
ar
X

iv
:1

41
1.

68
52

v1
 [

cs
.D

S]
 2

5
N

ov
 2

01
4

Efficiently listing bounded length st-paths⋆

Romeo Rizzi1, Gustavo Sacomoto2,3, and Marie-France Sagot2,3

1 Dipartimento di Informatica, Università di Verona, Italy
2 Université de Lyon, F-69000 Lyon; Université Lyon 1; CNRS, UMR5558,

Laboratoire de Biométrie et Biologie Évolutive, F-69622 Villeurbanne, France
3 INRIA Grenoble Rhône-Alpes, France

Abstract. The problem of listing the K shortest simple (loopless) st-
paths in a graph has been studied since the early 1960s. For a non-
negatively weighted graph with n vertices and m edges, the most effi-
cient solution is an O(K(mn+n2 log n)) algorithm for directed graphs by
Yen and Lawler [Management Science, 1971 and 1972], and an O(K(m+
n log n)) algorithm for the undirected version by Katoh et al. [Networks,
1982], both using O(Kn + m) space. In this work, we consider a dif-
ferent parameterization for this problem: instead of bounding the num-
ber of st-paths output, we bound their length. For the bounded length
parameterization, we propose new non-trivial algorithms matching the
time complexity of the classic algorithms but using only O(m+n) space.
Moreover, we provide a unified framework such that the solutions to both
parameterizations – the classic K-shortest and the new length-bounded
paths – can be seen as two different traversals of a same tree, a Dijkstra-
like and a DFS-like traversal, respectively.

1 Introduction

The K-shortest simple paths problem has been studied for more than 50 years
(see the references in [6]). The first efficient algorithm for this problem in directed
graphs with non-negative weights only appeared 10 years later independently by
Yen [18] and Lawler [12]. Given a non-negatively weighted directed graph G =
(V,E) with n = |V | vertices andm = |E| edges, using modern data structures [1],
their algorithm lists the K distinct shortest simple st-paths by non-decreasing
order of the their lengths in O(K(mn+ n2 logn)) time. For undirected graphs,
Katoh et al. [11] gave an improvedO(K(m+n log n)) algorithm. Both algorithms
use O(Kn+m) memory.

The best known algorithm for directed unweighted graphs is an Õ(Km
√
n)

randomized algorithm [16], where Õ(f(n)) is a shorthand for O(f(n) logk n). In
a different direction, Roditty [15] noticed that the K-shortest simple paths can
be efficiently approximated. Building upon his work, Bernstein [2] presented an

Õ(Km/ǫ) time algorithm for a (1 + ǫ)-approximation. Moreover, Eppstein [7]

⋆ GS and MFS were partially supported by the ERC programme FP7/2007-2013 /
ERC grant agreement no. [247073]10, and the French project ANR-12-BS02-0008
(Colib’read).

http://arxiv.org/abs/1411.6852v1

showed that if the paths are allowed to repeat vertices, i.e. they are not simple,
then the problem can be solved in O(K +m+ n logn) time. However, when the
paths are simple and to be computed exactly, no improvement has been made
on Yen and Lawler’s for directed graphs or Katoh’s algorithm for undirected
graphs. The main bottleneck of these algorithms is their memory consumption.

Here, we consider the problem of listing all st-paths with length at most
α. This is a different parameterization of the K-shortest path problem, where
we impose an upper-bound on the length of the output paths instead of their
number. This is a natural variant of the K-shortest path problem. There are
situations where it is necessary to consider all paths that are a given percentage
of the optimal (e.g. [4]). Moreover, the bounded length problem is almost a
particular case of the K-shortest path problem. Given any solution to the K-
shortest path problem, such that the st-paths are generated one at a time in non-
decreasing length order, we can use the following simple approach to solve the
α-bounded length variant: choose a sufficiently largeK and halt the enumeration
when the length of the paths is larger than α. The main disadvantage of this
algorithm is its space complexity which is proportional to the number of paths
output hence, in the worst case, exponential in the size of the graph.

Our first and main contribution are new polynomial delay algorithms to
list st-paths with length at most α matching the time complexity (per path)
of Yen and Lawler’s algorithm for directed graphs (Section 3) and Katoh’s for
undirected graphs (Section 4), but using only O(n +m) internal memory. This
represents an exponential improvement in memory consumption.

The main differences between the classic solutions to the K-shortest paths
problem and our solutions to the α-bounded paths problem are the order in
which the solutions are output and the memory complexity of the algorithms.

Our second contribution is thus a unified framework where both problems
can be represented in such a way that those differences arise in a natural manner
(Section 3). Intuitively, we show that both families of algorithmic solutions cor-
respond to two different traversals of a same rooted tree: a Dijkstra-like traversal
for the K-shortest and a DFS-like traversal for the α-bounded paths.

2 Preliminaries

Given a directed graphG = (V,E) with n = |V | vertices andm = |E| arcs, the in
and out-neighborhoods of v ∈ V are denoted by N−(v) and N+(v), respectively.
Given a (directed or undirected) graph G with weights w : E 7→ Q, the weight,
or length, of a path π is

∑
(u,v)∈π w(u, v) and is denoted by w(π). We say that a

path π is α-bounded if its length satisfies w(p) ≤ α and α ∈ Q; in the particular
case of unit weights (i.e. of unweighted graphs), we say that p is k-bounded if
w(p) ≤ k with k ∈ Z≥0. A listing algorithm is polynomial delay if it generates the
solutions, one after the other in some order, and the time elapsed until the first
is output, and thereafter the time elapsed (delay) between any two consecutive
solutions, is bounded by a polynomial in the input size [9]. The general problem
which we are concerned in this work is listing α-bounded st-paths in G.

Problem 1 (Listing α-bounded st-paths). Given a weighted directed graph G =
(V,E), two vertices s, t ∈ V , and an upper bound α ∈ Q, output all α-bounded
st-paths.

Clearly, any solution to the K-shortest path problem is also a solution to
Problem 1, with the same (total/delay) time and space complexities. Thus Prob-
lem 1 is no harder than the classic K-shortest path problem.

We assume all directed graphs are weakly connected and all undirected
graphs are connected, hence m ≥ n − 1. Moreover, we assume hereafter the
weights are non-negative. We remark however that a weaker assumption suffices
to the applicability of our algorithms. Indeed, it is a well known fact that, when
the graph G and the weights w : E 7→ Q are such that no cycle is negative,
then, using Johnson’s reweighting strategy [10], we can compute non-negative
weights w′ such that, for some constant C, we have that w′(π) = w(π) + C for
any st-path π. This reweighting can be done in O(mn) preprocessing steps.

3 An O(mn + n2 logn)-delay algorithm

In this section, we present an O(mn + n2 logn)-delay algorithm to list all st-
paths with length at most α in a weighted directed graph G. Thus matching
the time complexity (per path) of Yen and Lawler’s algorithm, while using only
space linear in the input size.

The new algorithm, inspired by the binary partition method [3,14], recur-
sively partitions the solution space at every call until the considered subspace is
a singleton (contains only one solution) and in that case outputs the correspond-
ing solution. In order to have an efficient algorithm is important to explore only
non-empty partitions. Moreover, it should be stressed that the order in which
the solutions are output is fixed, but arbitrary.

Let us describe the partition scheme. Let Pα(s, t, G) be the set of all α-
bounded paths from s to t in G, and (x, s) · Pα(s, t, G) denote the concatenation
of (x, s) to each path of Pα(s, t, G). Assuming s 6= t, we have that

Pα(s, t, G) =
⋃

v∈N+(s)

(s, v) · Pα′(v, t, G− s), (1)

where α′ = α−w(s, v). In words, the set of paths from s to t can be partitioned
into the disjoint union of (s, v) ·Pα′ (v, t, G− s), the sets of paths beginning with
an arc (s, v), for each v ∈ N+(s). Indeed, since s 6= t, every path in Pα(s, t, G)
necessarily begins with an arc (s, v), where v ∈ N+(s).

Algorithm 1 implements this recursive partition strategy. The solutions are
only output in the leaves of the recursion tree (line 2), where the partition
is always a singleton. Moreover, in order to guarantee that every leaf in the
recursion tree outputs one solution, we have to test if Pα′(v, t, G − u), where
α′ = α− w(u, v), is not empty before the recursive call (line 7). This set is not
empty if and only if the weight of the shortest path from v to t in G − u is at
most α′, i.e. dG−u(v, t) ≤ α′ = α − w(u, v). Hence, to perform this test it is

enough to compute all the distances from t in the graph GR − u, where GR is
the graph G with all arcs reversed.

Consider a generic execution of Algorithm 1 for a graph G, vertices s, t ∈ V
and an upper bound α. We can represent this execution by a rooted tree T ,
i.e. the recursion tree, where each node corresponds to a call with arguments
〈u, t, α, πsu, G

′〉. The children of a given node (call) in T are the recursive calls
with arguments 〈v, t, α′, πsu(u, v), G

′−u〉 of line 8. This tree plays an important
role in the unified framework of Section 5.

Lemma 1. The recursion tree T has the following properties:

1. The leaves of T are in one-to-one correspondence with the paths in Pα(s, t, G).
2. The leaves in the subtree rooted on a node 〈u, t, α, πsu, G

′〉 correspond to the
paths in πsu · Pα′(u, t, G′).

3. The height of T is bounded by n.

Algorithm 1: list paths(u, t, α, πsu, G)

1 if u = t then

2 output(πsu)
3 return

4 end

5 compute the distances from t in GR − u

6 for v ∈ N+(u) do
7 if d(v, t) ≤ α− w(u, v) then
8 list paths(v, t, α− w(u, v), πsu · (u, v), G− u)

9 end

10 end

The correctness of Algorithm 1 follows directly from the relation given in
Eq. 1 and the correctness of the tests of line 7.

Let us now analyze its running time. The cost of a node in T is the time spent
by the operations inside the corresponding call, without including its recursive
calls. This cost is dominated by the tests of line 7. They are performed in O(1)
time by pre-computing the distances from t to all vertices in the reverse graph
GR −u (line 5). This takes O(t(n,m)) time, where t(n,m) is the cost of a single
source shortest path computation. By Lemma 1 the height of T is bounded
by n, so the path between any two leaves (solutions) in the recursion tree has
at most 2n nodes. Thus, the time elapsed between two solutions being output
is O(nt(n,m)). Moreover, the algorithm uses O(m) space, since each recursive
call has to store only the difference with the its parent graph. Recall that each
solution is immediately output (line 2), not stored by the algorithm.

Theorem 1. Algorithm 1 has delay O(nt(n,m)), where t(n,m) is the cost of a
single source shortest path computation, and uses O(m) space.

For unweighted (directed and undirected) graphs, the single source shortest
paths can be computed using breadth-first search (BFS) running in O(m) time,
so Theorem 1 guarantees an O(km) delay to list all k-bounded st-paths, since
the height of the recursion tree is bounded by k instead of n. More generally,
the single source shortest paths can be computed using Dijkstra’s algorithm in
O(m + n logn) time (we are assuming non-negative weights), resulting in an
O(nm+ n2 logn) delay.

4 An improved algorithm for undirected graphs

The total time complexity of Algorithm 1 is equal to the delay times the num-
ber of solutions, i.e. O(nt(n,m)γ), where γ = |Pα(s, t, G)| is the number of α-
bounded st-paths. We now improve its total time complexity from O(nt(n,m)γ)
to O((m+ t(n,m))γ) in the case of weighted undirected graphs. On average the
algorithm spends O(m+ t(n,m)) per solution (amortized delay), thus matching
the time complexity (per path) of Katoh’s algorithm. The (worst-case) delay,
however, remains the same as Algorithm 1.

