the number
of vertices of P. To compute the critical regions of P, we first compute the set of
staircases of P and, for each of them, we check to see whether they are guarded by
the set of line segments in .S. Each critical region of P can be found in O(n) time



and so the set of unguarded critical regions of P is easily computed in O(n?)
time. Moreover, the graph Hp can be constructed in O(n?) time by checking
whether there is an edge between every pair of vertices of the graph. Therefore,
by Lemma 7 and the fact that the minimum edge cover problem is solvable on
a graph with n vertices in O(n®/?) time, we have the following lemma.

Lemma 8. There exists a (3/2)-approzimation algorithm for solving the prob-
lem of guarding the critical regions of a simple orthogonal polygon P with n
vertices in O(n5/2) time.

Given any simple orthogonal polygon P, we find a set of sliding cameras that
guards P by first solving the instance Gp of the MMGG problem determined by
P. This may leave a set of critical regions within P that remain unguarded. We
then add a second set of sliding cameras to guard these critical regions. Recall
the set S, an optimal solution to the MMGG problem on Gp, found in O(n?)
time, where n is the number of vertices of P. By Lemma 8, we approximate
the problem of guarding the critical regions of P in O(n5/2) time; let S¢ be
the solution returned by the algorithm. Since the union of the critical regions of
P is a subset of P, any feasible solution to the MSC problem also guards the
critical regions of P. Therefore, |S¢| < (3/2) - |OPTp|. Moreover, by Lemma 4
we know |OPTg¢| < |OPTgp| and since |OPTgp| < 2 - |OPTp| we have that
|OPT¢a| < 2-|OPTp|. Therefore, by combining S and S¢ we obtain a feasible
solution to the MSC problem whose cardinality is at most 7/2 times |OPTp];
that is, |[S U S¢| < (7/2) - |OPTp|. This gives the main result:

Theorem 2. There exists an O(n®?)-time (7/2)-approzimation algorithm for
the MSC problem on any simple orthogonal polygon P with n vertices.

As a consequence of our main result, we note that |Sc¢| < (3/2) - |OPTp| <
(3/2) - |OPTgp| and again by Lemma 4 we know |OPTg¢| < |OPTgp|. There-
fore, |SUSc| < (5/2)-|OPTgp|. To show that the set SUS¢ is a feasible solution
for the MGSC problem, we first observe that every line segment in S is guarded
by at least one other line segment in S. Moreover, every grid segment that is
not in S is guarded by some line segment in S because S is a feasible solution
for the MMGG problem. This means that every line segment in S¢ is guarded
by at least one line segment in S. Therefore, we have the following result.

Corollary 1. Given a simple orthogonal polygon P with n vertices, there exists
an O(n®/?)-time (5/2)-approzimation algorithm for the MGSC problem on P.

4 Conclusion

In this paper, we studied a variant of the art gallery problem, introduced by
Katz and Morgenstern [5], where sliding cameras are used to guard an orthog-
onal polygon and the objective is to guard the polygon with minimum number
of sliding cameras. We gave an O(n®/?)-time (7/2)-approximation algorithm to
this problem by deriving a connection between a guarded variant of this problem
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(i.e., the MGSC problem) and the problem of guarding simple grids with sliding
cameras. The complexity of the problem remains open for simple orthogonal
polygons. Giving an a-approximation algorithm, for any o < 7/2, is another
direction for future work. Finally, studying the MGSC problem (the complexity
of the problem or improved approximation results) might be of independent in-
terest.
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