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Abstract. In the paper this restriction has been dismissed. Through incorpora-
tion of certain elements of rough set and fuzzy set theories into k-nn classifier
we obtain a sample based classifier with new features. In processing incomplete
data, the proposed classifier gives answer in the form of rough set, i.e. indicated
lower or upper approximation of one or more classes. The basic nearest neighbor
algorithm has been designed to work with complete data vectors and assumed
that each reference sample as well as classified sample belongs to one and the
only one class. Indication of more than one class is a result of incomplete data
processing as well as final reduction operation.
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1 Introduction

The nearest neighbors algorithm (k-nn) is one of the most widely known classifica-
tion method [3]. Despite its simplicity, or thanks to it, k-nn is still one of the most
resultant ones. The main idea is quite simple. The classifier which works in input
space ⌦ = Rn has the set of reference samples with known membership to one
of m classes. The s–th reference sample x

r

can be described by the vector v
r

=

[v

r,1, . . . , vr,i, . . . , vr,n,! (x

r

)]. The set is knowledge of the classifier. The goal of
the method is to indicate one of m classes for the sample x described by the vector
v = [v1, . . . , vi, . . . , vn]. In the first step we calculate distances d

r

between classified
sample x and each reference sample x

r

, i.e.

d

r

= kv
r

� vk , (1)

where definition of the norm k·k could be various, but determined in current classifi-
cation process. In the second step classifier should select k reference samples which
are nearest to classified one. The order of reference samples is insignificant, however
to make the selection at least partial sorting is necessary. We can apply in this process
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some fast input data aggregation methods [18], [19], [20]. Finally, classifier counts the
representatives of particular classes in selected samples. The most strongly represented
class is assigned to the classified sample x. So, the definition of the norm k·k and car-
dinality of selected samples (parameter k) are the only parameters of the algorithm. Let
us also note, that each reference sample belongs to exactly one class and the classifier
indicates only one class for classified sample (excepting the draw in the final step). The
usually applied norms require that all elements of vector v

r

and vector v have known
values. We would like to face this both restriction. Why? Because these are not fulfilled
in real classification tasks.

The restriction of one class for one sample is in general unnatural. Let take a red
fresh tomato from greengrocer. It undoubtedly can by classified as good one to make
a sandwich and as good one to make a tomato soup and as good one to make a Greek
salad. Many models of cars are good to drive to shopping or lift a child to school and go
to the theater. So one class is not enough. We have proposed and presented in the paper
fuzzy-like solution to extend k-nn classifier and make it capable to proceed multiple
classification.

The problem of incomplete input data is inherent in many real applications of
decision–making systems. In the industry, some information could be unavailable due
to e.g. the measuring instrument failure, temporary exceeding the measure range in
some port of monitoring process. In medical diagnosis procedures some tests are omit-
ted because of the patient state, unacceptable cost, lack of reagents or rejected by the
community because of beliefs. Moreover, it could be deemed unnecessary by a doctor.
The decision support system cannot remain idle in such cases. Of course, this problem
can be relatively easily solved by marginalization or imputation. In the marginalization
the input space ⌦ is temporary reduced to the lower dimensionality of consideration
space to the features of known values. Therefore, some elements of the system are just
turned off. Thus sometimes the elimination of all incomplete samples includes also the
marginalization. However, it is eventually accepted only in developing time. When we
use the imputation, the unknown values are replaced by estimated ones. The palette
of available methods is generally unlimited. The most primitive ones are confined to
insertion of random, average or most common values. More sophisticated ones apply
EM (Expectation Maximization) or k nearest neighbor algorithms, neural networks and
fuzzy systems.

In the paper has been proposed alternative solution - rough sets [12]. In this theory
an object can be classified to a positive region of the class (i.e. the object certainly be-
longs to the class), to a negative region of the class (i.e. the object certainly not belongs
to the class) or to a boundary region of the class (i.e. it is not possible to determine if the
object belongs to the class or not). Membership to these regions depends on the quality
of object description. If this description is good enough, the object belongs either to the
positive or negative regions. If the description is too weak, then the object belongs to
the boundary region. In the rough set theory [12] as well as in the theory of evidence
[15], we do not use the individual elements but some granules [13]. The granules con-
tain elements which are indistinguishable basing on knowledge that we dispose. Thus,
the size and the shape of granules depend on the used (known) knowledge about the
elements. Obviously, the solutions combined nearest neighbor algorithm with rough set
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theory and fuzzy logic are already present in the literature. Researchers have included
to his/her systems also other methods inspired by nature. Some examples are [7], [17],
[21], [14], [16], [6], [5], [4] and [1]. However our proposition is different. In it, when all
input features have known and available values, the classifier works as elemental k–nn
system. In the case, when some value is missing all possible outputs of the classifier
are estimated. When only one decision is possible, the feature with missing value could
be considered negligible and the classified sample is assigned to lower approximation
(positive region) of classes indicated by the classifier. When more than one decision
is possible, the classified sample is assigned to upper approximation of each class in-
dicated by the classifier. Obviously, it is not possible to test all features with missing
values. In presented solution we use the intervals and specific procedure shown below.
Moreover, the final answer of the classifier is based on type reduction similar to used in
neuro-fuzzy inference system.

2 Interval-type rough k-nn algorithm

The paper contains proposition of the algorithm which extends k-nn method by support
of interval-type value of attributes and fuzzy-rough type answer. Although the algorithm
considers whole spectrum of values inside all intervals, it analyses data only in limited
set of important points, but with nearly the same results. This type of input values can
be caused by imprecision or missing data. In the paper we use notation that value of
i-th attribute of s-th sample is defined as [v̄

s,i⇤, v̄
⇤
s,i

]. All intervals are normalized by the
algorithm to [0, 1] range:

v̄

norm

i⇤ =

v̄

org

i⇤ � v

min

i

v

max

i

� v

min

i

, v̄

⇤norm
i

=

v̄

⇤org
i

� v

min

i

v

max

i

� v

min

i

, (2)

where [v

org

i⇤ , v̄

⇤org
s,i

] is original value of i-th attribute, [vnorm
i⇤ , v̄

⇤norm
s,i

] is normalized
value of this attribute, vmin

i

, vmax

i

are minimal and maximal possible values of this
interval. Missing values of attribute are replaced by the most possible wide interval
([0, 1]). Because of interval-type of input values, the distance is also interval. In the
paper the distance between samples x

a

and x

b

is similar to typical taxicab metric:

d⇤(xa

, x

b

) =

X

i=1...n

8
><

>:

0 if [v
a,i⇤, v

⇤
a,i

] \ [v

b,i⇤, v
⇤
b,i

] 6= ;

min

(
|v

a,i⇤ � v

⇤
b,i

|,
|v⇤

a,i

� v

b,i⇤|

)
else,

(3)

d

⇤
(x

a

, x

b

) =

X

i=1...n

max

⇢
|v

a,i⇤ � v

⇤
b,i

|, |v
a,i⇤ � v

b,i⇤|,
|v⇤

a,i

� v

b,i⇤|, |v⇤
a,i

� v

⇤
b,i

|

�
. (4)

For simplification of notation, the distance between current test sample and reference
one (x

s

) is defined as [d

s⇤, d
⇤
s

]. The algorithm uses vector dsrt which stores sorted
values of all beginnings end endings (d

s⇤, d⇤
s

) of distance intervals. Repeated values of
this vector (dsrt) are removed. Another information required by the method is stored in
vectors  ⇤,  ⇤. They define how many samples have respectively ends or starts of the
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distance interval ([d⇤, d⇤]) smaller or equal to defined distance represented by dsrt:

 

c⇤ =

��{x
s

: d

⇤
s

 d

srt

c

}
��
, 

⇤
c

=

��{x
s

: d

s⇤  d

srt

c

}
��
. (5)

The algorithm also uses matrices  ⇤,  ⇤. The matrix  ⇤ stores numbers of reference
samples that have ends of distance intervals not greater than specified distance and
are members of defined class. Content of  ⇤ is the same, but beginnings of distance
intervals are considered:

 

c,j⇤ =

��{x
s

: d

⇤
s

 d

srt

c

^ x

s

2 !

j

}
��
, 

⇤
c,j

=

��{x
s

: d

s⇤  d

srt

c

^ x

s

2 !

j

}
��
, (6)

where !
j

is j-th class, m is number of classes. An example values for  
c,j⇤ and  ⇤

c,j

are visible in Figure 1. In the paper we assume that single sample may belong to any
number of classes or even to none, therefore

P
m

j=1( c,j⇤) is not always equal to  
c⇤,

and
P

m

j=1( 
⇤
c,j

) is not necessarily the same as  ⇤
c

. The algorithm defines ¬ 
c,j⇤, ¬ ⇤

c,j

:

¬ 
c,j⇤ =

��{x
s

: d

⇤
s

 d

srt

c

^ x

s

/2 !

j

}
��
=  

c⇤ �  

c,j⇤ , (7)

¬ ⇤
c,j

=

��{x
s

: d

s⇤  d

srt

c

^ x

s

/2 !

j

}
��
=  

⇤
c

�  

⇤
c,j

, (8)

which are opposite to  

c,j⇤,  ⇤
c,j

(Eq. 6). In the standard k-nn algorithm,  ⇤ =  

⇤,
 ⇤ =  

⇤ and only reference samples which have distance not grater than d

str

c

max

would
be chosen for voting. The index c

max

is the same as index of the first element in  that
has value not smaller than the main parameter of k-nn algorithm. Therefore, typical
k-nn would choose the following samples for voting:

�
x

s

: d

s

 d

str

c

max

 
, c

max

= argmin

c

( 

c

� k). (9)

The rate of samples that belong to specified class may be defined (for k-nn) as follows:

⌧

j

=

 

c

max

,j

 

c

max

. (10)

In the paper d⇤ is not necessarily the same as d⇤ and authors observed, that there
are possible solutions for k-nn algorithm for all distances d

str

c

min

, dstr
c

min

+1, . . . , d
str

c

max

,
where:

c

min

= argmin

c

�
 

c

� k

�
, c

max

= argmin

c

⇣
 

c

� k

⌘
. (11)

The distance d

c

min

is the first distance, where at least k distances have already started
or ended, whereas d

c

max

is the first distance, where at least k distances have ended.
Proposed algorithm calculates minimum (⌧

j⇤) and maximum (⌧

⇤
j

) rate of reference
samples that may belong to specified class (!

j

) and which are the k (or more in case of
a tie) nearest neighbors of test sample. In order to calculate these values algorithm must
iterate through distances d

str

c

min

, dstr
c

min

+1, . . . , d
str

c

max

. The numbers of samples which
are members and not of single class depends on d

c

and are in ranges [ 

c,j⇤, 
⇤
c,j

],
[¬ 

c,j⇤,¬ ⇤
c,j

], respectively. Also the number of these samples, which are members
or not of that class, must be not less than k. The case in which the previous condi-
tions are satisfied and the number of samples equals k0, k0 > k means situation, when
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(k+1)-th, (k+2)-th ... (k0)-th nearest neighbors are in the same distance as k-th nearest
distance (a tie), therefore they must be considered during voting. During computation
of ⌧⇤

j

the biggest possible ( ⇤
j,c

) number of samples that belong to !
j

are selected, and
smallest possible (up to  

j,c⇤) number of samples which are not members of the class
are chosen. There are three cases:
1. In the first one  ⇤

j,c

+ ¬ 
c,j⇤ < k, therefore the number of chosen samples which

are not member of current class equals k �  

⇤
j,c

.
2. When  ⇤

j,c

+¬ 
c,j⇤ = k, the number of chosen samples which are not members of

current class are set to k = ¬ 
c,j⇤.

3. In the last case  ⇤
j,c

+ ¬ 
c,j⇤ > k the number of chosen samples which are not

members of current class equals ¬ 
c,j⇤.

⌧

⇤
j

= max

c=c

min

...c

max

(⌧

⇤
c,j

), (12)

⌧

⇤
c,j

=

8
>>>>><

>>>>>:

 

⇤
c,j

k

if ( ⇤
c,j

+ ¬ ⇤
c,j

) < k

 

⇤
c,j

k

if ( ⇤
c,j

+ ¬ 
c,j⇤) = k

 

⇤
c,j

 

⇤
c,j

+ ¬ 
j,c

⇤
if ( ⇤

c,j

+ ¬ 
c,j⇤) > k.

(13)

After transformation:

⌧

⇤
j

= max

c=c

min

...c

max

 
 

⇤
c,j

max

�
k, 

⇤
c,j

+ ¬ ⇠c,j⇤
 
!
. (14)

Similarly to ⌧⇤
j

, during calculation of ⌧
j⇤ the smallest possible number of samples that

belong to the current class are selected, and number of samples which are not members
of current classes equal ¬ 

c,j⇤. There are also three cases:
1. When  

c,j⇤ + ¬ ⇤
c,j

< k, the number of samples that belong to current class equal
k � ¬ 

c,j⇤.
2. If  

c,j⇤ + ¬ ⇤
c,j

< k, then number of samples that belong to current class defined
by  

c,j⇤.
3. Otherwise number of samples that belong to current class is set to  

c,j⇤.

⌧

j⇤ = min

c=c

min

...c

max

(⌧

c,j⇤), (15)

⌧

c,j⇤ =

8
>>>>><

>>>>>:

k � ¬ ⇤
c,j

k

if ( 
c,j⇤ + ¬ ⇤

c,j

) < k

 

c,j⇤
k

if ( 
c,j⇤ + ¬ ⇤

c,j

) = k

 

c,j⇤
 

c,j⇤ + ¬ ⇤
c,j

if ( 
c,j⇤ + ¬ ⇤

c,j

) > k.

(16)

After transformation,

⌧

j⇤ = min

c=c

min

...c

max

 
max

�
k � ¬ ⇤

c,j

, 

c,j⇤
 

max

�
k, 

c,j⇤ + ¬ ⇤
c,j

 
!
. (17)

For the same example as in Figure 1 the values of ⌧
c,j⇤ and ⌧⇤

c,j

are shown in Figure 2.
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Fig. 1: Values of  
c,j⇤ and  

⇤
c,j

for 90% samples of BCW database and artificial test
sample with values of all attributes equal 0.5 (after normalisation), and the first attribute
with missing values. For this example c

min

= 8, c
max

= 30.

Fig. 2: Values of ⌧
c,j⇤ and ⌧⇤

c,j

for the same situation as in Figure 1.
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3 Simulations

Authors have examined influence of existence of missing values in test sample to re-
sults of the system. Proposed algorithm was tested using 10-fold cross validation [8]
and databases from UCI Repository [2]. Therefore all results are averages for 10 sim-
ulations. For test purposes five databases were chosen, and parameter k was set empir-
ically for all of them in range [5, 13]. The number of samples was equal from 214 to
699, the number of attributes from 4 to 34 and number of classes from 2 to 3. Properties
of used databases, and chosen values of k are visible in Table 1. Proposed algorithm

Table 1: Properties of used databases from UCI repository and used value of k parameter

number number number
Data set name k of samples of attributes of classes
Glass Identification 11 214 9 2
Ionosphere 9 351 34 2
Iris 5 150 4 3
Wine 11 178 13 3
Breast Cancer Wisconsin (BCW) 13 699 9 2

returns interval-type answer ([⌧
j⇤, ⌧

⇤
j

]) for each class for classification of test sample.
This type of result is also lower (⌧

j⇤) and upper (⌧⇤
j

) approximation of membership
of test sample to the class !

j

. All used datasets were published for benchmarking of
classifiers. Although in used data sets single sample is member of only one of available
classes, the algorithm operates separately of each class membership, and can be used
for cases, where single sample is member of any number of classes. Proposed algorithm
was tested using two criteria:
1. The first criterion compute rate of incorrect classification of sample to each class

using threshold 0.5,

'(X

(t)
) = 1� 1

m ·M (t)

M

(t)X

s=1

mX

j=1

8
>>><

>>>:

1 if

0

B@
⌧

⇤
j,s

> 0.5

^⌧
j,s⇤ > 0.5

^x(t)
s

2 !

j

1

CA _

0

B@
⌧

⇤
j,s

< 0.5

^⌧
j,s⇤ < 0.5

^x(t)
s

/2 !

j

1

CA ,

0 otherwise,
(18)

where X

(t) is set of test samples, M (t) is number of test samples, m is number of
classes, x(t)

s

2 !

j

defines that test sample ought to be member of j-th class.
2. The second criterion compute rate of situation, where classifier refuse to answer if

test sample is member of a class,

 (X

(t)
) =

1

m ·M (t)

M

(t)X

s=1

mX

j=1

8
><

>:
1 if

 
⌧

⇤
j,s

� 0.5

^⌧
j,s⇤  0.5

!
,

0 otherwise.
(19)
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The results of evaluation of proposed algorithm are presented in Tables 2, 3, 4, 5, 6.
With increase of number of removed values of attributes level of ' fall towards 0, in
cost of increase of  .

Table 2: Results for Ionosphere Data Set

list of removed results [%]
attributes '  

; 13.1 0
v29 7.7 13.7

v18, v29 4.5 25.1
v10, v18, v29 0.8 52.1

v10, v18, v29, v33 0 77.2
v8, v10, v18, v29, v33 0 86.3

v8, v10, v15, v18, v29, v33 0 91.2
v7, v8, v10, v15, v18, v29, v33 0 98

v7, v8, v10, v15, v18, v27, v29, v33 0 100

4 Conclusions

Proposed algorithm is generalization of k-nn method. It returns interval type member-
ship of test sample to each class, caused by interval-type value of attributes. In the
research intervals were used only to represent missing values, but could be also used to
present uncertainty of processed data. Proposed algorithm caused, that after increase of
the set of removed values of attributes rate of wrong classification has not increased. It
occurs because classifier does not give incorrect answers as the result of missing values,
in other words if the classification is proper for complete input vector, it is also proper
in case of incomplete data. In this properties result is similar like in rough-neuro-fuzzy
classifiers presented in [9], [10], [11]. Moreover, processing with the rates ⌧ allows to
built system more suitable to work with samples could be belong to more than on class.
The experimental studies confirm the expectations.

Acknowledgments The project was funded by the National Science Centre under de-
cision number DEC-2012/05/B/ST6/03620.
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