
ar
X

iv
:1

40
6.

55
54

v2
 [

cs
.C

G
]

 2
5

Se
p

20
14

Kinetic Reverse k-Nearest Neighbor Problem ⋆

Zahed Rahmati, Valerie King, and Sue Whitesides

Department of Computer Science, University of Victoria
{rahmati, val, sue}@uvic.ca

Abstract. This paper provides the first solution to the kinetic reverse
k-nearest neighbor (RkNN) problem in R

d, which is defined as follows:
Given a set P of n moving points in arbitrary but fixed dimension d, an
integer k, and a query point q /∈ P at any time t, report all the points
p ∈ P for which q is one of the k-nearest neighbors of p.

Keywords: reverse k-nearest neighbor query, moving points, k-nearest
neighbors, kinetic data structure, continuous monitoring, continuous queries

1 Introduction

The reverse k-nearest neighbor (RkNN) problem is a popular variant of
the k-nearest neighbor (kNN) problem and asks for the influence of a
query point on a point set. Unlike the kNN problem, the exact number of
reverse k-nearest neighbors of a query point is not known in advancem,
but as we prove in this paper the number is upper-bounded by O(k). The
RkNN problem is formally defined as follows: Given a set P of n points
in R

d, an integer k, 1 ≤ k ≤ n− 1, and a query point q /∈ P , find the set
RkNN(q) of all p in P for which q is one of k-nearest neighbors of p. Thus
RkNN(q) = {p ∈ P : |pq| ≤ |ppk|}, where |.| denotes Euclidean distance,
and pk is the kth nearest neighbor of p among the points in P . The kinetic
RkNN problem is to answer RkNN queries on a set P of moving points,
where the trajectory of each point p ∈ P is a function of time. Here,
we assume the trajectories are polynomial functions of maximum degree
bounded by some constant s.

Related work. The reverse k-nearest neighbor problem was first posed
by Korn and Muthukrishnan [13] in the database community, and then
considered extensively in this community due to its many applications,
e.g., decision support systems, profile-based marketing, traffic networks,
business location planning, clustering and outlier detection, and molec-
ular biology. The reverse k-nearest neighbor queries for a set of contin-
uously moving objects has also attracted the attention of the database

⋆ This work was partially supported by a British Columbia Graduate Student
Fellowship and by NSERC discovery grants.

http://arxiv.org/abs/1406.5554v2

community; see [8] and references therein. Examples of moving objects
include players in multi-player game environments, soldiers in a battle-
field, tourists in dangerous environments, and mobile devices in wireless
ad-hoc networks.

To our knowledge, in computational geometry, there exist two data
structures [14,9] that give solutions to the RkNN problem. Both of these
solutions answer RkNN queries for a set P of stationary points and both
only work for k = 1. Maheshwari et al. (2002) [14] gave a data structure to
solve the R1NN problem in R

2. Their data structure creates an arrange-
ment of largest empty circles centered at the points of P and answers
R1NN queries by point location in the arrangement. Their data structure
uses O(n) space and O(n log n) preprocessing time, and an R1NN query
can be answered in time O(log n). Cheong et al. (2011) [9] considered
the R1NN problem in R

d, where d = O(1). Their method, which uses a
compressed quadtree, partitions space into cells such that each cell con-
tains a small number of candidate points. To answer an R1NN query,
their solution finds a cell that contains the query point and then checks
all the points in the cell. Their approach uses O(n) space and O(n log n)
preprocessing time, and can answer an R1NN query in O(log n) time. It
seems that the approach by Cheong et al. can be extended to answer
RkNN queries with preprocessing time O(kn log n), space O(kn), and
query time O(log n+ k).

For a set P of n stationary points, one can report all the 1-nearest
neighbors in time O(n log n) [18], and all the k-nearest neighbors, for any
k ≥ 1, in time O(kn log n) [12], where the neighbors are reported in order
of increasing distance from each point; reporting the unordered set takes
time O(n log n+ kn) [5,10,12].

For a set of moving points, there are three kinetic data structures
(KDS’s) [2,16,17] to maintain all the k-nearest neighbors, but they only
work for k = 1.

Our contribution. For a set P of n continuously moving points in
R
d, where the trajectory of each point is a polynomial function of at

most constant degree s, we provide a simple kinetic approach to answer
RkNN queries on the moving points. In fact, we provide the first solution
to the kinetic RkNN problem for any k ≥ 1 in any fixed dimension d. To
answer an RkNN query for a query point q /∈ P at any time t, we partition
the d-dimensional space into a constant number of cones around q, and
then among the points of P in each cone, we examine the k points having
shortest projections on the cone axis. We obtain O(k) candidate points for
q such that q might be one of their k-nearest neighbors at time t. To check

2

which if any of these candidate points is a reverse k-nearest neighbor of
q, we maintain the kth nearest neighbor pk of each point p ∈ P over time.
By checking whether |pq| ≤ |ppk| we can easily check whether a candidate
point p is one of the reverse k-nearest neighbors of q at time t.

In the preprocessing step, we introduce a method for reporting all
the k-nearest neighbors for all the points p ∈ P in order of increasing
distance from p. For k = Ω(logd−1 n), both our method and the method
of Dickerson and Eppstein [12] give the same complexity, but in our view,
our method is simpler in practice.

In order to answer RkNN queries, our kinetic approach maintains
all the k-nearest neighbors over time. This is the first KDS for mainte-
nance of all the k-nearest neighbors in R

d, for any k ≥ 1. Our KDS uses
O(n logd+1 n+kn) space and O(n logd+1 n+kn log n) preprocessing time,
and processes O(φ(s, n) ∗ n2) events, each in amortized time O(log n).
Here, φ(s, n) is the complexity of the k-level of a set of n partially-defined
polynomial functions, such that each pair of them intersects at most s
times. The current bounds on φ(s, n) are as follows [6,7].

φ(s, n) =

O(n3/2 log n), for s = 2;

O(n5/3poly log n), for s = 3;

O(n31/18poly log n), for s = 4;

O(n161/90−δ), for s = 5, for some constant δ > 0;

O(n2−1/2s−δs), for odd s, for some constant δs > 0;

O(n2−1/2(s−1)−δs), for even s, for some constant δs > 0.

At any time t, an RkNN query can be answered in time O(logd n + k).
Note that if an event occurs at the same time t, we first spend amortized
time O(log n) to update all the k-nearest neighbors, and then we answer
the query.

Outline. Section 2 provides two key lemmas, and in fact introduces a
new supergraph, namely the k-Semi-Yao graph, of the k-nearest neighbor
graph. In Section 3, we show how to report all the k-nearest neighbors.
Section 4 gives a (kinetic) data structure for answering RkNN queries on
moving points, where the trajectory of each point is a bounded-degree
polynomial. Section 5 concludes.

2 Key Lemmas

Partition the plane around the origin o into six wedges, W0, ...,W5, each of
angle π/3 (see Figure 1(a)). Denote by Wl(p) the translation of wedge Wl,

3

p

(a) (b)

W0(p)

x0(p)
o

W0

W1W2

W3

W4
W5

x0
W3(p)

o

x0

f1

f2

u2

u1

π
6

π
3

W0

+

+

+

−

−

−

f
−

2

f
+
2

f
+
1

f
−

1

(c)

Fig. 1: (a) A Partition of the plane into six wedges with common apex at o. (b) A
translation of W0 that moves apex to p. The wedge W0(p) is the reflection through p of
W3(p) and vise-versa. (c) The wedge W0 in R

2 is bounded by f1 and f2. The coordinate
axes u1 and u2 are orthogonal to f1 and f2.

0 ≤ l ≤ 5, such that its apex moves from o to point p (see Figure 1(b)).
Denote by xl (resp. xl(p)) the vector along the bisector ofWl (resp.Wl(p))
directed outward from the apex at o (resp. p). Denote the reflection of
Wl(p) through p by Wl′(p). Note that l′ = (l+3) mod 6; see Figure 1(b).
Consider the ith nearest neighbor pi of p. Denote by L(P ∩ Wl(pi)) the
list of the points in P ∩ Wl(pi), sorted by increasing order of their xl-
coordinates (projections). The following lemma provides a key insight.
The short proof is omitted (see the full version of the paper in Chapter 6
of the first author’s PhD dissertation [15]).

Lemma 1. Let pi be the ith nearest neighbor of p among a set P of points

in R
2, and let Wl(pi) be the wedge of pi that contains p. Then point p is

among the first i points in L(P ∩Wl(pi)).

The k-nearest neighbor graph (k-NNG) of a point set P is constructed by
connecting each point in P to all its k-nearest neighbors. If we connect
each point p ∈ P to the first k points in the sorted list L(P ∩ Wl(p)),
for l = 0, ..., 5, we obtain what we call the k-Semi-Yao graph (k-SYG).
Lemma 1 gives a necessary condition for pi to be the ith nearest neighbor
of p: the point p is among the first i points in L(P ∩Wl(pi)), where l is
such that p ∈ Wl(pi). Therefore, the edge set of the k-SYG covers the
edges of the k-NNG. In summary, we have the following.

Lemma 2. The k-NNG of a set P of points in R
2 is a subgraph of the

k-SYG of the set P .

3 Reporting All k-Nearest Neighbors

Here we give a simple method for reporting all the k-nearest neighbors
via a construction of the k-SYG.

4

Let C be a right circular cone in R
d with opening angle θ with respect

to some given unit vector v. Thus C is the set of points x ∈ R
d such that

the angle between −→ox and −→v is at most θ/2. The angle between any two
rays inside C emanating from the apex o is at most θ. From now on, we
assume θ ≤ π/3.

Now consider a polyhedral cone inscribed in the right circular cone C
where the polyhedral cone is formed by the intersection of d distinct half-
spaces, bounded by f1, ..., fd, passing through the apex of C. Assuming d
is arbitrary but fixed, the d-dimensional space around the origin o can be
tiled by a constant number of polyhedral cones W0, ...,Wc−1 [1,2]. Denote
by Cl the associated right circular cone of the polyhedral cone Wl. Let
xl be the vector in the direction of the symmetry of Cl. Denote by Wl(p)
the translation of the wedge (polyhedral cone) Wl where o moves to p.

A similar approach and analysis as that in Section 2 can be easily
used to state (key) Lemmas 1 and 2 for a set of points in R

d.

To construct the k-SYG efficiently, we need a data structure to per-
form the following operation efficiently: For each p ∈ P and any of its
wedges Wl(p), 0 ≤ l ≤ c − 1, find the first k points in L(P ∩ Wl(p)).
Such an operation can be performed by using range tree data structures.
For each wedge Wl with apex at origin o, we construct an associated
d-dimensional range tree Tl as follows.

Consider a particular wedge Wl with apex at o. The wedge Wl is
the intersection of d half-spaces f+

1 , ..., f+
d bounded by f1, ..., fd (see Fig-

ure 1(c)). Let ûj denote the normal to fj pointing to f+
j . We define d

coordinate axes uj , j = 1, ..., d, through ûj , where ûj gives the respective
directions of increasing uj-coordinate values.

The range tree Tl is a regular d-dimensional range tree based on
the uj-coordinates, j = 1, ..., d. The points at level j are sorted at the
leaves according to their uj-coordinates (for more details about range
trees, see Chapter 5 of [4]). Any d-dimensional range tree, e.g., Tl, uses
O(n logd−1 n) space and can be constructed in time O(n logd−1 n); for any
point r ∈ R

d, the points of P inside the query wedge Wl(r) whose sides
are parallel to fj, j = 1, ..., d, can be reported in time O(logd−1 n + z),
where z is the cardinality of the set P ∩Wl(r) [4].

Now we add a new level to Tl, based on the coordinate xl. Let Cl(p) be
the set of the first k points in L(P ∩Wl(p)). To find Cl(p) in an efficient
time, we use the level d + 1 of Tl, which is constructed as follows: For
each internal node v at level d of Tl, we create a list L(P (v)) sorted by
increasing order of xl-coordinates of the points in P (v). For the set P of n

5

points in R
d, the range tree Tl, which now is a (d+ 1)-dimensional range

tree, uses O(n logd n) space and can be constructed in time O(n logd n).

The following lemma establishes the processing time for obtaining a
Cl(p). The short proof is omitted (see the full version of the paper).

Lemma 3. Given Tl, the set Cl(p) can be found in time O(logd n+ k).

By Lemma 3, we can efficiently find all the Cl(p), for all the points p ∈ P .
This gives the following lemma.

Lemma 4. Using a data structure of size O(n logd n), the edges of the

k-SYG of a set of n points in fixed dimension d can be reported in time

O(n logd n+ kn).

Next, suppose we are given the k-SYG and we want to report all the
k-nearest neighbors. Let Ep be the set of edges incident to the point p in
the k-SYG. By sorting these edges in non-decreasing order according to
their Euclidean lengths, which can be done in time O(|Ep| log |Ep|), we
can find the k-nearest neighbors of p ordered by increasing distance from
p. Since the number of edges in the k-SYG is O(kn) and each edge pp′

belongs to exactly two sets Ep and Ep′ , the time to find all the k-nearest
neighbors, for all the points p ∈ P , is

∑

pO(|Ep| log |Ep|) = O(kn log n).

From the above discussion and Lemmas 2 and 4, the following results.

Theorem 1. For a set of n points in fixed dimension d, our data struc-

ture can report all the k-nearest neighbors, in order of increasing distance

from each point, in time O(n logd n + kn log n). The data structure uses

O(n logd n+ kn) space.

4 RkNN Queries on Moving Points

We are given a set P of n continuously moving points, where the trajectory
of each point in P is a polynomial function of bounded degree s. To answer
RkNN queries on the moving points, we must keep a valid range tree and
track all the k-nearest neighbors during the motion. This section first
shows how to maintain a (ranked-based) range tree, and then provides a
KDS for maintenance of the k-SYG, which in fact gives a supergraph of
the k-NNG over time. Using the kinetic k-SYG, we can easily maintain
all the k-nearest neighbors over time. Finally we show how to answer
RkNN queries on the moving points.

6

Kinetic RBRT. Let uj , 1 ≤ j ≤ d, be the coordinate axis orthogonal to
the half-space fj of the wedge Wl, 0 ≤ l ≤ c− 1 (see Figure 1(c)). Abam
and de Berg [1] introduced a variant of the range tree, namely the ranked-
based range tree (RBRT), which has the following properties. Denote by
Tl the RBRT corresponding to the wedge Wl.

– Tl can be described as a set of pairs Ψl = {(B1, R1), ..., (Bm, Rm)}
such that:
• For any two points p and q in P where q ∈ Wl(p), there is a unique

pair (Bi, Ri) ∈ Ψl such that p ∈ Bi and q ∈ Ri.
• For any pair (Bi, Ri) ∈ Ψl, if p ∈ Bi and q ∈ Ri, then q ∈ Wl(p)

and p ∈ Wl′(q); here Wl′(q) is the reflection of Wl(q) through q.
The Ψl is called a cone separated pair decomposition (CSPD) for P
with respect to Wl. Each pair (Bi, Ri) is generated from an internal
node v at level d of the RBRT Tl.

– Each point p ∈ P is in O(logd n) pairs of (Bi, Ri), which means that
the number of elements of all the pairs (Ri, Bi) is O(n logd n).

– For any point p ∈ P , all the sets Bi (resp. Ri) where p ∈ Bi (resp.
p ∈ Ri) can be found in time O(logd n).

– The set P ∩Wl(p) is the union of O(logd n) sets Ri, where p ∈ Bi.
– When the points are moving, Tl remains unchanged as long as the

order of the points along axes uj, 1 ≤ j ≤ d, remains unchanged.
– When a u-swap event occurs, meaning that two points exchange their

uj-order, the RBRT Tl can be updated in worst-case time O(logd n)
without rebalancing operations.

4.1 Kinetic k-SYG

Here we give a KDS for the k-SYG, for any k ≥ 1, extending [16].
To maintain the k-SYG, we must track the set Cl(p) for each point

p ∈ P . So, for each 1 ≤ i ≤ m, we need to maintain a sorted list L(Ri)
of the points in Ri in ascending order according to their xl-coordinates
over time. Note that each set Ri is some P (v), the set of points at the
leaves of the subtree rooted at some internal node v at level d of Tl. To
maintain these sorted lists L(Ri), we add a new level to the RBRT Tl;
the points at the new level are sorted at the leaves in ascending order
according to their xl-coordinates. Therefore, in the modified RBRT Tl,
in addition to the u-swap events, we handle new events, called x-swap
events, when two points exchange their xl-order. The modified RBRT Tl
behaves like a (d + 1)-dimensional RBRT. From the last property of an
RBRT above, when a u-swap event or an x-swap event occurs, the RBRT
Tl can be updated in worst-case time O(logd+1 n).

7

Denote by p̈l,k the kth point in L(P ∩Wl(p)). To track the sets Cl(p),
for all the points p ∈ P , we need to maintain the following over time.

– A set of d+1 kinetic sorted lists Lj(P), j = 1, ..., d, and the Ll(P) of
the point set P . We use these kinetic sorted lists to track the order of
the points in the coordinates uj and xl, respectively.

– For each Bi, a sorted list L(B′

i) of the points in B′

i, where B′

i =
{(p, p̈l,k)| p ∈ Bi}. The order of the points in L(B′

i) is according to a
label of the second points p̈l,k. This sorted list L(B′

i) is used to answer
the following query efficiently: Given a query point q and a Bi, find
all the points p ∈ Bi such that p̈l,k = q.

– The kth point ri,k in the sorted list L(Ri). We track the values ri,k in
order to make necessary changes to the k-SYG when an x-swap event
occurs.

Handling u-swap events. W.l.o.g., let q ∈ Wl(p) before the event. When
a u-swap event between p and q occurs, the point q moves outside the
wedge Wl(p); after the event, q /∈ Wl(p). Note that the changes that occur
in the k-SYG are the deletions and insertions of the edges incident to p
inside the wedge Wl(p).

Whenever two points p and q exchange their uj-order, we do the
following updates.

– We update the kinetic sorted list Lj(P). Each swap event in a kinetic
sorted list can be handled in time O(log n).

– We update the RBRT Tl and if a point is deleted or inserted into a
Bi, we update the sorted list L(B′

i). Since each insertion/deletion to
L(B′

i) takes O(log n) time, and since each point is in O(logd n) sets
Bi, this takes O(logd+1 n) time.

– We update the values of ri,k. After updating the RBRT Tl, point q
might be inserted or deleted from some Ri and change the values of
ri,k. So, for all Ri where q ∈ Ri, before and after the event, we do
the following. We check whether the xl-coordinate of q is less than
or equal to the xl-coordinate of ri,k; if so, we take the successor or
predecessor point of ri,k in L(Ri) as the new value for ri,k. This takes
O(logd+1 n) time.

– We query to find C(p). By Lemma 3, this takes O(logd n+ k) time.
– If we get a new value for p̈l,k, we update all the sorted lists L(B′

i) such
that p ∈ Bi. This takes O(logd+1 n) time.

Considering the complexity of each step above, and assuming the trajec-
tory of each point is a bounded degree polynomial, the following results.

8

Lemma 5. Our KDS for maintenance of the k-SYG handles O(n2) u-
swap events, each in worst-case time O(logd+1 n+ k).

Handling x-swap events. When an x-swap event between two consecutive
points p and q with p preceding q occurs, it does not change the elements
of the pairs (Bi, Ri) of the CSPD Ψl. Such an event changes the k-SYG
if both p and q are in the same Wl(w), for some w ∈ P , and wl,k = p.

We apply the following updates to our KDS when two points p and q
exchange their xl-order.

1. We update the kinetic sorted list Ll(P); this takes O(log n) time.

2. We update the RBRT Tl, which takes O(logd+1 n) time.

3. We find all the sets Ri where both p and q belong to Ri and such
that ri,k = p. Also, we find all the sets Ri where ri,k = q. This takes
O(logd n) time.

4. For each Ri, we extract all the pairs (w, ẅl,k) from the sorted lists
L(B′

i) such that ẅl,k = p. Note that each change to the pair (w, ẅl,k)
is a change to the k-SYG.

5. For each w, we update all the sorted lists L(B′

i) where (w, ẅl,k) ∈ B′

i:
we replace the previous value of ẅl,k, which is p, by the new value q.

Denote by χk the number of exact changes to the k-SYG of a set of mov-
ing points over time. For each found Ri, the fourth step takes O(log n+ξi)
time, where ξi is the number of pairs (w, ẅl,k) such that ẅl,k = p. For all
these O(logd n) sets Ri, this step takes O(logd+1 n +

∑

i ξi) time, where
∑

i ξi is the number of exact changes to the k-SYG when an x-swap event
occurs. Therefore, for all the O(n2) x-swap events, the total processing
time for this step is O(n2 logd+1 n+ χk).

