Skip to main content

Software Framework for Modular Machine Learning Systems

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9120))

Included in the following conference series:

  • 1900 Accesses

Abstract

Machine learning methods and algorithms can be combined into ensembles to obtain better performance than a single base learner. In the paper we present a framework for distributed system based on Common Object Request Broker Architecture for creating ensembles of learning systems. The systems are handled by the server which sends and receives learning and testing data. They can be located on different machines with various operating systems or hardware. The structures of the base learners are described by XML files.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar, Z., Rattani, A., Foresti, G.L.: Temporal analysis of adaptive face recognition. Journal of Artificial Intelligence and Soft Computing Research 4(4), 243–255 (2014)

    Article  Google Scholar 

  2. Boukhtouta, A., Berger, J., George, A., Powell, W.B.: An approximate dynamic programming approach for semi-cooperative multi-agent resource management. Journal of Artificial Intelligence and Soft Computing Research 2(3), 201–214 (2012)

    Google Scholar 

  3. Breiman, L.: Bias, variance, and arcing classifiers. Technical Report In: Technical Report 460, Statistics Department, University of California (1997)

    Google Scholar 

  4. Bruzdzinski, T., Krzyzak, A., Fevens, T., Jelen, Ł.: Web–based framework for breast cancer classification. Journal of Artificial Intelligence and Soft Computing Research 4(2), 149–162 (2014)

    Article  Google Scholar 

  5. Chu, J.L., Krzyak, A.: The recognition of partially occluded objects with support vector machines and convolutional neural networks and deep belief networks. Journal of Artificial Intelligence and Soft Computing Research 4(1), 5–19 (2014)

    Article  Google Scholar 

  6. Collobert, R., Bengio, S., Mariéthoz, J.: Torch: a modular machine learning software library. Technical report, IDIAP (2002)

    Google Scholar 

  7. Cpalka, K., Rutkowski, L.: Flexible takagi-sugeno fuzzy systems. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 3, pp. 1764–1769 (July 2005)

    Google Scholar 

  8. Folly, K.A.: Parallel pbil applied to power system controller design. Journal of Artificial Intelligence and Soft Computing Research 3(3), 215–223 (2013)

    Article  Google Scholar 

  9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  10. Kilicaslan, Y., Tuna, G.: An nlp-based approach for improving human-robot interaction. Journal of Artificial Intelligence and Soft Computing Research 3(3), 189–200 (2013)

    Article  Google Scholar 

  11. Korytkowski, M., Scherer, R., Rutkowski, L., Drozda, G.: Xml-based language for connectionist structure description. In: Cader, A., Rutkowski, L., Tadeusiewicz, R., Zurada, J. (eds.) Artificial Intelligence and Soft Computing, pp. 469–474. Academic Publishing House EXIT, Warsaw (2006)

    Google Scholar 

  12. Koshiyama, A.S., Vellasco, M.M.B.R., Tanscheit, R.: Gpfis-control: A genetic fuzzy system for control tasks. Journal of Artificial Intelligence and Soft Computing Research 4(3), 167–179 (2014)

    Article  Google Scholar 

  13. Kuncheva, L.: Combining Pattern Classifiers. STUDFUZZ. John Wiley & Sons (2004)

    Google Scholar 

  14. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  15. Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS (LNAI), vol. 2600, pp. 118–183. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011)

    MATH  Google Scholar 

  17. Rigatos, G.G., Siano, P.: Flatness-based adaptive fuzzy control of spark-ignited engines. Journal of Artificial Intelligence and Soft Computing Research 4(4), 231–242 (2014)

    Article  Google Scholar 

  18. Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers (2004)

    Google Scholar 

  19. Rutkowski, L.: Computational Intelligence Methods and Techniques. Springer, Heidelberg (2008)

    Google Scholar 

  20. Saitoh, D., Hara, K.: Mutual learning using nonlinear perceptron. Journal of Artificial Intelligence and Soft Computing Research 5(1), 71–77 (2015)

    Article  Google Scholar 

  21. Schapire, R.E.: A brief introduction to boosting. In: Conference on Artificial Intelligence, pp. 1401–1406 (1999)

    Google Scholar 

  22. Setness, M., Babuska, R.: Bagging predictors. Machine Learning 26(2), 123–140 (1996)

    Google Scholar 

  23. Tambouratzis, T., Chernikova, D., Pazsit, I.: Pulse shape discrimination of neutrons and gamma rays using kohonen artificial neural networks. Journal of Artificial Intelligence and Soft Computing Research 3(2), 77–88 (2013)

    Article  Google Scholar 

  24. Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. Journal of Artificial Intelligence and Soft Computing Research 1(1), 59–79 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Korytkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Korytkowski, M., Scherer, M., Ferdowsi, S. (2015). Software Framework for Modular Machine Learning Systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9120. Springer, Cham. https://doi.org/10.1007/978-3-319-19369-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19369-4_67

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19368-7

  • Online ISBN: 978-3-319-19369-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics