
Classification in Sparse, High Dimensional
Environments Applied to Distributed Systems

Failure Prediction

José M. Navarro , Hugo A. Parada G., and Juan C. Dueñas

Abstract. Network failures are still one of the main causes of dis­
tributed systems' lack of reliability. To overcome this problem we present
an improvement over a failure prediction system, based on Elastic Net
Logistic Regression and the application of rare events prediction tech­
niques, able to work with sparse, high dimensional dataseis. Specifically,
we prove its stability, fine tune its hyperparameter and improve its in­
dustrial utility by showing that, with a slight change in dataset creation,
it can also predict the location of a failure, a key asset when trying to
take a proactive approach to failure management.

Keywords : Online failure prediction • Machine learning • System man­
agement • Automatic feature selection • Logistic regression • Multivariate
prediction

1 Introduction

Big Data has revolutionized the way industry works. From data-driven decisions
to breakthrough discoveries through the analysis of massive data, exploiting all
the available da ta we generate is improving and broadening our capabilities in
ways we hadn ' t thought possible. This discipline relies heavily on distributed
systems, as the power of big da ta platforms, such as Hadoop, resides on the fact
that they scale horizontally, working over a grid of commodity hardware-based
nodes tha t are coordinated to work together. In terms of failures, a distributed
system has an inherent complexity due to the sheer amount of devices it is
composed of, including all the network layer to connect the different hosts. In
fact, the network layer is one of the key factors in ensuring fault transparency. In
its book, Tanenbaum [21] remarks how "reliable networks simply do not exist"
and tha t is the exact point we tackle in this paper. To do so, we employ a
discipline called Proactive Fault Management. And, more specifically, one part

of it called Online Failure Prediction, which deals with identifying situations
that will possibly cause a failure. We improve a method we already proposed in
[10], validating and expanding it, to achieve a reliable failure prediction model
for a large infrastructure IT network which could be integrated in a Reliability
Solution for companies. Our key contribution is showing how this model can
predict not only the possible occurrence of a failure, which has already been
extensively treated [4] [7] [8], but where it will happen. This feature is crucial in
ensuring fault transparency in large scale systems, as knowing that an event will
happen will often not be enough to pinpoint it and correct it before it affects
service quality. At the point of writing this paper, the authors are only aware of
few efforts in this direction. What sets apart our paper from them is the dataset
we use and its associated method. Our data present two problems: first, data
sparsity, which happens when (assuming binary data) most of the dataset matrix
is composed of zeroes (event absences), instead of ones (event presences). This
situation is a tricky one for most usual machine learning classification methods,
such as logistic regression, where they tend to overfit or not estimate correctly
the target variable [15]. The second problem in our environment is the high
complexity of our data: we start with more than 1300 input variables. This
situation can also affect the performance of classification methods so we are
forced to select which variables are actually affecting each event in each node.
Genetic Algorithms (a technique used by other works in this area) suffer an
exponential increase when the number of elements to mutate is large, so we
consider our approach is more valid for this kind of environment.

Apart from the main contribution we exposed before, in this paper we show
several additional contributions related to the problem at hand: we test the ran­
domness introduced by our method's preprocessing phase, fine-tune the method's
hyperparameters and analyze the effect of adding resource consumption infor­
mation. In the following sections we analyze the current works in Online Failure
Prediction, briefly comment the methodology we used, expose the scenario we
worked on, detail the experiments we carried on and the results they yielded,
draw some conclusions and expose future lines of work that could span from this
research.