The processing time for the fifth step is a function of χk. For each
change to the k-SYG, this step spends O(logd+1 n) time to update the
sorted lists L(B′

i). Therefore, the total processing time for all the x-swap
events in this step is O(χk ∗ log

d+1 n).

From the above discussion and an upper bound for χk in Lemma 6,
Lemma 7 results. The proof of Lemma 6 is omitted (see the full version
of the paper).

Lemma 6. The number of changes to the k-SYG of a set of n moving

points, where the trajectory of each point is a polynomial function of at

most constant degree s, is χk = O(φ(s, n) ∗ n).

Lemma 7. Our KDS for maintenance of the k-SYG handles O(n2) x-
swap events with a total cost of O(φ(s, n) ∗ n logd+1 n).

9

From Lemmas 5 and 7, the following theorem results.

Theorem 2. For a set of n moving points in R
d, where the trajectory

of each point is a polynomial function of at most constant degree s, our
k-SYG KDS uses O(n logd+1 n) space and handles O(n2) events with a

total cost of O(kn2 + φ(s, n) ∗ n logd+1 n).

4.2 Kinetic All k-Nearest Neighbors

Given a KDS for maintenance of the k-SYG (from Theorem 2), a super-
graph of the k-NNG, this section shows how to maintain all the k-nearest
neighbors over time. For maintenance of the k-nearest neighbors of each
point p ∈ P , we only need to track the order of the edges incident to
p in the k-SYG according to their Euclidean lengths. This can easily be
done by using a kinetic sorted list. The following theorem summarizes
the complexity of our kinetic approach. The proof is omitted (see the full
version of the paper).

Theorem 3. For a set of n moving points in R
d, where the trajectory

of each point is a polynomial of at most constant degree s, our KDS for

maintenance of all the k-nearest neighbors, ordered by distance from each

point, uses O(n logd+1 n+ kn) space and O(n logd+1 n+ kn log n) prepro-
cessing time. Our KDS handles O(φ(s, n) ∗ n2) events, each in O(log n)
amortized time.

4.3 RkNN Queries

Suppose we are given a query point q /∈ P at some time t. To find the
reverse k-nearest neighbors of q, we seek the points in P ∩Wl(q) and find
Cl(q), the set of the first k points in L(P ∩Wl(q)). The set ∪lCl(q) contains
O(k) candidate points for q such that q might be one of their k-nearest
neighbors. In time O(logd n) we can find a set of Ri where P ∩Wl(q) =
∑

iRi. From Lemma 3, and since we have sorted lists L(Ri) at level d+1
of Tl, the O(k) candidate points for the query point q can be found in
worst-case time O(logd n + k). Now we check whether these candidate
points are the reverse k-nearest neighbors of the query point q at time t
or not; this can be easily done by application of Theorem 3, which in fact
maintain the kth nearest neighbor pk of each p ∈ P . Therefore, checking
a candidate point can be done in O(1) time by comparing distance |pq|
to distance |ppk|. This implies that checking which elements of Cl(q), for
l = 0, ..., c− 1, are reverse k-nearest neighbors of the query point q takes
time O(k).

10

If a query arrives at a time t that is simultaneous with the time when
one of the O(φ(s, n) ∗ n2) events occurs, our KDS first spends amortized
time O(log n) to handle the event, and then spends time O(logd n+ k) to
answer the query. Thus we have the following.

Theorem 4. Consider a set P of n moving points in R
d, where the tra-

jectory of each one is a bounded-degree polynomial. The number of re-

verse k-nearest neighbors for a query point q /∈ P is O(k). Our KDS uses

O(n logd+1 n+kn) space, O(n logd+1 n+kn log n) preprocessing time, and

handles O(φ(s, n) ∗n2) events. At any time t, an RkNN query can be an-

swered in time O(logd n+k). If an event occurs at time t, the KDS spends

amortized time O(log n) on updating itself.

5 Discussion

In the kinetic setting, where the trajectories of the points are polynomi-
als of bounded degree, to answer the RkNN queries over time we have
provided a KDS for maintenance of all the k-nearest neighbors. Our KDS
is the first KDS for maintenance of all the k-nearest neighbors in R

d, for
any k ≥ 1. It processes O(φ(s, n) ∗ n2) events, each in amortized time
O(log n). An open problem is to design a KDS for all k-nearest neighbors
that processes less than O(φ(s, n) ∗ n2) events.

Arya et al. [3] have a kd-tree implementation to approximate the near-
est neighbors of a query point that is in use by practitioners [11] who have
found challenging to implement the theoretical algorithms [5,10,12,18].
Since to report all the k-nearest neighbors ordered by distance from each
point our method uses multidimensional range trees, which can be easily
implemented, we believe our method may be useful in practice.

Acknowledgments. We thank Timothy M. Chan for his helpful com-
ments and suggestions.

References

1. Abam, M.A., de Berg, M.: Kinetic spanners in R
d. Discrete & Computational

Geometry 45(4), 723–736 (2011)
2. Agarwal, P.K., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for

closest pair and all nearest neighbors. ACM Transactions on Algorithms 5, 4:1–37
(2008)

3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. Journal
of the ACM 45(6), 891–923 (1998)

11

4. Berg, M.d., Cheong, O., Kreveld, M.v., Overmars, M.: Computational Geometry:
Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd
edn. (2008)

5. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of
the ACM 42(1), 67–90 (1995)

6. Chan, T.M.: On levels in arrangements of curves, ii: A simple inequality and its
consequences. Discrete & Computational Geometry 34(1), 11–24 (2005)

7. Chan, T.M.: On levels in arrangements of curves, iii: further improvements. In:
Proceedings of the 24th annual Symposium on Computational Geometry (SoCG
’08). pp. 85–93. ACM, New York, NY, USA (2008)

8. Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest
neighbors queries in euclidean space and in spatial networks. The VLDB Journal
21(1), 69–95 (2012)

9. Cheong, O., Vigneron, A., Yon, J.: Reverse nearest neighbor queries in fixed dimen-
sion. International Journal of Computational Geometry and Applications 21(02),
179–188 (2011)

10. Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: Proceed-
ings of the 24th Annual Symposium on Foundations of Computer Science (FOCS
’83). pp. 226–232. IEEE Computer Society, Washington, DC, USA (1983)

11. Connor, M., Kumar, P.: Fast construction of k-nearest neighbor graphs for point
clouds. IEEE Transactions on Visualization and Computer Graphics 16(4), 599–
608 (2010)

12. Dickerson, M.T., Eppstein, D.: Algorithms for proximity problems in higher dimen-
sions. International Journal of Computational Geometry and Applications 5(5),
277–291 (1996)

13. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’00). pp. 201–212. ACM, New York, NY, USA
(2000)

14. Maheshwari, A., Vahrenhold, J., Zeh, N.: On reverse nearest neighbor queries. In:
Proceedings of the 14th Canadian Conference on Computational Geometry (CCCG
’02). pp. 128–132 (2002)

15. Rahmati, Z.: Simple, Faster Kinetic Data Structures. Ph.D. thesis, University of
Victoria (2014), http://zahedrahmati.com

16. Rahmati, Z., Abam, M.A., King, V., Whitesides, S.: Kinetic data structures for
the Semi-Yao graph and all nearest neighbors in R

d. In: Proceedings of the 26th
Canadian Conference on Computational Geometry (CCCG ’14) (2014)

17. Rahmati, Z., King, V., Whitesides, S.: Kinetic data structures for all nearest neigh-
bors and closest pair in the plane. In: Proceedings of the 29th Symposium on
Computational Geometry (SoCG ’13). pp. 137–144. ACM, New York, NY, USA
(2013)

18. Vaidya, P.M.: An O(n log n) algorithm for the all-nearest-neighbors problem. Dis-
crete & Computational Geometry 4(2), 101–115 (1989)

12

http://zahedrahmati.com

	Kinetic Reverse k-Nearest Neighbor Problem
	1 Introduction
	2 Key Lemmas
	3 Reporting All k-Nearest Neighbors
	4 RkNN Queries on Moving Points
	4.1 Kinetic k-SYG
	4.2 Kinetic All k-Nearest Neighbors
	4.3 RkNN Queries

	5 Discussion