The main idea to improve the complexity of Algorithm 1 is to explore the
structure of the set of paths Pα(s, t, G) to reduce the number of nodes in the
recursion tree. We avoid redundant partition steps by guaranteeing that every
node in the recursion tree has at least two children. More precisely, at every call,
we identify the longest common prefix of Pα(s, t, G), i.e. the longest (considering
the number of edges) path πss′ such that Pα(s, t, G) = πss′ · Pα(s

′, t, G), and
append it to the current path prefix being considered in the recursive call. The
intuition here is that by doing so we identify and “merge” all the consecutive
single-child nodes in the recursion tree, thus guaranteeing that the remaining
nodes have at least two children.

The pseudocode for this algorithm is very similar to Algorithm 1 and, for
the sake of completeness, is given in Algorithm 2. We postpone the description
of the lcp(u, t, α,G) function to the next section, along with a discussion about
the difficulties to extend it to directed graphs.

The correctness of Algorithm 2 follows directly from the correctness of Algo-
rithm 1. The space used is the same of Algorithm 1, provided that lcp(u, t, α,G)
uses linear space, which, as we show in the next section, is indeed the case (The-
orem 3).

Let us now analyze the total complexity of Algorithm 2 as a function of the
input size and of γ, the number of α-bounded st-paths. Let R be the recursion
tree of Algorithm 2 and T (r) the cost of a given node r ∈ R. The total cost of
the algorithm can be split in two parts, which we later bound individually, in
the following way:

∑

r∈R

T (r) =
∑

r:internal

T (r) +
∑

r:leaf

T (r). (2)

We have that
∑

r:leaf T (r) = O((m + t(m,n))γ), since leaves and solutions
are in one-to-one correspondence and the cost for each leaf is dominated by the

Algorithm 2: list paths(u, t, α, πsu, G)

1 πuu′ = lcp(u, t, α, G)
2 if u′ = t then

3 output(πsuπuu′)
4 return

5 else

6 compute a shortest path tree T ′

t from t in GR − πuu′

7 for v ∈ N(u′) do
8 if d(v, t) + w(u, v) ≤ α then

9 list paths(v, t, α− w(πuu′)−w(u′, v), πsu · πuu′ · (u′, v), G − πuu′)
10 end

11 end

12 end

cost of lcp(u, t, α,G), that is O(m + t(m,n)) (Theorem 3). Now, we have that
every internal node of the recursion has at least two children, otherwise πuu′

would not be the longest common prefix of Pα(u, t, G). Thus,
∑

r:internal T (r) =
O((m+t(m,n))γ) since in any tree the number of branching nodes is at most the
number of leaves, and the cost of each internal node is dominated by the O(m+
t(m,n)) cost of the longest prefix computation. Therefore, the total complexity
of Algorithm 2 is O((m + t(n,m))γ). This completes the proof of Theorem 2.

Theorem 2. Algorithm 2 outputs all α-bounded st-paths in O((m+ t(n,m))γ)
time using O(m) space.

This means that for unweighted graphs, it is possible to list all k-bounded
st-paths in O(m) time per path. In addition, for weighted graphs, it is possible
to list all α-bounded st-paths in O(m+ n logn) time per path.

4.1 Computing the longest common prefix of Pα(s, t,G)

The problem of computing the longest common prefix of Pα(s, t, G) can be seen
as a special case of the replacement paths problem [8]. Let π be a shortest st-path
in G. In this problem we want to compute, for each edge e on π, the shortest
st-path that avoids e. Given a solution to the replacement path problem we can
compute the longest common prefix of Pα(s, t, G) using the following procedure.
For each edge e along the path π, check whether the shortest st-path avoiding e is
shorter than α. There is an O(m+n log n) algorithm to compute the replacement
path in undirected graphs [13], but for directed graphs the best solutions is a
trivial O(nm+ n2 logn) algorithm.

In this section, we present an alternative, arguably simpler, algorithm to
compute the longest common prefix of the set of α-paths from s to t, completing
the description of Algorithm 2. The naive algorithm for this problem runs in
O(nt(n,m)) time, so that using it in Algorithm 2 would not improve the total
complexity compared to Algorithm 1. Basically, the naive algorithm computes

a shortest path πst and then for each prefix in increasing order of length tests
if there are at least two distinct extensions each with total weight less than α.
In order to test the extensions, for each prefix πsu, we recompute the distances
from t in the graph G− πsu, thus performing n shortest path tree computations
(k computations in the unweighted case) in the worst case.

