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Abstract. Network failures are still one of the main causes of dis­
tributed systems' lack of reliability. To overcome this problem we present 
an improvement over a failure prediction system, based on Elastic Net 
Logistic Regression and the application of rare events prediction tech­
niques, able to work with sparse, high dimensional dataseis. Specifically, 
we prove its stability, fine tune its hyperparameter and improve its in­
dustrial utility by showing that, with a slight change in dataset creation, 
it can also predict the location of a failure, a key asset when trying to 
take a proactive approach to failure management. 

Keywords : Online failure prediction • Machine learning • System man­
agement • Automatic feature selection • Logistic regression • Multivariate 
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1 Introduction 

Big Data has revolutionized the way industry works. From data-driven decisions 
to breakthrough discoveries through the analysis of massive data, exploiting all 
the available da ta we generate is improving and broadening our capabilities in 
ways we hadn ' t thought possible. This discipline relies heavily on distributed 
systems, as the power of big da ta platforms, such as Hadoop, resides on the fact 
that they scale horizontally, working over a grid of commodity hardware-based 
nodes tha t are coordinated to work together. In terms of failures, a distributed 
system has an inherent complexity due to the sheer amount of devices it is 
composed of, including all the network layer to connect the different hosts. In 
fact, the network layer is one of the key factors in ensuring fault transparency. In 
its book, Tanenbaum [21] remarks how "reliable networks simply do not exist" 
and tha t is the exact point we tackle in this paper. To do so, we employ a 
discipline called Proactive Fault Management. And, more specifically, one part 



of it called Online Failure Prediction, which deals with identifying situations 
that will possibly cause a failure. We improve a method we already proposed in 
[10], validating and expanding it, to achieve a reliable failure prediction model 
for a large infrastructure IT network which could be integrated in a Reliability 
Solution for companies. Our key contribution is showing how this model can 
predict not only the possible occurrence of a failure, which has already been 
extensively treated [4] [7] [8], but where it will happen. This feature is crucial in 
ensuring fault transparency in large scale systems, as knowing that an event will 
happen will often not be enough to pinpoint it and correct it before it affects 
service quality. At the point of writing this paper, the authors are only aware of 
few efforts in this direction. What sets apart our paper from them is the dataset 
we use and its associated method. Our data present two problems: first, data 
sparsity, which happens when (assuming binary data) most of the dataset matrix 
is composed of zeroes (event absences), instead of ones (event presences). This 
situation is a tricky one for most usual machine learning classification methods, 
such as logistic regression, where they tend to overfit or not estimate correctly 
the target variable [15]. The second problem in our environment is the high 
complexity of our data: we start with more than 1300 input variables. This 
situation can also affect the performance of classification methods so we are 
forced to select which variables are actually affecting each event in each node. 
Genetic Algorithms (a technique used by other works in this area) suffer an 
exponential increase when the number of elements to mutate is large, so we 
consider our approach is more valid for this kind of environment. 

Apart from the main contribution we exposed before, in this paper we show 
several additional contributions related to the problem at hand: we test the ran­
domness introduced by our method's preprocessing phase, fine-tune the method's 
hyperparameters and analyze the effect of adding resource consumption infor­
mation. In the following sections we analyze the current works in Online Failure 
Prediction, briefly comment the methodology we used, expose the scenario we 
worked on, detail the experiments we carried on and the results they yielded, 
draw some conclusions and expose future lines of work that could span from this 
research. 

2 Related Work 

In terms of the industrial problem we are solving, the current state of the art [22] 
shows that network hardware failures are still a key aspect of distributed sys­
tems reliability, which justifies the practical aspects of our contribution. In fact, 
[23] [24] [25] independently perform an analysis of failure logs from distributed 
systems and conclude that network errors are often present on them, along with 
closely correlated failures. So we now turn to which techniques have been ap­
plied to solve similar problems as the one we deal with. Dealing with critical 
systems, whose correct performance must be ensured, we can not rely on reac­
tive approaches to maintain their reliability. We, thus, turn to Online Failure 
Prediction, which takes a proactive approach to system reliability [1]. This dis­
cipline covers from data cleaning and preprocessing to the actual creation of 