2 Related Work

In terms of the industrial problem we are solving, the current state of the art [22]
shows that network hardware failures are still a key aspect of distributed sys­
tems reliability, which justifies the practical aspects of our contribution. In fact,
[23] [24] [25] independently perform an analysis of failure logs from distributed
systems and conclude that network errors are often present on them, along with
closely correlated failures. So we now turn to which techniques have been ap­
plied to solve similar problems as the one we deal with. Dealing with critical
systems, whose correct performance must be ensured, we can not rely on reac­
tive approaches to maintain their reliability. We, thus, turn to Online Failure
Prediction, which takes a proactive approach to system reliability [1]. This dis­
cipline covers from data cleaning and preprocessing to the actual creation of

the prediction model. Though most of the work has been carried out in the
creation phase, there have also been efforts in the preprocessing phase, such as
[16] [17]. They filter and clean data to improve a prediction model's performance.
There has also been a whole array of techniques applied to predicting failures
in distributed system and computing clusters, where the works of Watanabe et
al. [2] [3], who show a method of pattern learning for the prediction of failures,
Salfner et al. [6][11], who model a system using Semihidden Markov Models
and add fuzzy logic to the OFP scenario, and, specially, Zheng et al. [5] [7] are
the main ones. The latter authors have worked for several years with the IBM
Blue Gene supercomputer and have a long streak of papers related to the issue
at hand. Apart from these main works, there have also been separate relevant
works in the area, like the combination of time series analysis and fault trees [4],
an anomaly detection approach to OFP [9], the creation of failure clusters mea­
sured by their correlation [8] and the research presented in [13] by Pitakrat et
al., that proposes a full framework for OFP and tests several Machine Learning
methods such as Naive Bayes or Support Vector Machines to test their perfor­
mance. Compared to all these previous works, our proposal has a key feature
that separates it from them and a minor one: the major one is that we include
location awareness in our prediction, this is, our method not only predicts which
event will happen but also indicates its node. As we stated in the introduction,
the only work that also addresses this point is the one present in [12] by Zheng et
al. The main advantage of our system over Zheng's work is its ability to work in
a difficult environment (a high dimensional sparse one) and produce valid, sparse
outputs. Additionally, the final model we train in this paper has two different
data input sources: system events and system resource consumption. Most pre­
vious works only have a single kind of data source. As a side note, even though
some works we have discussed do not model distributed systems' networks they
are still relevant to our research, taken that, from an OFP point of view, they
can be modelled using similar techniques.

The model creation algorithm we use, which we presented in [10], uses several
approaches found on literature to work in the complex environment we defined
before. Regarding the high dimensionality of the problem, we use a technique
called Elastic Net, proposed by Zou et al. in [14], which allows the user to
select the amount of two regularization types he prefers. This feature expands
the capabilities of our model to use the optimal regularization amount for each
event by optimizing it through a grid search. To work with sparse data we follow
the advices given in [15], which suggests to trim the amount of zero (absences of
the target event) instances included in the training dataset to optimize logistic
regression performance. Summed up, the algorithm we use follows these steps:

1. Dataset randomized separation in training, validation and test dataseis with
zero-trimming to fulfill a user defined zero-to-one proportion.

2. For each event to model, train eight different logistic regression models with
different regularization options (LI and L2 proportions). Each of them is also
internally cross validated to optimize model complexity and perform feature
selection.

3. Test each model against the validation dataset to select the best performing
one.

4. Test the best model against the test dataset to obtain its score.

Using this model we showed in [10] how we were able to successfully predict
system failures in a distributed system. In this work we validate and expand
it to improve its usefulness for real Big Data environments. This method also
fulfills the requirements given in [20] by Trendafilov et al., as it produces a robust,
sparse solution and allows the method to work over large datasets with a minimal
amount of valuable data without producing a linear combination of variables as
a results of the anaylisis, which allows for an easy interpretation of the output.
Other interesting approaches to sparse data found in literature are the method
proposed by Chickering and Heckerman in [18], which adapts standard machine
learning methods to work with dense matrices instead of sparse ones and the
work of Li et al. in [19], which is centered around calculating data distances
from a conditional sample of the dataset. They are not directly appliable to our
method, though, as we do not use distances and to modify the elastic net to
work with dense matrices is out of our research scope.

3 Experiments and Results

3.1 Scenario

As in [10], the dataset we worked with was obtained from a big Spanish bank's
IT network infrastructure. It was composed of two different structures, an in­
tranet and an internet-connected section. They were a total of 36 devices, whose
structure was divided in:

— Eighteen switches.
— Two DNS.
— Four routers.
— Six firewalls.
— Six load balancers.