Algorithm 3 improves the naive algorithm by avoiding those recomputations.
However, before entering the description of Algorithm 3, we need a better charac-
terization of the structure of the longest common prefix of Pα(s, t, G). Lemma 2
gives this. It does so by considering a shortest path tree rooted at s, denoted
by Ts. Recall that Ts is a subgraph of G and induces a partition of the edges
of G into tree edges and non-tree edges. In this tree, the longest common prefix
of Pα(s, t, G) is a prefix of the tree path from the root s to t. Additionally, any
st-path in G, excluding the tree path, necessarily passes through at least one
non-tree edge. The lemma characterizes the longest common prefix in terms of
the non-tree edges from the subtrees rooted at siblings of the vertices in the
tree path from s to t. For instance, in Fig. 1(b) the common prefix πsu can be
extended to πsu · (u, v) only if there is no α-bounded path that passes through
the subtree Tw and a non-tree edge (x, z), where v belongs to tree path from s
to t and w is one of its siblings.

s

u

v

Tv

z

s

u

v

Tv

z

w

x

Tw

t t

a) b)

πsu πsu

Fig. 1. The common prefix πsu of Pα(s, t,G) can always be extended into an st-path
using the tree path of Ts from u to t. The path πsu is the longest common prefix if and
only if it can also be extended with a path containing a non-tree edge (x, z) such that
z ∈ Tv and (a) x = u or (b) x ∈ Tw and w is sibling of v; and dG′(s, x) + w(x, z) +
dG′(z, t) ≤ α, where G′ = G− (u, v).

Lemma 2. Let πsu = (s = v0, v1), . . . , (vl−1, vl = u) be a common prefix of all
paths in Pα(s, t, G) 6= ∅ and Ts a shortest path tree rooted at s. Then,

1. the path πsu(u, v) is a common prefix of Pα(s, t, G), if there is no edge (x, z)
such that dG′(s, x) + w(x, z) + dG′(z, t) ≤ α, where G′ = G− (u, v), z ∈ Tv,
and (a) x = u or (b) x ∈ Tw with w a sibling of v (see Fig. 1);

2. πsu is the longest common prefix of Pα(s, t, G), otherwise.

In order to use the characterization of Lemma 2 for the longest prefix of
Pα(s, t, G), we need to efficiently test the weight condition given in item 1,
namely dG′(s, x) + w(x, z) + dG′(z, t) ≤ α, where G′ = G − (u, v) and (u, v)
belongs to the tree path from s to t. We have that dG′(s, x) = dG(s, x), since
x does not belong to the subtree of v in the shortest path tree Ts. Indeed, only
the distances of vertices in the subtree Tv can possibly change after the removal
of the tree edge (u, v). However, in principle we have no guarantee that dG′(z, t)
also remains unchanged: recall that to maintain the distances from t we need
a tree rooted at t not at s. Clearly, we cannot compute the shortest path tree
from t for each G′; in the worst case, this would imply the computation of n
shortest path trees. For this reason, we need Lemma 3. It states that, in the
specific case of the vertices z we need to compute the distance to t in G′, we
have that dG′(z, t) = dG(z, t).

Lemma 3. Let Ts be a shortest path tree rooted at s and t a vertex of G. Then,
for any edge (u, v), with v closer to t, in the shortest path πst in the tree Ts, we
have that dG(z, t) = dG′(z, t), where z ∈ Tv and G′ = G− (u, v).

It is not hard to verify that Lemma 2 is also valid for directed graphs. How-
ever, the non-negative hypothesis for the weights is necessary; more specifically,
we need the monotonicity property for path weights which states that for any
path the weight of any subpath is not greater than the weight of the full path.
Now, in Lemma 3 both the path monotonicity property and the fact that the
graph is undirected are necessary. Since these two lemmas are the basis for the
efficiency of Algorithm 3, it seems difficult to extend it to directed graphs.

Algorithm 3 implements the strategy suggested by Lemma 2. Given a shortest
path tree Ts of G rooted at s, the algorithm traverses each vertex vi in the tree
path s = v0 . . . vn = t from the root s to t, and at every step finds all non-
tree edges (x, z) entering the subtree rooted at vi+1 from a sibling subtree, i.e. a
subtree rooted at w ∈ N+(vi)\{vi+1}. For each non-tree (x, z) linking the sibling
subtrees found, it checks if it satisfies the weight condition dG′(s, x) +w(x, z) +
dG′(z, t) ≤ α, where G′ = G − (vi, vi+1). Item 2 of the same lemma implies
that the first time an edge (x, z) satisfies the weight condition, the tree path
traversed so far is the longest common prefix of Pα(s, t, G). In order to test the
weight conditions, as stated previously, we have that dG′(s, x) = dG(s, x), since
x does not belong to the subtree of v in Ts. In addition, Lemma 3 guarantees
that dG′(z, t) = dG(z, t). Thus, it is sufficient for the algorithm to compute only
the shortest path trees from t and from s in G.

Theorem 3. Algorithm 3 finds the longest common prefix of Pα(s, t, G) in O(m+
t(n,m)) time using O(m) space.

Proof. The cost of the algorithm can be divided in two parts: the cost to compute
the shortest path trees Ts and Tt, and the cost of the loop in line 4. The first
part is bounded by O(t(n,m)). Let us now prove that the second part is bounded

Algorithm 3: lcp(s, t, α,G)

1 compute Ts, a shortest path tree from s in G

2 compute Tt, a shortest path tree from t in G

3 let πst = (s = v0, v1) . . . (vn−1, vn = t) be the shortest path in Ts

4 for vi ∈ {v1, . . . , vn} do

5 for w ∈ N+(vi) \ {vi+1} do

6 let Tw be the subtree of Ts rooted at w
7 for (x, z) ∈ G s.t. x ∈ Tw or x = vi do

8 if z ∈ Tvi+1
and dG(s, x) +w(x, z) + dG(z, t) ≤ α then

9 break

10 end

11 end

12 end

13 end

14 return πsvi−1

by O(m + n). The cost of each execution of line 8 is O(1), since we only need
distances from s and t and the shortest path trees from s and t are already
computed, and we pre-process the tree to decide in O(1) if a vertex belongs to a
subtree. Hence, the cost of the loop is bounded by the number of times line 8 is
executed. The neighborhood of each vertex x ∈ Tw is visited exactly once, since
for each w ∈ N+(vi) \ {vi+1} and w′ ∈ N+(vj) \ {vj+1} the subtrees Tw and Tw′

are disjoint, where vi and vj belong to the tree path from s to t. ⊓⊔

5 K-shortest and α-bounded paths: A unified view

The two main differences between the solutions to the K-shortest and α-bounded
paths problems are: (i) the order in which the paths are output and (ii) the space
complexity of the algorithms. In this section, we show that both problems can
be placed in a unified framework such that those differences arise in a natural
way. More precisely, we show that their solutions correspond to two different
traversals of the same rooted tree: a Dijkstra-like traversal for the K-shortest
and a DFS-like traversal for the α-bounded paths. This tree is a weighted version
of the recursion tree of Algorithm 1, so the height is bounded by n and each leaf
corresponds to an α-bounded st-path (see Lemma 1).

The space complexity of the algorithms then follows from the fact that, in
addition to the memory to store the tree, Dijkstra’s algorithm uses memory
proportional to the number of nodes, whereas the DFS uses memory proportional
to the height of the tree. In addition, the order in which the solutions are output
is precisely the order in which the leaves of the tree are visited, a Dijkstra-like
traversal visits the leaves in increasing order of their distance from the root,
whereas a DFS-like traversal visits them in an arbitrary but fixed order.

We first modify Algorithm 1 to obtain an iterative generic variant. The pseu-
docode is shown in Algorithm 4. Observe that each node in the recursion tree

of Algorithm 1 corresponds to some tuple 〈u, t, πut, G
′〉 in line 3 of Algorithm 4.

By generic we mean that the container Q is not specified in the pseudocode, the
only requirement is the support for two operations: push, to insert a new element
in Q; and pop, to remove and return an element of Q. It should be clear now
that depending on the container, the algorithm will perform a different traversal
in the underlying recursion tree of Algorithm 1.

Algorithm 4: list paths iterative(u, t, α, πsu, G)

1 push 〈s, t, ∅, G〉 in Q

2 while Q is not empty do

3 〈u, t, πsu, G
′〉 = Q.pop()

4 if u = t then

5 output(πsu)
6 else

7 compute a shortest path tree Tt from t in GR − u

8 for v ∈ N+(u) do
9 if d(v, t) ≤ α− w(u, v) then

10 push 〈v, t, α− w(u, v), πsu · (u, v), G′ − u〉 in Q

11 end

12 end

13 end

14 end

Algorithm 4 uses the same strategy to partition the solution space (Eq. 1).
Of course, the order in which the partitions are explored depends on the type
of container used for Q. We show that if Q is a stack, then the solutions are
output in the reverse order of Algorithm 1 and the maximum size of the stack is
linear in the size of the input. If on the other hand, Q is a priority queue, using
a suitable key, the solutions are output in increasing order of their lengths, but
in this case the maximum size of the priority queue is linear in the number of
solutions, which is not polynomial in the size of the input.

Let T be the recursion tree of Algorithm 1 (see Lemma 1). In Algorithm 4,
each element 〈u, t, πsu, G

′〉 corresponds to the arguments of a call of Algorithm 1,
i.e. a node of T . For any container Q supporting push and pop operations,
Algorithm 4 visits each node of T exactly once, since at every iteration a node
from Q is deleted and its children are inserted in Q, and T is a tree. In particular,
this guarantees that every leaf of T is visited exactly once, thus proving the
following lemma.

Lemma 4. Algorithm 4 outputs all α-bounded st-paths.

Let us consider the case where Q is a stack. It is not hard to prove that
Algorithm 1 is a DFS traversal of T starting from the root, while Algorithm 4
is an iterative DFS [17] traversal of T also starting from the root. Basically, an

iterative DFS keeps the vertices of the fringe of the non-visited subgraph in a
stack, at each iteration the next vertex to be explored is popped from the stack,
and recursive calls are replaced by pushing vertices in the stack. Now, for a fixed
permutation of the children of each node in T , the nodes visited in an iterative
DFS traversal are in the reverse order of the nodes visited in a recursive DFS
traversal, thus proving Lemma 5.

Lemma 5. If Q is a stack, then Algorithm 4 outputs the α-bounded st-path in
the reverse order of Algorithm 1.

For any rooted tree, at any moment during an iterative DFS traversal, the
number of nodes in the stack is bounded by the sum of the degrees of the root-
to-leaf path currently being explored. Recall that every leaf in T corresponds to
a path in Pα(s, t, G). Actually, there is a one-to-one correspondence between the
nodes of a root-to-leaf path P in T and the vertices of the α-bounded st-path π
associated to that leaf. Hence, the sum of the degrees of the nodes of P in T is
equal to the sum of the degrees of the vertices π in G, which is bounded by m,
thus proving Lemma 6.

Lemma 6. The maximum number of elements in the stack of Algorithm 4 over
all iterations is bounded by m.

Let us consider now the case where Q is a priority queue. There is a one-to-
many correspondence between arcs in G and arcs in T , i.e. if Pα′′(v, t, G′′) is a
child of Pα′(u, t, G′) in T then (u, v) is an arc ofG. For every arc of T , we give the
weight of the corresponding arc in G. Now, Algorithm 4 using a priority queue
with w(πsu)+dG(u, t) as keys performs a Dijkstra-like traversal in this weighted
version of T starting from the root. Indeed, for a node 〈u, t, πsu, G〉 the distance
from the root is w(πsu), and dG(u, t) is a (precise) estimation of the distance
from 〈u, t, πsu, G〉 to the closest leaf of T . In other words, it is an A∗ traversal [5]
in the weighted rooted tree T , using the (optimal) heuristic dG(u, t). As such,
Algorithm 4 explores first the nodes of T leading to the cheapest non-visited
leaf. This is formally stated in Lemma 7.

Lemma 7. If Q is a priority queue with w(πsu) + dG′(u, t) as the priority key
of 〈u, t, πsu, G

′〉, then Algorithm 4 outputs the α-bounded st-paths in increasing
order of their lengths.

For any choice of the container Q, each node of T is visited exactly once,
that is, each node of T is pushed at most once in Q. This proves Lemma 8.

Lemma 8. The maximum number of elements in a priority queue of Algo-
rithm 4 over all iterations is bounded by γ.

Algorithm 4 uses O(mγ) space since for every node inserted in the priority
queue, we also have to store the corresponding graph. Moreover, using a binary
heap as a priority queue, the push and pop operations can be performed in
O(log γ) each, where γ is the maximum size of the heap. Therefore, combining
this with Lemma 7, we obtain the following theorem.

Theorem 4. Algorithm 4 using a binary heap outputs all α-bounded st-paths
in increasing order of their lengths in O((nt(n,m) + log γ)γ) total time, using
O(mγ) space.

References

1. R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for
the Shortest Path Problem. J. ACM, 37:213–223, 1990.

2. A. Bernstein. A nearly optimal algorithm for approximating replacement paths
and k shortest simple paths in general graphs. In Proc. of the 20th Symposium on
Discrete Algorithms (SODA), pages 742–755. SIAM, 2010.

3. E. Birmelé, R. A. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi, and G.
Sacomoto. Optimal listing of cycles and st-paths in undirected graphs. In Proc.
of the 24th Symposium on Discrete Algorithms (SODA), pages 1884–1896. SIAM,
2013.

4. K. Böhmová, M. Mihalák, T. Pröger, R. Srámek, and P. Widmayer. Robust rout-
ing in urban public transportation: How to find reliable journeys based on past
observations. In 13th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS), pages 27–41, 2013.

5. R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality
of A*. J. ACM, 32(3):505–536, 1985.

6. S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,
17(3):395–412, 1969.

7. D. Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652–673, 1999.
8. J. Hershberger and S. Suri. Vickrey prices and shortest paths: What is an edge

worth? In Proc. of the 42nd Symposium on Foundations of Computer Science
(FOCS), pages 252–259. IEEE Computer Society, 2001.

9. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On generating all maxi-
mal independent sets. Inf. Process. Lett., 27(3):119–123, 1988.

10. D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM,
24(1):1–13, 1977.

11. N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest simple
paths. Networks, 12(4):411–427, 1982.

12. E. L. Lawler. A procedure for computing the K best solutions to discrete opti-
mization problems and its application to the shortest path problem. Management
Science, 18:401–405, 1972.

13. K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest
path problem. Oper. Res. Lett., 8(4):223–227, 1989.

14. R. A. Ferreira, R. Grossi, R. Rizzi, G. Sacomoto and M.-F. Sagot. Amortized
Õ(|V |)-Delay Algorithm for Listing Chordless Cycles in Undirected Graphs. In
Proc. of the 22th European Symposium on Algorithms (ESA). 2014.

15. L. Roditty. On the k-simple shortest paths problem in weighted directed graphs.
In Proc. of the 18th Symposium on Discrete Algorithms (SODA). SIAM, 2007.

16. L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in
unweighted directed graphs. In Proc. of the 32nd International Colloquium on
Automata, Languages, and Programing (ICALP), pages 249–260. Springer, 2005.

17. R. Sedgewick. Algorithms in C, part 5: graph algorithms. Addison-Wesley Profes-
sional, 3rd edition, 2001.

18. J. Y. Yen. Finding the K shortest loopless paths in a network. Management
Science, 17:712–716, 1971.

	Efficiently listing bounded length st-paths