the prediction model. Though most of the work has been carried out in the 
creation phase, there have also been efforts in the preprocessing phase, such as 
[16] [17]. They filter and clean data to improve a prediction model's performance. 
There has also been a whole array of techniques applied to predicting failures 
in distributed system and computing clusters, where the works of Watanabe et 
al. [2] [3], who show a method of pattern learning for the prediction of failures, 
Salfner et al. [6][11], who model a system using Semihidden Markov Models 
and add fuzzy logic to the OFP scenario, and, specially, Zheng et al. [5] [7] are 
the main ones. The latter authors have worked for several years with the IBM 
Blue Gene supercomputer and have a long streak of papers related to the issue 
at hand. Apart from these main works, there have also been separate relevant 
works in the area, like the combination of time series analysis and fault trees [4], 
an anomaly detection approach to OFP [9], the creation of failure clusters mea­
sured by their correlation [8] and the research presented in [13] by Pitakrat et 
al., that proposes a full framework for OFP and tests several Machine Learning 
methods such as Naive Bayes or Support Vector Machines to test their perfor­
mance. Compared to all these previous works, our proposal has a key feature 
that separates it from them and a minor one: the major one is that we include 
location awareness in our prediction, this is, our method not only predicts which 
event will happen but also indicates its node. As we stated in the introduction, 
the only work that also addresses this point is the one present in [12] by Zheng et 
al. The main advantage of our system over Zheng's work is its ability to work in 
a difficult environment (a high dimensional sparse one) and produce valid, sparse 
outputs. Additionally, the final model we train in this paper has two different 
data input sources: system events and system resource consumption. Most pre­
vious works only have a single kind of data source. As a side note, even though 
some works we have discussed do not model distributed systems' networks they 
are still relevant to our research, taken that, from an OFP point of view, they 
can be modelled using similar techniques. 

The model creation algorithm we use, which we presented in [10], uses several 
approaches found on literature to work in the complex environment we defined 
before. Regarding the high dimensionality of the problem, we use a technique 
called Elastic Net, proposed by Zou et al. in [14], which allows the user to 
select the amount of two regularization types he prefers. This feature expands 
the capabilities of our model to use the optimal regularization amount for each 
event by optimizing it through a grid search. To work with sparse data we follow 
the advices given in [15], which suggests to trim the amount of zero (absences of 
the target event) instances included in the training dataset to optimize logistic 
regression performance. Summed up, the algorithm we use follows these steps: 

1. Dataset randomized separation in training, validation and test dataseis with 
zero-trimming to fulfill a user defined zero-to-one proportion. 

2. For each event to model, train eight different logistic regression models with 
different regularization options (LI and L2 proportions). Each of them is also 
internally cross validated to optimize model complexity and perform feature 
selection. 



3. Test each model against the validation dataset to select the best performing 
one. 

4. Test the best model against the test dataset to obtain its score. 

Using this model we showed in [10] how we were able to successfully predict 
system failures in a distributed system. In this work we validate and expand 
it to improve its usefulness for real Big Data environments. This method also 
fulfills the requirements given in [20] by Trendafilov et al., as it produces a robust, 
sparse solution and allows the method to work over large datasets with a minimal 
amount of valuable data without producing a linear combination of variables as 
a results of the anaylisis, which allows for an easy interpretation of the output. 
Other interesting approaches to sparse data found in literature are the method 
proposed by Chickering and Heckerman in [18], which adapts standard machine 
learning methods to work with dense matrices instead of sparse ones and the 
work of Li et al. in [19], which is centered around calculating data distances 
from a conditional sample of the dataset. They are not directly appliable to our 
method, though, as we do not use distances and to modify the elastic net to 
work with dense matrices is out of our research scope. 

3 Experiments and Results 

3.1 Scenario 

As in [10], the dataset we worked with was obtained from a big Spanish bank's 
IT network infrastructure. It was composed of two different structures, an in­
tranet and an internet-connected section. They were a total of 36 devices, whose 
structure was divided in: 

— Eighteen switches. 
— Two DNS. 
— Four routers. 
— Six firewalls. 
— Six load balancers. 

We had system event logs from every device listed before, comprising a total 
of 22823 training instances. These events were categorized by their severity, the 
node they happened in, their timestamp and the event ID. Our key objective is 
to be able to forecast as many events' occurrence as possible in the distributed 
systems environment with the highest attainable detail. Some examples of these 
events were the three critical events present on our dataset: "'99% CPU usage 
threshold has been surpassed"', "'A single device is down or is not reachable 
by SNMP messages'" and "'A chassis is down or is not reachable by SNMP 
messages."'. 

We will now describe our main contributions divided in the different exper­
iments we carried out and their results. The first two ones are related to vali­
dating and fine tuning the model we use, and the last two experiments expand 
and improve the forecasting capabilities of our method, adding a new prediction 
dimension and testing new information sources. 