We had system event logs from every device listed before, comprising a total
of 22823 training instances. These events were categorized by their severity, the
node they happened in, their timestamp and the event ID. Our key objective is
to be able to forecast as many events' occurrence as possible in the distributed
systems environment with the highest attainable detail. Some examples of these
events were the three critical events present on our dataset: "'99% CPU usage
threshold has been surpassed"', "'A single device is down or is not reachable
by SNMP messages'" and "'A chassis is down or is not reachable by SNMP
messages."'.

We will now describe our main contributions divided in the different exper­
iments we carried out and their results. The first two ones are related to vali­
dating and fine tuning the model we use, and the last two experiments expand
and improve the forecasting capabilities of our method, adding a new prediction
dimension and testing new information sources.

3.2 Preprocessing Method Stability

We started by testing the preprocessing method of our algorithm in terms of
its stability. As it randomizes the dataset before splitting it, it may introduce
random noise in the output models' performance. To check the validity of this
assertion, we ran the algorithm for every model twenty times, as we considered
this number of iterations large enough to show any random behaviour that could
harm the models' performance, and analyzed each created model.

The first metric we extracted was the amount of created models for each
iteration. The minimum amount was 53 and the maximum one was 56, with a
mean ± standard deviation of 54.15 ± 0.9333 models. So, in terms of amount of
created models, the algorithm is stable. This, indeed, does not seem like a large
rate, unless it affects some critical events, which could lead to not modelling a
key objective. This is not the case, though, as the only one that has a slightly
high standard deviation is associated with a manual change in the network, as
experts confirmed us. Lastly, we checked each model's performance in terms of
average F-score and its standard deviation. Fig. 1 shows the obtained results.
Only six events suffer from a deviation of more than 0.1 and none of them is a
critical one. On the other hand, most models have a very narrow deviation bar
and keep a stable score over the whole process. We, thus, consider the stability of
the preprocessing phase sufficiently justified for the environment we are working
in. We strongly emphasize the fact that this approach has only been proven to be
suitable for this specific dataset. The large deviation found in the six anomalous
events would lead us to deduce there are separate information clusters in those
data, where modelling one cluster is not enough to forecast other ones. We
would have to test this assertion to confirm it. Had more models presented this
behaviour, we would have had to change our preprocessing phase to a more
complex one, such as k-fold cross validation. Taking into account the number
of models to be created, short computation time for each model's creation is a
requisite; so we prefer simpler methods whenever they perform good enough. We
consider, thus, that our preprocessing phase stability has been proven.

UjiiH»**"""'

Fig. 1. Average F-score for 20 iterations of the algorithm for each event. Critical events
and most non-critical ones have a stable performance.

3.3 Zero to One Proportion Study

Another step in the preprocessing phase is the pruning of excessive zeroes in the
dataset, according to the advice given by King et al. in [15], where they suggest to
start from a 1 to 1 proportion and start adding zeroes from there. In order to find
the optimal amount of zeroes to add to our dataseis, we performed a grid search
over the zero proportion value, running our elastic net model for values ranging
from 1 to 15. To compare its performance with a standard elastic net logistic
regression approach, we also ran the algorithm without varying the zero to one
proportion in the dataset. Considering that the stability of the preprocessing
method was proven in the previous section, we only ran each model once. We
will now compare each result in three dimensions: number of created models,
computation time and average peformance for every event. We set as the main
criteria for proportion selection the highest possible performance, unless the
disparity in one of the other two metrics were unreasonably high.

For the first two metrics, created models with an f-score higher than zero
and computation time, the distribution can be found on Table 1. In terms of
created models, apart from an outlier at 1 to 1 proportion, a growing tendency is
clear in the data. Assuming the second value is spurious, the optimal zero to one
value would be 13, though the other ones are close to it. Regarding computation
time, the total execution time we can draw two main points: the first one is that
pruning zeroes has a drastic effect on computation time, reducing it by a factor
of, at least, 22. The second conclusion is that, when pruning zeroes, computation
time is linearly related with the zero to one proportion. As every value is, at
least, 22 times less than the standard total execution time, we conclude that
every zero to one proportion is equally valid for our experiment and, at the
same time, justify the use of zero pruning as a time saving tool.

Table 1. Secondary metrics for each zero to one proportion

Proportion amount No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Created models 36 44 37 37 37 38 40 41 40 42 42 41 42 43 41 42
Computation time (s) 8275 57 97 113 132 153 176 194 214 230 255 275 298 324 340 362

But the time saving that we have just studied would be completely irrelevant
if performance decreased when zeroes are pruned. To study it, we plot in Fig. 2
the average F-score of models created with each proportion value. In this figure
the model with a proportion of 3 to 1 of zeroes to ones is the one with best overall
average performance, combined with a really low standard deviation. This settles
the discussion of which proportion to use. As the amount of created models is
not too low and the performance is the best one, 3 is the appropriate proportion
of zeroes for our dataset.

We want to comment on the possibility of adding the optimization of this
hyperparameter to the actual model training. We declined this option for two
main reasons: computation time and dataset limitations. Adding another grid
search over the already convoluted process of multiple cross validations would
have imposed a burden on training time and would have forced us to split our

dataset into even more groups. As it is not a specially big one, we preferred to
obtain a suboptimal, though usually good value for the zero proportion and take
that as a fixed value for everv experiment.

H

Zero to One Proportion
10 11 12 13 14 15

Fig. 2. Average F-score for each zero to one proportion

3.4 Locality Awareness

Now that we know that our algorithm is fine tuned and validated, we set on
to improve its industrial interest by adding another prediction dimension to it.
This section is divided in three different experiments, all of them related to
locality and being able to predict where a failure will happen. We will compare
them through the number of correctly created models, the distribution of the
obtained performances and, numerically, by the average F-score and its standard
deviation. We will first state the purpose of each experiment and then compare
them all together. The first experiment is the most simple one and starts from
the hypothesis that the occurrence of an event in a specific node is only affected
by previous events on that node. To test this hypothesis, we divided our dataset
in as many different dataseis as nodes were in the system, and trained the
elastic net model for each event on each node separately under the assumption
previously stated.

The second and third experiments are, in essence, just a subtle change in the
dataset preparation, but they completely alter the working environment and can
enhance the practical utility of the models. This change we speak of deals with
changing the input and output variables. Previously, our input features where
•'Event X has happened in the system" and the variable to predict was "Event
Y will happen in the system". Now, when preprocessing our data, we deal with
new input variables: we divide the n previous features in ¡3 < an variables, where
a indicates the number of nodes in the system and W the chosen observation
window, where each feature now indicates "Event A has happened in Node tp
in the last W minutes". Inversely, our output now changes to "Event B will
happen in node tp' in the next W minutes". With this subtle change, without
altering the actual algorithm in any way, our problem changes (the number
of variables is greatly increased), forcing our model to work in a much harder
environment, but we also increase its industrial utility. The difference between
these two experiments is that in the second one, both the input and the output

are divided by locality, whereas in the third one, only the output is divided by
node, this is, it takes as a input just what has happened in the system and tries
to predict where and which event will happen.

We can see in Table 2 the amount of models that yielded a higher than zero
performance (measured in F-score), their average F-score and their standard de­
viation for the three experiments. The first observation we can draw from the
first table is the drastic decrease in the percentage of created models over the
total possible amount. We see two possible reasons for this behaviour, compar­
ing it with the high amount percentage of created models obtained in previous
experiments: the first one would be to assume that more data is needed as the
number of features is increased. But we must also take into account the con­
ditions of previous and current experiments: modelling events on a system, a
steady pattern in a node can make an event predictable, even if its appearances
are random in other nodes. Predicting failures in a specific node only yields mod­
els for nodes that actually exhibit a certain pattern. Thus, this severe decrease
in created model percentage is not, necessarily, an ominous sign, as it may just
indicate that not every event in every node exhibits any kind of pattern. Apart
from this remark, we can also state that events in a node are influenced by events
in other nodes. This is, each node is not an isolated system. This supports the
correlated error conclusion that is exposed in [24] and [25]. If we had to choose
which model better predicts our environment, we would tend to choose the op­
tion that yields better models as a whole, which is the second one, the Complex
Input Complex Output Node Aware Elastic Net.

