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Abstract. It is well recognised that data mining and statistical analysis
pose a serious treat to privacy. This is true for financial, medical, crim-
inal and marketing research. Numerous techniques have been proposed
to protect privacy, including restriction and data modification. Recently
proposed privacy models such as differential privacy and k-anonymity
received a lot of attention and for the latter there are now several im-
provements of the original scheme, each removing some security short-
comings of the previous one. However, the challenge lies in evaluating
and comparing privacy provided by various techniques. In this paper
we propose a novel entropy based security measure that can be applied
to any generalisation, restriction or data modification technique. We use
our measure to empirically evaluate and compare a few popular methods,
namely query restriction, sampling and noise addition.

1 Introduction

Proliferation of computer, network and communication technology and appli-
cations, and in particular social networking and cloud computing had a great
impact on the way personal data is collected, stored and used. Data collected in
one location (e.g., hospital) can now be stored remotely in a cloud and accessed
from anywhere in the world. These advances have undoubtedly changed the way
we think about privacy [28, 4, 18] and what once could have been regulated by
legislative measures alone now requires a sophisticated suite of privacy enhancing
technologies. In this study we are concerned with a situation where confidential
personal data is made available to a wide range of users who are authorised to
perform data mining and statistical analysis, but not to access any individual
data. There are various Statistical Disclosure Control (SDC) techniques that can
be used to alleviate this problem [40, 2, 5, 13, 20] but, unfortunately, none of them
is able to solve it completely, due to its intrinsic contradictory nature. On one
hand, one must keep the risk of individual value disclosure as low as possible.
On the other hand, the utility (usefulness) of the data must remain high. How-
ever, low risk implies low utility and high utility implies high risk. A good SDC
technique aims at finding a right balance between the two. In order to achieve
this balance, it is crucial to adequately measure both utility and disclosure risk.
While measuring data utility has been well studied in the literature [7, 9–12, 22,
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40], measuring disclosure risk is still considered as a difficult problem and has
been only partly solved.

Contribution: (1) In this paper we propose a novel entropy based measure
of disclosure risk, which we refer to Confidential Attribute Equivocation (CAE),
and which is independent of the underlying SDC technique, and thus can always
be used. The main novelty and advantage of our technique over similar ones is
that it takes into account the candidate confidential values themselves, rather
than just their probabilities, and is thus able to capture the risk of approximate
disclosure of confidential values, rather than the exact disclosure alone. (2) We
develop an efficient dynamic programming algorithm to evaluate the CAE. (3)
We show how our technique can be applied to evaluate a few common SDC
techniques, including sampling, query restriction and noise addition.

This paper is organised as follows. In the next section we present related
work on disclosure risk measures and in Section 3 we present a scenario that
is not adequately covered by any of the previous measures and introduce a
novel entropy-based measure. In Section 4 we present a dynamic programming
algorithm for calculating the disclosure risk, in Section 5 we use our measure to
empirically evaluate a few existing SDC techniques, and in Section 6 we discuss
the experimental results and give some concluding remarks.

2 Introduction to Statistical Disclosure Control and
Related Work on Disclosure Risk Measures

Privacy is an elusive concept, and many privacy models have been proposed,
with varying success. We next present a few of the most prominent models,
including k-anonymity and differential privacy.

In a data set, some attributes may be considered public knowledge and used
to identify records. They are refereed to as “identifying” attributes or “quasi-
identifiers” (QI). A class of records where values of all QI attributes are the same
is called equivalence class. To limit disclosure, Samarati and Sweeney [32] pro-
posed a so-called k -anonymity that requires each equivalence class to have no less
than k records. The main problem with k -anonymity arises when all the records
in an equivalence class share the same confidential value, which allows intruder
to disclose the confidential value without actually re-identifying the record. In
order to alleviate this problem, Machanavajjhala et al proposed l -diversity [30],
which in its simplest form requires every QI to contain at least l distinct values.
While this model is indeed a great improvement over k-anonymity, it does not
consider how close these values are from each other, and thus leaves room for ap-
proximate disclosure of confidential values. Li et al. [29] introduced t -closeness,
which considers the distribution of confidential attribute values in each equiva-
lence class and the distribution of the confidential attribute values in the whole
dataset, and requires that the distance between these two distributions does not
exceed a given threshold t. While it greatly reduces the disclosure risk, t -closeness
is overly restrictive and severely impacts the utility of data. In this context, our
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measure of disclosure risk can be seen as bridging a gap between the l -diversity
and the rigid t -closeness.

Another prominent privacy model is differential privacy [16], which requires
that the results to all queries allowed on the database do not change significantly
if a single record is added or deleted from the database. While this is certainly an
efficient model against table linkage attack, it is not design to prevent attribute
and record linkage [20] and in practice may be inferior to k-anonymity [36].

Each one of the above models can be implemented using different SDC tech-
niques, which can be classified as modification techniques and query restriction
techniques [13, 5, 40, 14]. Modification techniques involve some kind of alterna-
tion of the original data set before it is released to statistical users. This includes
noise addition, data swapping, aggregation, suppression and sampling [5, 13, 23,
8, 24]. The common denominator of all modification techniques is that the mod-
ified dataset is released to users who are free to perform any query on it, but
the answers they get are only approximate and not exact. On the other hand,
query restriction techniques do not release database to a user but rather provide
a query access. The SDC system decides whether or not to answer the query but
if the query is answered, the answer will always be exact and not approximate
as with modification techniques [14, 5].

In this study we are not concerned with SDC techniques or privacy models as
such but rather with measuring disclosure risk. In the literature, disclosure risk
measures are classified as measures for record re-identification or confidential
value disclosure [15, 27, 5]. The latter focuses on measuring the risk of compro-
mising a confidential value of a particular individual, while the former focuses on
measuring the risk of inferring an individual’s identity. In either case the disclo-
sure risk measures may be applied to the database as a whole, or to individual
records.

Several methods have been proposed to estimate the disclosure risk in sam-
pling and they fall under the category of record identification. Winkler [41] refers
to these methods as Sample-Unique-Population-Unique (SUPU) methods as dis-
closure risk estimation requires assessing the uniqueness of records in the released
sample and in the population. Skinner and Eliot [34] introduced a new disclo-
sure risk measure for microdata which falls under SUPU methods [41]. Their
measure is based on the probability θ = Pr(correct match|unique match) that a
microdata record and a population unit are correctly matched. Additionally, they
introduced a simple variance estimator and claimed that their measure is able to
evaluate the different ways of releasing microdata from a sample survey. Truta
et el. [39] introduced other SUPU measures and termed them minimal, maximal,
and weighted disclosure risk measures. The minimal disclosure risk measure is
the percentage of records in a population that can be correctly re-identified by an
intruder. All these records must be population unique. The maximum disclosure
risk measure takes into account records that are not population unique while
the weighted disclosure risk measure assigns more weights to unique records
over other records. Their measures are not linked to a certain individual but
compute the overall disclosure risk for the database. These measures can only
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be applied to limited SDC methods such as sampling and microaggregation and
it is considered hard to choose the disclosure risk weight matrix [39]. However,
assigning weights enables a data owner to setup different levels of confidentiality.
These measures are useful in deciding the order of applying more than one SDC
method on the initial data.

Trottini and Fienberg [38] proposed a simple Bayesian model for capturing
user uncertainty after releasing the data by an agency. They distinguish between
the legitimate user (researcher) uncertainty and the malicious user (intruder) un-
certainty. This distinction is used as the basis of defining appropriate disclosure
risk measure. The proposed measure is an arbitrary decreasing function of the
user’s uncertainty about a confidential attribute value.

Spruill [35] measured confidentiality as a percentage of records in the released
data where a link with the original data can not be made. In order to decide if
there is such a link, for each released record, we add up either the square or the
absolute value of the difference between the released value and the true value for
all common numerical attributes. A link is said to be made if a released record
was derived from the true record that has the minimum sum of differences.
Spruill’s early work gave rise to record linkage, much studied in recent years [20].

There are some recent proposals that use information-theoretic approach to
measure privacy and utility of various SDC techniques [31, 33]; however, none
of them measures the “approximate” compromise, as we explain in the next
section.

3 A Novel Entropy-Based Measure

Out of all disclosure risk measures, the closest to our proposal is a measure
proposed by Onganian and Domingo-Ferrer [31] that evaluates the security of
releasing tabular data. The measure is equal to the reciprocal of conditional
entropy given the knowledge of an intruder:

DR(X) =
1

H(X |Y = y)
=

1

(−
∑

x p(x|y) log2 p(x|y))
(1)

where X represents a confidential attribute for a given record and Y represents
intruder’s knowledge. The disclosure risk is inversely proportional to the uncer-
tainty about the confidential attribute given intruder’s knowledge. The measure
performs a posteriori, that is, after applying one of SDC methods to the tables.
It is a complement to a priori measures such as some currently used sensitivity
rules including (n,k)-dominance and pq-rule, which help a data owner in deciding
whether to release the data or not. The main strength of the above a posteriori
measure is its generality: it is applicable to various SDC methods such as Cell
Suppression, Rounding, and Table Redesign. In order to evaluate this disclosure
risk, one has to find a set of the possible confidential attribute values and their
probabilities given the condition Y = y. A down side of this measure is that it
does not capture accurately the knowledge that an intruder has about a confi-
dential attribute, as it does not give careful consideration to the attribute values



5

but only the probabilities with which the values occur. Our proposed method
considers the attribute values in addition to their probabilities.

Before we proceed to describe our measure in more detail and compare some
of the SDC techniques in the experimental section, we need to introduce the
concept of “database compromise”. We say that a database is compromised if
a sensitive statistic is disclosed [14]. There are several distinct types of com-
promise, depending upon what is considered to be sensitive. For example, if
only exact individual values are considered sensitive, we have the so-called exact
compromise. Approximate compromise occurs when a user is able to infer that a
confidential individual value X lies within a range [X0−

ε
2
, X0+

ε
2
] for some pre-

defined value of ε. Approximate compromise will prove crucial for the definition
of our new security measure.

We consider a scenario where an intruder is trying to unlawfully disclose
confidential information from a database. She uses all the available information
she can get from the database, as well as any external knowledge she may have.
At the end of her analysis, the intruder is able to reduce the possibilities and
limit her suspicion to certain data values. Shannon’s entropy can measure the
intruder’s uncertainty, but does not take into consideration how far or close these
values are from each other.

Table 1. Two Examples

Example 1 Example 2

Q1: SELECT MAX(Salary) SELECT MAX(Salary)
FROM AcademicStaff FROM AcademicStaff
WHERE Sex = ”F” WHERE Age = 37

A1: Maximum salary = 107, 000 Maximum salary = 80, 000

Q2: SELECT AVG(Salary) SELECT AVG(Salary)
FROM AcademicStaff FROM AcademicStaff
WHERE Sex = ”F” WHERE Age = 37

A2: Average salary = 78, 500 Average salary = 78, 500

The first example in Table 1 shows the queries submitted by the intruder
and the database response to them. Assuming that there are only two female
academics, Layla and Angela, the intruder learns that Layla’s salary is one of
the two values: It is either 107K or 50K.

In the second example we assume that there are only two academics aged 37,
Qays and Tony. Then the intruder knows that Qays’s salary is either 80K or 77K.
If we use Shannon’s entropy to evaluate the intruder’s uncertainty in examples
1 and 2, we get the same result, 1 bit in each case. However, we argue that
the intruder learns more in example 2, as he can pretty accurately estimate the
salary to be 78.5K ± 1.5K. This highlights the need for more accurate measure
than Shannon’s entropy, which would be able to capture such differences.
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Recall that a compromise can be exact or approximate. Shannon’s entropy
can be considered a satisfactory measure for the disclosure risk that is related to
the exact compromise. However, in the approximate compromise, we argue that
Shannon’s entropy does not express precisely the intruder’s knowledge about a
particular confidential value.

We introduce a notion of privacy for the so-called approximate compromise
range (ε). In the approximate compromise an intruder learns that the confiden-
tial value X lies within a range [X0 −

ε
2
, X0 +

ε
2
]. For the two example we have

X ∈ [X0 − 28.5K, X0 + 28.5K] for Layla and X ∈ [X0 − 1.5K, X0 + 1.5K]
for Qay, where in both cases X0 = 78.5K. Obviously, the intruder knows more
about Qay’s than Layla’s salary, as in the former the approximate compromise
range is 3K, while in the latter it is 57K.

To capture the information about the range ε, we use Shannon’s entropyH as
a function of ε. The graphs in Figure 1 correspond to the intruder’s uncertainty
H(ε) in the above examples. We notice that the entropyH(0) is the same in both
cases, that is, the disclosure risks are the same for exact compromise. However,
the area under H(ε) is much larger for Layla implying that this case is more
resistant against approximate compromise.

H

0 20k 30k 60k 80k

1

2

100k 120k3k epsilon

X1 = 77K X2 = 80K

P1 = 0.5 P2 = 0.5

Area = 3K
Normalised Area = 0.025

H

0 20k 30k 57k 80k

1

2

100k 120k epsilon

H0

A

H0

A

X1 = 50K X2 = 107K

P1 = 0.5 P2 = 0.5

Area = 57K
Normalised Area = 0.479

Fig. 1. Our Security Measure: for (77K, 80K) and (50K, 107K).

In general, we can then evaluate intruder’s uncertainty for any given ε. In
particular, we use H0 = H(0) to denote intruder’s uncertainty in the case of
exact compromise, that is, approximate compromise range of “0” and we call it
initial entropy. Additionally, in what follows we examine the area (A) determined
as an integral: A =

∫ εmax

0
H(ε), where “εmax” is the value of ε for which entropy

H(ε) drops to zero. Formally, H(εmax = 0) and H(ε > 0) for all ε < εmax

We next explain how H(ε) is calculated in general. We introduce a “window”
of length ε. When a window “covers” two or more values, then they are replaced
with a single value whose probability is equal to the sum of probabilities of all
the values covered by the window. In general, there will be more than one way
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to cover the values with windows of length ε and we need to select the way that
minimises the entropy H(ε). We next formally define the problem of calculating
H(ε).

Calculating H(ε)
Input:
Sorted values x1, x2, . . . , xn, xi > xj for any i > j

Their corresponding probabilities: p1, p2, . . . , pn
Parameter ε ≤ xn − x1

Output:
Collection C of subsets (x1, ...xy1

), (xy1+1, ..., xy2
), . . . , (xym+1, ..., xn), such that

(1) xy1
− x1 ≤ ε, (2) xyi

− xyi−1+1 ≤ ε, 2 ≤ i ≤ m, (3) xn − xym+1 ≤ ε

Corresponding probabilities q1 = p1 + ...+ py1
, ..., qm+1 = pym+1 + ...+ pn

H(ε) calculated over probabilities q, such that H(ε) is maximised over all col-
lections C satisfying conditions above.

Computing the minimum entropy H(ε) as a function of ε is not straightfor-
ward and in Appendix we provide an example to illustrate the entropy calcu-
lation. In the next section we introduce a dynamic programming algorithm to
find the optimal entropy and hence calculate the area (A) that together with
the initial entropy (H0) represents our disclosure risk.

4 A Dynamic Programming Algorithm to Compute H(ε)

We are given as input a set of values xi in increasing order (x1 < x2 < x3 < · · · <
xn) where each xi has a given probability pi where pi ≥ 0 and and Σpi = 1. In
order to produce our security measure, we need to calculate minimum H(ε) for
each ε. We break the problem into stages (rows) and states (columns). Each row
in the table corresponds to a stage or ε. Column “i” in the table corresponds
to the subproblem containing values x1, x2, · · · , xi. For a given row (stage) in
the table, each cell in this row is viewed as a subproblem H(ε, i) of the original
problem H(ε). For a given stage and state, H(ε, i) is computed by the following
recurrence:

H(ε, i) = min[(H(ε, i− 1) + ai), (H(ε, i− 2) + ai−1), ..., (H(ε, j − 1) + aj)]

where

aj = (

i∑

k=j

pk) · log(
1

(
∑i

k=j pk)
)

Xi −Xj ≤ ε, Xi −Xj−1 > ε for i, j ∈ [1, n] and i ≥ j

H(0, ε) = 0

H(1, ε) = p1 · log(
1

p1
)
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Input: x[ ]: a set of integer values in ascending order;
p[ ]: a set of probabilities corresponding to the above integer values.

Output: H(ε)
H0 ←

∑n

i=1
p(xi) · log(

1
p(xi)

);

foreach ε do
H(ε, 0)← 0;
H(ε, 1)← p1 · log(

1
p1
);

for i← 2 to n do
j ← i;
ppartial ← 0;
H(ε, i)← H(ε− 1, i);
while (xi − xj ≤ ε) and (j 6= 0) do

ppartial ← ppartial + pj ;
Htemp ← ppartial · log(

1
ppartial

) +H(ε, j − 1);

if Htemp < H(ε, i) then
H(ε, i)← Htemp;

end

j ← j − 1;
end

end

H(ε)← H(ε, n);
Display: H(ε)

end

Algorithm 1: A dynamic programming algorithm to compute H(ε)

5 The Experiments: Description and Implementation

In this section we apply our proposed security measure to a few common Statis-
tical Disclosure Control (SDC) techniques. In all instances we assume that the
intruder has supplementary knowledge (SK) about an individual whose corre-
sponding record is stored in the original dataset, which can be as limited as one
attribute or can be as extensive as all attributes except the confidential one.

The comparative study is performed on three different data sets. Here we
present results on PUMS dataset, whose decription can be found in the Ap-
pendix.

Sampling. In this experiment, we release a subset of records (sample) from
the original microdata file (population). We use a simple random sample without
replacement where each record in the original is equally likely to be included
in the produced sample and duplicates are not allowed. The produced sample
has a constant size specified as a percentage of the original dataset total size
and referred to as “sampling size” (or “sampling factor”). In deciding on the
structure of the sampling experiment, we follow work by Truta et el. [39] on
disclosure risk measures for sampling, where we compute the overall disclosure
risk for the database, rather than for a certain individual.

In order to study the effect of sample size on the security we use four dif-
ferent sampling factors: 5%, 10%, 20%, 50%. For each sample size, we generate
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30 different sample files. Additionally, we study the effect of the intruder’s sup-
plementary knowledge. We start with supplementary knowledge as little as one
attribute and extended it to reach all attributes except the confidential one. For
each attribute we performed experiments for all possible values. The results in
Figure 2 are the averaged over all 30 samples, all attributes and all values.

Query Restriction. In this experiment, we consider a scenario where an
intruder submits a set of range queries to a DBMS. The intruder performs an
analysis using the answers to the submitted queries as well as the supplementary
knowledge with an aim to infer a confidential attribute value for the given record,
e.g salary in PUMS dataset. We assume that the intruder has build a system of
linear equations out of the responses to range queries. We use Q = 2l to denote
the query set size for the queries a user (i.e., an intruder) is permitted to ask.
For simplicity, we only consider even query set sizes. We use k to denote the
number of queries and thus also the number of linear equations: k = ⌊ 2n

Q
⌋ − 1.

We run the experiment for 5 different query set size {2, 4, 8, 16, 32}. For each
query set size, we shuffle the records in the original dataset to get different
systems of linear equations. For each query set size, we produce randomly 30
different systems of linear equations. Just like in the case of sampling, for each
attribute we performed experiments for all possible values. The results in Fig-
ure 2 are the average results, over all 30 systems of linear equations, all SK
attributes and all values.

Noise Addition. We consider a scenario where a DBMS alters an original
dataset by adding certain level of noise. The noise is added to all attributes in the
dataset, sensitive and non-sensitive, categorical and numerical. We use additive
noise studied in [25, 37, 19, 26, 43]. The amount of noise is drawn randomly from
binomial probability distribution as the nature of attributes in our dataset is
discrete. The DBMS then releases the perturbed version of the dataset and an
intruder obtains a copy of it. The intruder performs an analysis using the released
perturbed dataset together with the supplementary knowledge with an aim to
infer a confidential attribute value, e.g salary in PUMS dataset, corresponding to
the individual of concern. We assume there is only one confidential attribute; it is
straightforward to generalize our experiments to cover more than one confidential
attribute.

6 Discussion and Conclusion

As expected, for all three SDC techniques our privacy measure, CAE, increases
with decrease in utility (Figure 2). In Sampling, utility is proportional to the
sample size, in Query Restriction utility is inversely proportional to the query
size, and in Noise Addition utility is inversely proportional to the amount of
noise.

The experiments also show that privacy declines with additional supplemen-
tary knowledge that intruder might have, which is expressed on horizontal axis
as the number of known attributes. We note that this decline is sometimes gen-
tle and sometimes sharp, depending on the utility which is in Figure 2 given
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as a parameter: for low utility privacy only gently declines with supplementary
knowledge, while for higher utility the decline is typically sharp.
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(c) QueryRestr.: H0 vs SK
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(e) NoiseAdd.: H0 vs SK
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Fig. 2. Sampling, Query Restriction and Noise Addition

Importantly, our experiments demonstrate how we can compare different
SDC techniques and select the most suitable one for specific application and
requirements. For example, in the absence of supplementary knowledge sampling
with size 50% and query restriction with query set size 8 provide similar level of
privacy (blue line in Figure (a) and red line in Figure (c)); however, the privacy
sharply drops with supplementary knowledge increases in sampling, while it
remains flat in query restriction. Moreover, Figures (b) and (d) that indicate
approximate compromise show a slight superiority of sampling in the absence
of supplementary knowledge, but as supplementary knowledge grows sampling
becomes much more vulnerable than query restriction.

In summary, unlike previously proposed privacy measures, our novel infor-
mation theoretic privacy measure (CAE) has the ability to capture approximate
compromise; it can also be applied to any SDC technique, as long as the probabil-
ities of different confidential values can be estimated. In this paper we considered
the most common SDC techniques and showed how CAE can be used to eval-
uate the privacy they offer, and how this privacy relates to both utility and
supplementary knowledge.
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Appendix

Calculation entropy

We demonstrate on a small example how H(ε) is calculated. Consider as input a
set of values xi of a confidential attribute X , where for each xi we have a given
probability pi, where pi ≥ 0 and Σpi = 1. In order to produce our security
measure and compute the area, we need to calculate H(ε) for each ε. In our
example, an intruder learns that a confidential variable X ∈ [1 − 10] has four
possible values with probabilities as follow:

x1 = 1 x2 = 3 x3 = 8 x4 = 9
p1 = 0.15 p2 = 0.1 p3 = 0.7 p4 = 0.05

1. We start by calculating initial entropy H(ε = 0), as the approximate com-
promise range ε is initially “0”; this is equivalent to Shannon’s entropy for
given events and their probabilities:

H(0) =

4∑

i=1

p(xi) · log(
1

p(xi)
) = 1.319

X1=1 X2=3 X3=8X4=9

2. We calculate the minimum entropy when ε = 1, that is, H(ε = 1). We cover
x3 and x4 with window of length 1 and we obtain a combined value x3,4 = 8.5
with probability p3,4 = p3 + p4 = 0.75:

H(1) = p1 · log(
1

p1
) + p2 · log(

1

p2
) + (p3 + p4) · log(

1

(p3 + p4)
) = 1.054

X1=1 X2=3 X3=8X4=9



15

3. We calculate the minimum entropy when ε = 2, that is, H(ε = 2). We cover
x3 and x4 with window of length 1 and x1 and x2 with window of length 2:

H(2) = H(X) = (p1+ p2)·log(
1

(p1 + p2)
) + (p3+ p4)·log(

1

(p3 + p4)
) = 0.811

X1=1 X2=3 X3=8X4=9

4. When ε = 3 or 4, we can not do better than for ε = 2.
5. We calculate the minimum entropy when ε = 5, that is, H(ε = 5). Here we

have 2 options so as how to cover the values with window of length 5 or
less. We choose with the option that gives us the minimum entropy, that is,
covering x3 and x4 with window of length 1 and x1 and x2 with window of
length 2:

H(5) = H(X) = p1·log(
1

p1
) +(p2+ p3)·log(

1

(p2 + p3)
) + p4·log(

1

p4
) = 0.884

X1=1 X2=3 X3=8X4=9

X1=1
X2=3 X3=8X4=9

?

H(5) = H(X) = (p1+ p2)·log(
1

(p1 + p2)
) + (p3+ p4)·log(

1

(p3 + p4)
) = 0.811

6. We calculate the minimum entropy when ε = 6, that is, H(ε = 6). We cover
x2, x3 and x4 with window of length 6:

H(6) = p1 · log(
1

p1
) + (p2 + p3 + p4) · log(

1

(p2 + p3 + p4)
) = 0.61
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X1=1 X2=3 X3=8X4=9

X1=1 X2=3 X3=8X4=9

7. We calculate the minimum entropy when ε = 7, H(ε = 7). We cover x1, x2

and x3 with window of length 7:

H(7) = (p1 + p2 + p3) · log(
1

(p1 + p2 + p3)
) + p4 · log(

1

p4
) = 0.286

8. We calculate the minimum entropy when ε = 8, H(ε = 8). The window of
length 8 is wide enough to cover all the values and thus will produce an
entropy of zero:

H(8) = (p1 + p2 + p3 + p4) · log(
1

(p1 + p2 + p3 + p4)
) = 0

X1=1 X2=3 X3=8X4=9

Figure 3 shows H(ε) and the computed area (A) for the above example. This
calculation illustrates that computing the minimum entropy H as a function of
ε is not a straightforward task, as we have to make choices. In order to solve
this problem efficiently, we design a dynamic programming algorithm to find the
optimal entropy for each ε as a measure of disclosure risk (see Section 4).

PUMS Dataset

Our first data set is the Public Use Microdata Sample (PUMS) [1] (experiments
on other datasets are ommitted due to length restriction of the paper). It is a
sample of the actual responses to the American Community Survey (ACS) and
is offered by the U.S. Census Bureau. We have chosen Illinoi state sample for
the year 2006 as a dataset. The dataset consists of 2500 records. Each record is
described by 7 selected attributes that are shown in Table 2. The first column
in the table shows the selected attributes. The minimum and maximum value
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H

0 epsilon1 2 3 4 5 6 7 8 9

1

2

3

X1 = 1 X2 = 3 X3 = 8 X4 = 9

P1 = 0.15 P2 = 0.1 P3 = 0.7 P4 = 0.05

Area (A)= 6.513

H0

A

Fig. 3. Our security measure for the numerical example.

for each attribute are shown in the second and third columns. For example, the
minimum value for “Salary” is 10 while the maximum is 250. The fourth column
indicates the data type for the corresponding attribute and it can be one of the
following: Categorical, Numerical-Integer, or Numerical-Real. The next column,
Rounding, indicates if the corresponding attribute values have been rounded.
For example, for the attribute “Salary”, we round values to the nearest 10 K.
Symbol ”-” indicates no rounding. The last column contains number of values
in the actual domain for the corresponding attribute after rounding. We select
the first attribute, “Salary”, to be sensitive (confidential) and hence we need to
keep its value confidential.

Table 2. The selected attributes from PUMS dataset

Attribute Min. Max. Data Type Rounding No of Values

Salary 10 250 Numerical − Integer 10 25
Age 16 84 Numerical − Integer − 69
Sex 1 2 Categorical − 2
Education 1 16 Categorical − 16
Industry 1 18 Categorical − 18
Occupation 1 25 Categorical − 25
Work Travel Time 1 177 Numerical − Integer − 177
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Details of Experiments

We use the following notation: (1) n is a number of records in the original
database; (2) C is the confidential attribute; (3) ci, 1 ≤ i ≤ n, is the value of
the confidential attribute C in record i; (4) D is the domain of the confidential
attribute C in the original database; (5) di is the ith value of the confidential
attribute in the domain D, where 1 ≤ i ≤ |D|; (6) pi is the probability that
the confidential attribute value is di; (7) Mo is the set of records in the original
dataset that matches the intruder supplementary knowledge.

Sampling. We consider a scenario where an intruder obtains a copy of the
released sample file and performs an analysis using the released sample together
with the supplementary knowledge with an aim to infer a confidential attribute
value corresponding to the individual in question, e.g., salary in PUMS dataset.

We introduce the following notation specific to sampling: (1) Ms is the set of
records in the released sample dataset that matches the intruder’s supplementary
knowledge (2) fdi

is the frequency of di inMs, that is, how many times di appears
in records that belong to Ms.

To compute the initial and average entropy, we need a set of di’s and their
corresponding pi’s. We first identify |Ms| and |Mo| and then calculate fdi

for
each di. Then for each di we compute a corresponding pi, that is, the probability
that the record in question is in the sample and di is its confidential value or that
the record does not appear in the sample and di is its confidential value. Note
that for those records that do not appear in the sample the equal probability of
all |D| values is assumed. We also assume that |Mo| is a part of the intruder’s
supplementary knowledge.

pi =
fdi

|Ms|
·
|Ms|

|Mo|
+

|Mo| − |Ms|

|Mo|
· |D|

Query Restriction. The intruder obtains a system of k linearly indepen-
dent equations in n unknowns. To be able to solve the system and completely
compromise the database, the intruder needs n linearly independent equations.
Nevertheless, with k < n linearly independent equations, the intruder is able to
find the upper and lower bounds (min, max) for the confidential attribute value
in each record.

We follow the evaluation of an entropy based measure of disclosure risk pre-
sented in [31] and solve two linear programming problems, maximisation and
minimisation, to find L and U , the upper and the lower bound for ri, the value
of the confidential attribute C in record i that matches the intruder’s SK. The
constraints for the linear programming problems consist of the given system of
k linearly independent equations in n unknowns, plus a system of inequalities
of the form ri ≥ dmin and ri ≤ dmax, where dmin and dmax are the minimum
and the maximum value in the domain D. The linear function to be maximised
(minimised) is the confidential value in the record i. We use L and U for each
record that matches the intruder’s SK to find the probability pi for each value
di in the domain D. See Algorithm 3 bellow.
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Noise Addition. Algorithm 3 shows the steps that are followed in order to
analyse noise and obtain a set of di and their corresponding pi. Figure 4 shows
the average of initial and average entropy over 30 perturbed files, each size of
the intruder’s SK, and for each amount of noise. By k% noise, we mean that the
maximum noise M is k% of |D| − 1, rounded to the nearest 2.

Output: d[ ], p[ ]
// Find the set of records in the original dataset that matches the

intruder’s SK.

Find Mo;
foreach i in [1, |D|] do

pi ← 0;
end

foreach record belonging to Mo do

// Find L and U, that is, the lower and the upper bound for the

confidential attribute value in the current record.

Find L and U ;
foreach i such that di in [L, U ] do

pi ← pi + ( 1
U−L+1

· 1
|Mo|

);

end

end

Display: d[ ], p[ ]

Algorithm 2: Finding di and their corresponding pi

Output: d[ ], p[ ]
// Find the set of records in the original dataset that matches the

intruder’s SK.

Find Mo;
foreach i in [1, |D|] do

pi ← 0;
end

foreach record belonging to Mo do

// Find L and U, that is, the lower and the upper bound for the

confidential attribute value in the current record.

Find L and U ;
foreach i such that di in [L, U ] do

pi ← pi + ( 1
U−L+1

· 1
|Mo|

);

end

end

Display: d[ ], p[ ]

Algorithm 3: Finding di and their corresponding pi
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Fig. 4. SDC: Noise Addition, Dataset: PUMS.