3.2 Preprocessing Method Stability 

We started by testing the preprocessing method of our algorithm in terms of 
its stability. As it randomizes the dataset before splitting it, it may introduce 
random noise in the output models' performance. To check the validity of this 
assertion, we ran the algorithm for every model twenty times, as we considered 
this number of iterations large enough to show any random behaviour that could 
harm the models' performance, and analyzed each created model. 

The first metric we extracted was the amount of created models for each 
iteration. The minimum amount was 53 and the maximum one was 56, with a 
mean ± standard deviation of 54.15 ± 0.9333 models. So, in terms of amount of 
created models, the algorithm is stable. This, indeed, does not seem like a large 
rate, unless it affects some critical events, which could lead to not modelling a 
key objective. This is not the case, though, as the only one that has a slightly 
high standard deviation is associated with a manual change in the network, as 
experts confirmed us. Lastly, we checked each model's performance in terms of 
average F-score and its standard deviation. Fig. 1 shows the obtained results. 
Only six events suffer from a deviation of more than 0.1 and none of them is a 
critical one. On the other hand, most models have a very narrow deviation bar 
and keep a stable score over the whole process. We, thus, consider the stability of 
the preprocessing phase sufficiently justified for the environment we are working 
in. We strongly emphasize the fact that this approach has only been proven to be 
suitable for this specific dataset. The large deviation found in the six anomalous 
events would lead us to deduce there are separate information clusters in those 
data, where modelling one cluster is not enough to forecast other ones. We 
would have to test this assertion to confirm it. Had more models presented this 
behaviour, we would have had to change our preprocessing phase to a more 
complex one, such as k-fold cross validation. Taking into account the number 
of models to be created, short computation time for each model's creation is a 
requisite; so we prefer simpler methods whenever they perform good enough. We 
consider, thus, that our preprocessing phase stability has been proven. 
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Fig. 1. Average F-score for 20 iterations of the algorithm for each event. Critical events 
and most non-critical ones have a stable performance. 



3.3 Zero to One Proportion Study 

Another step in the preprocessing phase is the pruning of excessive zeroes in the 
dataset, according to the advice given by King et al. in [15], where they suggest to 
start from a 1 to 1 proportion and start adding zeroes from there. In order to find 
the optimal amount of zeroes to add to our dataseis, we performed a grid search 
over the zero proportion value, running our elastic net model for values ranging 
from 1 to 15. To compare its performance with a standard elastic net logistic 
regression approach, we also ran the algorithm without varying the zero to one 
proportion in the dataset. Considering that the stability of the preprocessing 
method was proven in the previous section, we only ran each model once. We 
will now compare each result in three dimensions: number of created models, 
computation time and average peformance for every event. We set as the main 
criteria for proportion selection the highest possible performance, unless the 
disparity in one of the other two metrics were unreasonably high. 

For the first two metrics, created models with an f-score higher than zero 
and computation time, the distribution can be found on Table 1. In terms of 
created models, apart from an outlier at 1 to 1 proportion, a growing tendency is 
clear in the data. Assuming the second value is spurious, the optimal zero to one 
value would be 13, though the other ones are close to it. Regarding computation 
time, the total execution time we can draw two main points: the first one is that 
pruning zeroes has a drastic effect on computation time, reducing it by a factor 
of, at least, 22. The second conclusion is that, when pruning zeroes, computation 
time is linearly related with the zero to one proportion. As every value is, at 
least, 22 times less than the standard total execution time, we conclude that 
every zero to one proportion is equally valid for our experiment and, at the 
same time, justify the use of zero pruning as a time saving tool. 

Table 1. Secondary metrics for each zero to one proportion 

Proportion amount No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Created models 36 44 37 37 37 38 40 41 40 42 42 41 42 43 41 42 
Computation time (s) 8275 57 97 113 132 153 176 194 214 230 255 275 298 324 340 362 

But the time saving that we have just studied would be completely irrelevant 
if performance decreased when zeroes are pruned. To study it, we plot in Fig. 2 
the average F-score of models created with each proportion value. In this figure 
the model with a proportion of 3 to 1 of zeroes to ones is the one with best overall 
average performance, combined with a really low standard deviation. This settles 
the discussion of which proportion to use. As the amount of created models is 
not too low and the performance is the best one, 3 is the appropriate proportion 
of zeroes for our dataset. 

We want to comment on the possibility of adding the optimization of this 
hyperparameter to the actual model training. We declined this option for two 
main reasons: computation time and dataset limitations. Adding another grid 
search over the already convoluted process of multiple cross validations would 
have imposed a burden on training time and would have forced us to split our 



dataset into even more groups. As it is not a specially big one, we preferred to 
obtain a suboptimal, though usually good value for the zero proportion and take 
that as a fixed value for everv experiment. 
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Fig. 2. Average F-score for each zero to one proportion 

3.4 Locality Awareness 

Now that we know that our algorithm is fine tuned and validated, we set on 
to improve its industrial interest by adding another prediction dimension to it. 
This section is divided in three different experiments, all of them related to 
locality and being able to predict where a failure will happen. We will compare 
them through the number of correctly created models, the distribution of the 
obtained performances and, numerically, by the average F-score and its standard 
deviation. We will first state the purpose of each experiment and then compare 
them all together. The first experiment is the most simple one and starts from 
the hypothesis that the occurrence of an event in a specific node is only affected 
by previous events on that node. To test this hypothesis, we divided our dataset 
in as many different dataseis as nodes were in the system, and trained the 
elastic net model for each event on each node separately under the assumption 
previously stated. 

The second and third experiments are, in essence, just a subtle change in the 
dataset preparation, but they completely alter the working environment and can 
enhance the practical utility of the models. This change we speak of deals with 
changing the input and output variables. Previously, our input features where 
•'Event X has happened in the system" and the variable to predict was "Event 
Y will happen in the system". Now, when preprocessing our data, we deal with 
new input variables: we divide the n previous features in ¡3 < an variables, where 
a indicates the number of nodes in the system and W the chosen observation 
window, where each feature now indicates "Event A has happened in Node tp 
in the last W minutes". Inversely, our output now changes to "Event B will 
happen in node tp' in the next W minutes". With this subtle change, without 
altering the actual algorithm in any way, our problem changes (the number 
of variables is greatly increased), forcing our model to work in a much harder 
environment, but we also increase its industrial utility. The difference between 
these two experiments is that in the second one, both the input and the output 



are divided by locality, whereas in the third one, only the output is divided by 
node, this is, it takes as a input just what has happened in the system and tries 
to predict where and which event will happen. 

We can see in Table 2 the amount of models that yielded a higher than zero 
performance (measured in F-score), their average F-score and their standard de­
viation for the three experiments. The first observation we can draw from the 
first table is the drastic decrease in the percentage of created models over the 
total possible amount. We see two possible reasons for this behaviour, compar­
ing it with the high amount percentage of created models obtained in previous 
experiments: the first one would be to assume that more data is needed as the 
number of features is increased. But we must also take into account the con­
ditions of previous and current experiments: modelling events on a system, a 
steady pattern in a node can make an event predictable, even if its appearances 
are random in other nodes. Predicting failures in a specific node only yields mod­
els for nodes that actually exhibit a certain pattern. Thus, this severe decrease 
in created model percentage is not, necessarily, an ominous sign, as it may just 
indicate that not every event in every node exhibits any kind of pattern. Apart 
from this remark, we can also state that events in a node are influenced by events 
in other nodes. This is, each node is not an isolated system. This supports the 
correlated error conclusion that is exposed in [24] and [25]. If we had to choose 
which model better predicts our environment, we would tend to choose the op­
tion that yields better models as a whole, which is the second one, the Complex 
Input Complex Output Node Aware Elastic Net. 

Table 2. Performance metrics for each node-awareness experiment 

Models Amount 

Correctly Created Models Amount 

Correctly Created Models Proportion 

Average F-score 

F-score Standard Deviation 

Single N o d e s 

1140 

420 

36.84% 

0.826 

0.201 

Complex Input Simple Input 

Complex Output Complex Output 

1336 

601 

44.99% 

0.931 

0.102 

1336 

564 

42.21% 

0.9254 

0.108 

To further study how each different option affects the models' performance, in 
Fig. 3 we show the distribution of the F-scores obtained for each option, which 
allows us to study in finer detail each option's effect. This figure reinforces the 
conclusions we previously drew. Events in a certain node are affected by events 
in different nodes and both experiments of locality are satisfactory, though, at 
the expense of computation time, performance can be slightly improved (and 
the amount of information extracted from the model) by using a complex input, 
this is, using every event in every node as a single input feature. 
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Fig. 3. F-score distribution for each node-awareness experiment. 

3.5 Resource Consumption Addition 

Once we have proved that the elastic net logistic regression model is able to 
forecast failures and their location in a much harder environment than previous 
experiments, we then tried to improve the node-aware model by adding resource 
consumption information. The information we had available was CPU, memory, 
hard drive and network interfaces usage, expressed in time series with a five-
minute sampling frequency. For every node to forecast failures in, we add its 
resources consumption as new input features. We ran several experiments with 
different ways of creating these new variables, taking the Simple Input Complex 
Output Node-Aware Elastic Net model we trained in the previous section. We 
used this model to reduce the number of input variables, which would allow new 
input variables to have a greater influence on the model. The first experiments 
we ran added one single resource to the model, but it did not affect the model's 
performance in any remarkable way, so we will not include their detailed results 
in this work. The two experiments that provided good results were the following 
ones, each of them centered around different ways to transform a time series to 
ensure its stationarity: first, using a technique called E-Divisive with Medians 
proposed by James et al. in [26] to detect changes in the mean of a time series, 
we divided each resource information in two different time series: one with its 
mean value for every moment and one with the variation over the mean for 
each specific moment. The second experiment we ran took a different approach: 
instead of separating each time series, the input we fed to the algorithm was 
the difference of the time series, this is, for any specific moment T, the value 
of the series in T substracted the value of the series in T — 1. This difference 
in input variables shows two underlying assumptions about our dataset: in the 
first experiment we consider that changes in the mean as well as variations over 



Table 3. Performance metrics for each resource consumption experiment 

Models Amount 

Correctly Created Models Amount 

Correctly Created Models Proportion 

Average F-score 

F-score Standard Deviation 

Separated 

Resource Usage 

1336 

554 

41.47% 

0.946 

0.089 

Differenced 

Resource Usage 

1336 

546 

40.87% 

0.929 

0.104 

the mean are significant to the forecasting of events, whereas in the second 
one we only consider that the value difference after a certain moment is what 
holds useful information. We now present the results of these two experiments. 
Looking at Table 3 allows us to study in detail these models' performance. The 
main conclusion to draw would be that events in this system do not seem to 
be affected by resource consumption or that there are no examples of resource-
affected events in our dataset. Actually, average F-score for the first experiment 
is higher than previous ones, but at the expense of less created models. We 
consider this variation part of the normal randomness of the model, though. 

4 Conclusions 

In this research paper we started from the basis that network errors are still 
an important problem in assuring distributed systems reliability. To tackle this 
problem we presented a series of experiments over a machine learning model that 
stands as a suitable algorithm for performing Online Failure Prediction in a dis­
tributed system, in order to take a proactive approach to system failures. In the 
first two experiment sections we validate the algorithm's preprocessing method 
and find, using a grid search, the optimal value of the only fixed parameter it 
was using. Then we present how our model can predict, not only what event will 
happen, but where it will do so, greatly improving the industrial utility of this 
model in large-scale distributed systems. We also show how just knowing which 
events occurred in the system is enough to predict their location with almost the 
same performance as the more computing-intensive option. Lastly, we analyzed 
whether adding resource consumption information to the model improved its 
performance in any significant way. Results showed that it did not and, further­
more, taking into account the storage and computational costs of using resource 
information, we would discourage their usage for this environment. Again, we 
must state that this analysis and advices are completely dataset-dependent, e.g. 
if most events were caused by resource consumption sudden peaks, our advice 
would be the complete opposite. 

Summed up, we have presented a viable model for distributed systems failure 
prediction that could be incorporated in an Online Failure Prediction system. 
Additionally, we have also shown that our model is able to work in situations 



tha t are hard for s tandard algorithms but usual for network environments: a 
large number of devices and very infrequent failures. 

5 Future Work 

There are two possible lines of work tha t span from this research. One would 
be to, now tha t it has been tested and improved, compare our model's perfor­
mance with some more complex s tate of the art algorithms, like Artificial Neural 
Networks or Semihidden Markov Models [6]. Such a change would be interesting 
because of the way certain models behave: modelling a system with a Semihid­
den Markov model, for example, would allow us to specify with more certainty 
when an event would happen, but we would also need an external, previous, 
feature selection method to filter the input. Indeed, tha t would be the case with 
most algorithms, unless we were to use one tha t includes feature selection in 
the optimization process, we would need to take two steps (feature selection and 
model creation) to replicate the work of our algorithm, which increases the di­
mensions to explore and test. The second line of work we could go for takes a 
more industrial approach to extending this model: after proving tha t our algo­
ri thm correctly models large-scale networks, we would like to apply it to higher 
levels of infrastructure: servers, virtual machines, application layers... to t ry and 
find correlations between errors and provide a complete solution to ensuring a 
distributed system's reliability. 
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