Table 2. Performance metrics for each node-awareness experiment

Models Amount

Correctly Created Models Amount

Correctly Created Models Proportion

Average F-score

F-score Standard Deviation

Single N o d e s

1140

420

36.84%

0.826

0.201

Complex Input Simple Input

Complex Output Complex Output

1336

601

44.99%

0.931

0.102

1336

564

42.21%

0.9254

0.108

To further study how each different option affects the models' performance, in
Fig. 3 we show the distribution of the F-scores obtained for each option, which
allows us to study in finer detail each option's effect. This figure reinforces the
conclusions we previously drew. Events in a certain node are affected by events
in different nodes and both experiments of locality are satisfactory, though, at
the expense of computation time, performance can be slightly improved (and
the amount of information extracted from the model) by using a complex input,
this is, using every event in every node as a single input feature.

•g Single Nodes F-score distribution
= 1 2 0 -

£ 8 0 -

0.5 0.6 0.7 0.8 0.9 1.0
F-score

•£ Complex Input Complex Output F-score distribution

= 1 2 0 -

ro 8 0 ~
« 40 -

» 40

O 0

0.5 0.6 0.7 0.8 0.9 1.0
F-score

Simple Input Complex Output F-score distribution

. _ n-i-i-n-n-H
0.5 0.6 0.7 0.8 0.9 1.0

F-score

Fig. 3. F-score distribution for each node-awareness experiment.

3.5 Resource Consumption Addition

Once we have proved that the elastic net logistic regression model is able to
forecast failures and their location in a much harder environment than previous
experiments, we then tried to improve the node-aware model by adding resource
consumption information. The information we had available was CPU, memory,
hard drive and network interfaces usage, expressed in time series with a five-
minute sampling frequency. For every node to forecast failures in, we add its
resources consumption as new input features. We ran several experiments with
different ways of creating these new variables, taking the Simple Input Complex
Output Node-Aware Elastic Net model we trained in the previous section. We
used this model to reduce the number of input variables, which would allow new
input variables to have a greater influence on the model. The first experiments
we ran added one single resource to the model, but it did not affect the model's
performance in any remarkable way, so we will not include their detailed results
in this work. The two experiments that provided good results were the following
ones, each of them centered around different ways to transform a time series to
ensure its stationarity: first, using a technique called E-Divisive with Medians
proposed by James et al. in [26] to detect changes in the mean of a time series,
we divided each resource information in two different time series: one with its
mean value for every moment and one with the variation over the mean for
each specific moment. The second experiment we ran took a different approach:
instead of separating each time series, the input we fed to the algorithm was
the difference of the time series, this is, for any specific moment T, the value
of the series in T substracted the value of the series in T — 1. This difference
in input variables shows two underlying assumptions about our dataset: in the
first experiment we consider that changes in the mean as well as variations over

Table 3. Performance metrics for each resource consumption experiment

Models Amount

Correctly Created Models Amount

Correctly Created Models Proportion

Average F-score

F-score Standard Deviation

Separated

Resource Usage

1336

554

41.47%

0.946

0.089

Differenced

Resource Usage

1336

546

40.87%

0.929

0.104

the mean are significant to the forecasting of events, whereas in the second
one we only consider that the value difference after a certain moment is what
holds useful information. We now present the results of these two experiments.
Looking at Table 3 allows us to study in detail these models' performance. The
main conclusion to draw would be that events in this system do not seem to
be affected by resource consumption or that there are no examples of resource-
affected events in our dataset. Actually, average F-score for the first experiment
is higher than previous ones, but at the expense of less created models. We
consider this variation part of the normal randomness of the model, though.

4 Conclusions

In this research paper we started from the basis that network errors are still
an important problem in assuring distributed systems reliability. To tackle this
problem we presented a series of experiments over a machine learning model that
stands as a suitable algorithm for performing Online Failure Prediction in a dis­
tributed system, in order to take a proactive approach to system failures. In the
first two experiment sections we validate the algorithm's preprocessing method
and find, using a grid search, the optimal value of the only fixed parameter it
was using. Then we present how our model can predict, not only what event will
happen, but where it will do so, greatly improving the industrial utility of this
model in large-scale distributed systems. We also show how just knowing which
events occurred in the system is enough to predict their location with almost the
same performance as the more computing-intensive option. Lastly, we analyzed
whether adding resource consumption information to the model improved its
performance in any significant way. Results showed that it did not and, further­
more, taking into account the storage and computational costs of using resource
information, we would discourage their usage for this environment. Again, we
must state that this analysis and advices are completely dataset-dependent, e.g.
if most events were caused by resource consumption sudden peaks, our advice
would be the complete opposite.

Summed up, we have presented a viable model for distributed systems failure
prediction that could be incorporated in an Online Failure Prediction system.
Additionally, we have also shown that our model is able to work in situations

tha t are hard for s tandard algorithms but usual for network environments: a
large number of devices and very infrequent failures.

5 Future Work

There are two possible lines of work tha t span from this research. One would
be to, now tha t it has been tested and improved, compare our model's perfor­
mance with some more complex s tate of the art algorithms, like Artificial Neural
Networks or Semihidden Markov Models [6]. Such a change would be interesting
because of the way certain models behave: modelling a system with a Semihid­
den Markov model, for example, would allow us to specify with more certainty
when an event would happen, but we would also need an external, previous,
feature selection method to filter the input. Indeed, tha t would be the case with
most algorithms, unless we were to use one tha t includes feature selection in
the optimization process, we would need to take two steps (feature selection and
model creation) to replicate the work of our algorithm, which increases the di­
mensions to explore and test. The second line of work we could go for takes a
more industrial approach to extending this model: after proving tha t our algo­
ri thm correctly models large-scale networks, we would like to apply it to higher
levels of infrastructure: servers, virtual machines, application layers... to t ry and
find correlations between errors and provide a complete solution to ensuring a
distributed system's reliability.

Acknowledgments. The authors would like to express their gratitude to PRODUBAN
who inspired and motivated this challenge as a real business case and provided all nec­
essary assistance to carry out this work.

References

1. Salfner, F., Lenk, M., Malek, M.: A Survey of Online Failure Prediction Methods.
ACM Computing Surveys (CSUR) 42(3), 10 (2010)

2. Watanabe, Y., Otsuka, H., Sonoda, M., Kikuchi, S., Matsumoto, Y.: Online Failure
Prediction in Cloud Datacenters by Real-Time Message Pattern Learning. In: 2012
IEEE 4th International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 504-511 (2012)

3. Sonoda, M., Watanabe, Y., Matsumoto, Y.: Prediction of Failure Occurrence
Time Based on System Log Message Pattern Learning. In: 2012 IEEE Network
Operations and Management Symposium (NOMS), pp. 578-581 (2012)

4. Chalermarrewong, T., Achalakul, T., See, S.C.W.: Failure Prediction of Data Cen­
ters Using Time Series and Fault Tree Analysis. In: 2012 IEEE 18th International
Conference on Parallel and Distributed Systems (ICPADS), pp. 794-799 (2012)

5. Guan, Q., Zhang, Z., Fu, S.: A Failure Detection and Prediction Mechanism for En­
hancing Dependability of Data Centers. International Journal of Computer Theory
and Engineering 4(5) (2012)

6. Salfner, F., Malek, M.: Using Hidden Semi-Markov Models for Effective Online
Failure Prediction. In: 26th IEEE International Symposium on Reliable Distributed
Systems, SRDS 2007, pp. 161-174. IEEE (2007)

7. Guan, Q., Zhang, Z., Fu, S.: Proactive Failure Management by Integrated
Unsupervised and Semi-Supervised Learning for Dependable Cloud Systems. In:
2011 Sixth International Conference on Availability, Reliability and Security
(ARES), pp. 83-90 (2011)

8. Fu, S., Xu, C.-Z.: Exploring Event Correlation for Failure Prediction in Coalitions
of Clusters. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomput-
ing, SC 2007, pp. 1-12. IEEE (2007)

9. Guan, Q., Fu, S.: Adaptive Anomaly Identification by Exploring Metric Subspace
in Cloud Computing Infrastructures. In: 2013 IEEE 32nd International Symposium
on Reliable Distributed Systems (SRDS). IEEE (2013)

10. Navarro, J.M., Hugo, A., Parada, G., Dueñas, J.C.: System Failure Prediction
through Rare-Events Elastic-Net Logistic Regression. In: 2014 International Con­
ference on Artificial Intelligence, Modelling and Simulation, AIMS (2014)

11. Troger, P., Becker, F., Salfner, F.: FuzzTrees-Failure Analysis with Uncertainties.
In: 2013 IEEE 19th Pacific Rim International Symposium on Dependable Com­
puting (PRDC). IEEE (2013)

12. Zheng, Z., Lan, Z., Gupta, R., Coghlan, S., Beckman, P.: A Practical Failure
Prediction with Location and Lead Time for Blue Gene/p. In: 2010 Interna­
tional Conference on Dependable Systems and Networks Workshops (DSN-W),
pp. 15-22. IEEE (2010)

13. Pitakrat, T., et al.: A Framework for System Event Classification and Prediction
by Means of Machine Learning (2014)

14. Zou, H., Hastie, T.: Regularization and Variable Selection via the Elastic Net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(2),
301-320 (2005)

15. King, G., Zeng, L.: Logistic Regression in Rare Events Data. Political Analysis 9(2),
137-163 (2001)

16. Yu, L., Zheng, Z., Lan, Z., Jones, T., Brandt, J.M., Gentile, A.C.: Filtering Log
Data: Finding the Needles in the Haystack. In: 2012 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 1-12
(2012)

17. Zheng, Z., Lan, Z., Park, B.H., Geist, A.: System Log Pre-Processing to Improve
Failure Prediction. In: IEEE/IFIP International Conference on Dependable Sys­
tems Networks, DSN 2009, pp. 572-577 (2009)

18. Chickering, D.M., Heckerman, D.: Fast Learning from Sparse Data. In: Proceedings
of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 109-115.
Morgan Kaufmann Publishers Inc. (1999)

19. Li, P., Church, K.W., Hastie, T.J.: Conditional Random Sampling: A Sketch-Based
Sampling Technique for Sparse Data. In: Advances in Neural Information Process­
ing Systems, pp. 873-880 (2006)

20. Trendafilov, N., Kleinsteuber, M., Zou, H.: Sparse Matrices in Data Analysis.
Computational Statistics 29(3-4), 403-405 (2014)

21. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms.
Pearson Prentice Hall, Upper Saddle River (2007)

22. Ahmed, W., Wu, Y.W.: A Survey on Reliability in Distributed Systems. Journal
of Computer and System Sciences 79(8), 1243-1255 (2013)

23. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-
performance computing systems. IEEE Transactions on Dependable and Secure
Computing 7(4), 337-350 (2010)

24. Kondo, D., Andrzejak, A., Anderson, D.P.: On correlated availability in internet-
distributed systems. In: Proceedings of the 2008 9th IEEE/ACM International
Conference on Grid Computing. IEEE Computer Society (2008)

25. Gallet, M., Yigitbasi, N., Javadi, B., Kondo, D., Iosup, A., Epema, D.: A model
for space-correlated failures in large-scale distributed systems. In: D'Ambra,
P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271,
pp. 88-100. Springer, Heidelberg (2010)

26. James, N.A., Kejariwal, A., Matteson, D.S.: Leveraging Cloud Data to
Mitigate User Experience from 'Breaking Bad', November 28 (2014),
http://arxiv.org/pdf/1411.7955.pdf

http://arxiv.org/pdf/1411.7955.pdf

