Skip to main content

Complexity of Shallow Networks Representing Finite Mappings

  • Conference paper
  • 1987 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9119))

Abstract

Complexity of shallow (one-hidden-layer) networks representing finite multivariate mappings is investigated. Lower bounds are derived on growth of numbers of network units and sizes of output weights in terms of variational norms of mappings to be represented. Probability distributions of mappings whose computations require large networks are described. It is shown that due to geometrical properties of high-dimensional Euclidean spaces, representation of almost any randomly chosen function on a sufficiently large domain by a shallow network with perceptrons requires untractably large network. Concrete examples of such functions are constructed using Hadamard matrices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fine, T.L.: Feedforward Neural Network Methodology. Springer, Heidelberg (1999)

    Google Scholar 

  2. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation 18, 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning 2, 1–127 (2009)

    Article  Google Scholar 

  4. Ito, Y.: Finite mapping by neural networks and truth functions. Mathematical Scientist 17, 69–77 (1992)

    MathSciNet  Google Scholar 

  5. Micchelli, C.A.: Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation 2, 11–22 (1986)

    Article  MathSciNet  Google Scholar 

  6. Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approximation of real-valued Boolean functions by neural networks. Neural Networks 11, 651–659 (1998)

    Article  Google Scholar 

  7. Kainen, P.C., Kůrková, V., Vogt, A.: A Sobolev-type upper bound for rates of approximation by linear combinations of heaviside plane waves. Journal of Approximation Theory 147, 1–10 (2007)

    Article  MathSciNet  Google Scholar 

  8. Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial-basis networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)

    Article  Google Scholar 

  9. Kainen, P.C., Kůrková, V., Sanguineti, M.: Dependence of computational models on input dimension: Tractability of approximation and optimization tasks. IEEE Trans. on Information Theory 58, 1203–1214 (2012)

    Article  Google Scholar 

  10. Kůrková, V.: Complexity estimates based on integral transforms induced by computational units. Neural Networks 33, 160–167 (2012)

    Article  Google Scholar 

  11. Maiorov, V.: On best approximation by ridge functions. J. of Approximation Theory 99, 68–94 (1999)

    Article  MathSciNet  Google Scholar 

  12. Maiorov, V., Pinkus, A.: Lower bounds for approximation by MLP neural networks. Neurocomputing 25, 81–91 (1999)

    Article  Google Scholar 

  13. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 8, 143–195 (1999)

    Article  MathSciNet  Google Scholar 

  14. Roychowdhury, V., Siu, K.Y., Orlitsky, A.: Neural models and spectral methods. In: Roychowdhury, V., Siu, K., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning, pp. 3–36. Springer, New York (1994)

    Chapter  Google Scholar 

  15. Kůrková, V.: Representations of highly-varying functions by one-hidden-layer networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 67–76. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Kůrková, V., Sanguineti, M.: Complexity of shallow networks representing functions with large variations. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 331–338. Springer, Heidelberg (2014)

    Google Scholar 

  17. Cover, T.: Geometrical and statistical properties of systems of linear inequailities with applictions in pattern recognition. IEEE Trans. on Electronic Computers 14, 326–334 (1965)

    Article  Google Scholar 

  18. Schläfli, L.: Theorie der vielfachen Kontinuität. Zürcher & Furrer, Zürich (1901)

    Google Scholar 

  19. Sylvester, J.: Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers. Philosophical Magazine 34, 461–475 (1867)

    Google Scholar 

  20. Erdös, P., Spencer, J.H.: Probabilistic Methods in Combinatorics. Academic Press (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Věra Kůrková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kůrková, V. (2015). Complexity of Shallow Networks Representing Finite Mappings. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19324-3_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19323-6

  • Online ISBN: 978-3-319-19324-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics