Skip to main content

A New Approach to Nonlinear Modeling Based on Significant Operating Points Detection

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9120))

Included in the following conference series:

Abstract

The paper presents a new approach to nonlinear modeling based on significant operating points detection from non-invasive identification of nonlinear dynamic system. The swarm intelligence supported by the genetic algorithm is used in the proposed approach to identify the unknown parameters of the nonlinear dynamic system in different significant operating points. The parameters of the membership functions of the fuzzy rules and the parameters of the linear models are simultaneously identified. The new approach was tested on the nonlinear electrical circuit, which was replaced by the approximate linear model. The obtained results prove efficiency of the new approach based on the significant operating points detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsumait, J., Sykulski, J., Al-Othman, A.: A hybrid ga–ps–sqp method to solve power system valve-point economic dispatch problems. Applied Energy 87, 1773–1781 (2010)

    Google Scholar 

  2. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 169–180. Springer, Heidelberg (2014)

    Google Scholar 

  3. Chiu, S.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Systems 2(3) 2, 267–278 (1994)

    Google Scholar 

  4. Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

    Google Scholar 

  5. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Analysis Series A: Theory, Methods and Applications 71, 1659–1672 (2009)

    Google Scholar 

  6. Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)

    Google Scholar 

  7. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. Journal of General Systems 42(6), 706–720 (2013)

    Google Scholar 

  8. Cpałka, K., Rutkowski, L.: A New Method for Designing and Reduction of Neuro-fuzzy Systems. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), Vancouver, BC, Canada, pp. 8510–8516 (2006)

    Google Scholar 

  9. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno Fuzzy Systems. In: Proceedings of the International Joint Conference on Neural Networks, Montreal, pp. 1764–1769 (2005)

    Google Scholar 

  10. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Transactions on Systems 9(4), 1450–1458 (2005)

    Google Scholar 

  11. Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 349–362. Springer, Heidelberg (2014)

    Google Scholar 

  12. Dziwiñski, P., Rutkowska, D.: Algorithm for generating fuzzy rules for WWW document classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1111–1119. Springer, Heidelberg (2006)

    Google Scholar 

  13. Eftekhari, M., Deai, B., Katebi, S.: Gradient-based ant colony optimization for continuous spaces. Esteghlal Journal of Eng. 25, 33–45 (2006)

    Google Scholar 

  14. Eftekhari, M., Zeinalkhani, M.: Extracting interpretable fuzzy models for nonlinear systems using gradient-based continuous ant colony optimization. Fuzzy Information and Engineering 5, 255–277 (2013)

    MathSciNet  Google Scholar 

  15. El-Abd, M.: On the hybridization on the artificial bee colony and particle swarm optimization algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(2), 145–155 (2012)

    MathSciNet  Google Scholar 

  16. Fang, N., Zhou, J., Zhang, R., Liu, Y., Zhang, Y.: A hybrid of real coded genetic algorithm and artificial fish swarm algorithm for short-term optimal hydrothermal scheduling. International Journal of Electrical Power & Energy Systems 62, 617–629 (2014)

    Google Scholar 

  17. Gandomi, A.H., Yun, Y.G.J., Yang, X.S., Talatahari, S.: Chaos-enhanced accelerated particle swarm optimization. Communications in Nonlinear Science and Numerical Simulation 18, 327–340 (2013)

    MathSciNet  Google Scholar 

  18. He, D.K., Wang, F.L., Mao, Z.Z.: Hybrid genetic algorithm for economic dispatch with valve-point effect. Electric Power Systems Research 78, 626–633 (2008)

    Google Scholar 

  19. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, MAN, AND Cybernetics - Part B: Cybernetics 34(2), 997–1006 (2004)

    Google Scholar 

  20. Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)

    Google Scholar 

  21. Liu, X., Jiang, M., Jike, G.: A method research on nonlinear system identification based on neural network. Lecture Notes in Electrical Engineering, vol. 154(1), pp. 234–240. Springer (2012)

    Google Scholar 

  22. Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 523–534. Springer, Heidelberg (2013)

    Google Scholar 

  23. Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 329–344. Springer, Heidelberg (2013)

    Google Scholar 

  24. Arain, M.A., Hultmann Ayala, H.V., Ansari, M.A.: Nonlinear system identification using neural network. In: Chowdhry, B.S., Shaikh, F.K., Hussain, D.M.A., Uqaili, M.A. (eds.) IMTIC 2012. CCIS, vol. 281, pp. 122–131. Springer, Heidelberg (2012)

    Google Scholar 

  25. Niknam, T.: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Applied Energy 87, 327–339 (2010)

    Google Scholar 

  26. Peteiro-Barral, D., Bardinas, B.G., Perez-Sanchez, B.: Learning from heterogeneously distributed data sets using artificial neural networks and genetic algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(1), 5–20 (2012)

    Google Scholar 

  27. Przybył, A., Er, M.J.: The idea for the integration of neuro-fuzzy hardware emulators with real-time network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 279–294. Springer, Heidelberg (2014)

    Google Scholar 

  28. Przybył, A., Jelonkiewicz, J.: Genetic algorithm for observer parameters tuning in sensorless induction motor drive. In: Neural Networks and Soft Computing, pp. 376-381 (2003)

    Google Scholar 

  29. Przybył, A., Smoląg, J., Kimla, P.: Distributed control system based on real time ethernet for computer numerical controlled machine tool. Przegląd Elektrotechniczny 86(2), 342–346 (2010) (in Polish)

    Google Scholar 

  30. Prampero, P.S., Attux, R.: Magnetic particle swarm optimization. Journal of Artificial Intelligence and Soft Computing Research 2(1), 59–72 (2012)

    Google Scholar 

  31. Rudenko, O., Bezsonov, O.: Robust neuroevolutionary identification of nonlinear nonstationary objects. Cybernetics and Systems Analysis 50(1), 17–30 (2014)

    MathSciNet  Google Scholar 

  32. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, July 26-29, vol. 2, pp. 1031–1036 (2004)

    Google Scholar 

  33. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)

    Google Scholar 

  34. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Google Scholar 

  35. Rutkowski, L.: Online Identification Of Time-Varying Systems by Nonparametric Techniques. IEEE Trans. Automatic Control 27(1), 228–230 (1982)

    MathSciNet  Google Scholar 

  36. Rutkowski, L.: On nonparametric identification with prediction of time-varying systems. IEEE Trans. Automatic Control 29(1), 58–60 (1984)

    MathSciNet  Google Scholar 

  37. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems & Control Letters 6(1), 33–35 (1985)

    MathSciNet  Google Scholar 

  38. Rutkowski, L.: Real-time identification of time-varying systems by non-parametric algorithms based on Parzen kernels. Int. Journal of Systems Science 16(9), 1123–1130 (1985)

    Google Scholar 

  39. Rutkowski, L.: A general-approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Trans. Circuits and Systems 33(8), 812–818 (1986)

    Google Scholar 

  40. Rutkowski, L., Rafajłowicz, E.: On optimal global rate of convergence of some nonparametric identification procedures. IEEE Trans. Automatic Control 34(10), 1089–1091 (1989)

    Google Scholar 

  41. Rutkowski, L.: Application of multiple Fourier-series to identification of multivariable non-stationary systems. Int. Journal of Systems Science 20(10), 1993–2002 (1989)

    MathSciNet  Google Scholar 

  42. Rutkowski, L.: Identification of miso nonlinear regressions in the presence of a wide class of disturbances. IEEE Trans. Information Theory 37(1), 214–216 (1991)

    MathSciNet  Google Scholar 

  43. Rutkowski, L.: Multiple Fourier-series procedures for extraction of nonlinear regressions from noisy data. IEEE Trans. Signal Processing 41(10), 3062–3065 (1993)

    Google Scholar 

  44. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control and Cybernetics 31(2), 297–308 (2002)

    Google Scholar 

  45. Starczewski, J.T., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

    Google Scholar 

  46. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. Advances in Soft Computing, pp. 570–577 (2003)

    Google Scholar 

  47. Sutrisno, I., Mohammad, A.J., Jinglu, H.: Modified fuzzy adaptive controller applied to nonlinear systems modeled under quasi-arx neural network. Artificial Life and Robotics 19, 22–26 (2014)

    Google Scholar 

  48. Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 91–100. Springer, Heidelberg (2013)

    Google Scholar 

  49. Szczypta, J., Przybył, A., Wang, L.: Evolutionary approach with multiple quality criteria for controller design. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 455–467. Springer, Heidelberg (2014)

    Google Scholar 

  50. Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. Journal of Artificial Intelligence and Soft Computing Research 1(1), 59–79 (2011)

    Google Scholar 

  51. Tran, V.N., Brdys, M.A.: Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems. Journal of Artificial Intelligence and Soft Computing Research 1(1), 43–57 (2011)

    Google Scholar 

  52. Wang, F., Qiu, Y.: A modified particle swarm optimizer with roulette selection operator. In: Natural Language Processing and Knowledge Engineering, IEEE NLP-KE 2005, pp. 765–768 (2005)

    Google Scholar 

  53. Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013)

    Google Scholar 

  54. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)

    Google Scholar 

  55. Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning. Expert Systems with Applications 41, 4170–4180 (2014)

    Google Scholar 

  56. Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification based on horizontal partitioning. Pattern Recognition 47, 2652–2661 (2014)

    Google Scholar 

  57. Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013)

    Google Scholar 

  58. Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 216–230. Springer, Heidelberg (2014)

    Google Scholar 

  59. Zalasiński, M., Cpałka, K., Hayashi, Y.: New Method for Dynamic Signature Verification Based on Global Features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 231–245. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Dziwiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dziwiński, P., Avedyan, E.D. (2015). A New Approach to Nonlinear Modeling Based on Significant Operating Points Detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9120. Springer, Cham. https://doi.org/10.1007/978-3-319-19369-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19369-4_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19368-7

  • Online ISBN: 978-3-319-19369-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics