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Abstract. Classification of electroencephalograph (EEG) signals is the
common denominator in EEG-based recognition systems that are rel-
evant to many applications ranging from medical diagnosis to EEG-
controlled devices such as web browsers or typing tools for paralyzed
patients. Here, we propose a new method for the classification of EEG
signals. One of its core components projects EEG signals into a vector
space. We demonstrate that this projection may allow visual inspection
and therefore exploratory analysis of large EEG datasets. Subsequently,
we use logistic regression with our novel vector representation in order
to classify EEG signals. Our experiments on a large, publicly available
real-world dataset containing 11028 EEG signals show that our approach
is robust and accurate, i.e., it outperforms state-of-the-art classifiers in
various classification tasks, such as classification according to disease or
stimulus. Furthermore, we point out that our approach requires only
the calculation of a few DTW distances, therefore, our approach is fast
compared to other DTW-based classifiers.

Keywords: Electroencephalography, Classification, Projection, Visual-
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1 Background

The growing interest in brain research is reflected by recent and still ongoing
American and European large scale research projects that are dedicated to
study the brain and its disorders. In particular, we mean the BRAIN Initia-
tive announced by president Obama and the European Human Brain Project.?
The expected impact of these projects may be compared to that of the cele-
brated Human Genome Project. Consequently, we expect an increased need for
methods that allow exploratory analysis and predictions based on large datasets
describing the dynamics of the brain.

There are various techniques that allow to capture the activity of the brain,
such as electroencephalography (EEG), magnetoencephalography (MEG) and

3 http://en.wikipedia.org/wiki/BRAIN Initiative, https://www.humanbrainproject.cu



magnetic resonance imaging (MRI). While MEG captures the activity on much
more channels than EEG, in case of MEG the noise is substantially higher than in
case of EEG. MRI has an excellent spatial resolution, but its temporal resolution
is limited, therefore, purely based on MRI, it may be difficult to study the
dynamics of the brain. Taking these considerations into account, in this paper,
we focus on EEG which is a well-established technique to study the activity of
the brain. We note, however, that our ideas may simply be adapted to MEG
and MRI data. The only requirement for that is the presence of an appropriate
distance measure between the recordings.

EEG is widely used in research and clinical practice. For example, EEG is
highly valuable for presurgical evaluation [12], diagnostic decision-making [2],
assessment of chronic headaches [13] and diagnosis of particular diseases such
as Alzheimers disease [9] or schizophrenia [19]. Paralyzed patients may benefit
from EEG-controlled devices, such as spelling tools [4] or web browsers [3]. EEG
was used to study sleepiness in long distance truck driving [11] and there were
attempts to predict upcoming emergency braking based on EEG signals [10]
which could result in reducing the braking distance of vehicles.

Continuous, long term EEG monitoring is required in case of various dis-
eases, e.g. some forms of epilepsy [21], coma, cerebral ischemia, assessment of
medications [20], sleep disorders, disorders of consciousness [14], psychiatric con-
ditions and movement disorders [23]. Moreover, long term EEG monitoring is
used during anesthesia and in neonatal intensive care units [15]. In these cases,
EEG is recorded for hours or days resulting in gigabytes of multivariate time
series data for each patient. The real-time evaluation of such huge amount of
data is practically impossible without semi-automated techniques that assist hu-
man experts. A common feature of the aforementioned diagnostic problems and
EEG-based tools is that they involve recognition tasks related to EEG signals.
As EEG signals can be considered as multivariate time-series, these recognition
tasks can be formulated as multivariate time-series classification tasks, for which
state-of-the-art solutions are based on machine learning. A recognition model,
called classifier, is constructed based on previously collected data and evidence
(i.e., which signal was recorded under which conditions).

Various algorithms were developed for the classification of EEG signals in the
last decades, see e.g. [5], [18], [22]. As EEG signals are time series, we consider
the classification of EEG signals as a time-series classification problem, for which
the k nearest-neighbor (k-NN) method using dynamic time warping (DTW)
as distance measure was reported to be competitive, if not superior, to many
state-of-the-art time-series classifiers, such as neural networks or hidden Markov
models, see e.g. [6], [8] and the references therein. Furthermore, in their recent
work, Chen et al. [8] gave theoretical guarantees for the performance of nearest
neighbor-like time-series classifiers. Meanwhile, considerable research effort was
devoted to enhance DT'W-based nearest neighbor classification of time series
both in terms of accuracy and classification time. Here, we point out hubness-
aware classifiers which represent one of the most promising research directions
aiming to enhance nearest neighbor classification. Recent hubness-aware classi-



fiers include hw-kNN, HFNN, NHBNN and HIKNN [17], [25], [26], [27]. These
techniques were surveyed and extended to time series classification in [24]. In
their extensions to time-series classification, all of these hubness-aware classi-
fiers used DTW as distance measure.

In the light of the aforementioned results, we decided to base our approach
on DTW. In contrast to the aforementioned direction of research which used
DTW in nearest neighbor classifiers or their extensions, we use DTW in order to
construct real-valued features which results in projecting multivariate time-series
into a vector space. We demonstrate that this projection may allow visual in-
spection and therefore exploratory analysis of large EEG datasets. Furthermore,
conventional classifiers developed for vector data may be used on the projected
data. In particular, we use logistic regression [7] for classification. We call our
approach PROCESS: Projection-based Classification of Electroencephalogram
Signals. As we will show, PROCESS achieves significantly better accuracy than
state-of-the-art classifiers. The most time-consuming step of the nearest neighbor
classification using DTW is the calculation of the DTW-distances. In contrast,
using PROCESS, we only need to calculate a few DTW-distances, therefore,
our approach can quickly classify time-series. Additionally, we will show that
PROCESS performs favorably even in cases when the test data is remarkably
different from the training data which shows the robustness of our approach.

2 Our approach: PROCESS

We begin this section by giving the basic notations. Subsequently, we describe
our approach.

2.1 Basic notations

We use D to denote the set of EEG signals used to construct the recognition
model, called classifier. D is called training data and each signal in D belongs to
one of the classes. The class of a signal is given by its class label. For example, a
dataset may contain EEG signals that correspond to normal brain activity and
some other signals that correspond to epileptic seizures. In this case, there are
two classes, that may be called normal and seizure respectively. Therefore, the
class label of each signal is either normal or seizure.

The class labels of the training data are known while constructing the classi-
fier. The process of constructing the classifier is called training. Once the classifier
is trained, it can be applied to new signals, i.e., the classifier can be used to pre-
dict the class labels of new signals. In order to evaluate our classifier we will use
a second set of EEG signals D%t called test data. D%t is disjoint from D and
the class labels of the signals in D! are unknown to the classifier. We only use
the class labels of the signals in D% to quantitatively assess the performance of
the classifier (by comparing the predicted and true class labels and calculating
statistics regarding the performance).
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Fig. 1. Projection of signals into a vector space by PROCESS. In this example, the
horizontal (vertical) axis of the coordinate system corresponds to the distances from
the first (second) selected signal.

2.2 Projecting EEG signals into a vector space

First, we select a random subset of the training data. This random subset of D
will contain n EEG signals. Then, we calculate the distance of the remaining
(i.e., non-selected) EEG signals from the selected ones using DTW. For the
description of how to calculate DTW on multivariate time series we refer to [6].
Subsequently, the distances are used as real-valued features: the distance of the
signal  from the first selected signal will be the first feature of z, the distance of
from the second selected signal will be the second feature of z, etc. Representing
each signal as a vector of n real-valued features allows to project the signals into
an n-dimensional vector space.

The mapping into a vector space is illustrated in Fig. 1. In this example,
the training data D contains five signals. Out of them, n = 2 were selected. We
calculate the distances of the remaining 5 —2 = 3 signals from the selected ones.
This results in a vector of length n = 2 for each non-selected signal, i.e., we
projected the non-selected signals into a vector space of n = 2 dimensions.

Once the non-selected time series are projected into a vector space, we can
train any conventional classifier working on vector data. In particular, we propose
to use logistic regression [7].

In order to classify a new signal x’, we calculate the distance of 2’ from the
selected signals. Therefore, we project z’ into the aforementioned vector space.
Then we use the previously trained classifier (logistic regression) to predict the
class label of 2.

2.3 Example on EEG of Epileptic and Normal Brain Activity

In order to illustrate the projection produced by our approach we use the data [1]
collected by Andrzejak et al. Similarly to [22], we consider EEG signals corre-
sponding to normal brain activity with open eyes and ”epileptic EEG signals
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Fig. 2. The result of projecting the EEG signals into a two dimensional vector space.
Signals either correspond to normal brain activity or epileptic seizures.

obtained from five different epileptic patients, recorded during the occurrence of
epileptic seizures” [22]. We use half of the signals as training data and the other
half of the signals as test data. The projection of the training data produced
by our approach using n = 2 selected signals is shown in Fig. 2. As we can see,
as the result of the projection, the two classes of signals are projected to well-
separated regions. Note that this example also demonstrates that the proposed
projection approach may be useful to map EEG signals into a low dimensional
space in order to provide the user with an overview of the entire data set.

In fact, our approach achieves perfect classification of the test data which
can be attributed to the fact that the original data was manually curated by
human experts, in particular, only signals being free of artifacts were included
in the data [1]. However, the labor-intensive process of revision of the data by
human experts is only applicable to small or moderately-sized datasets, while
in many applications we have to work with large sets of EEG data. Therefore,
in the next section, we will evaluate our approach on EEG data recorded under
real-world conditions without the labor-intensive revision by human-experts.

3 Experiments

In this section, we describe the data and the experimental protocol. This is
followed by presenting and discussing our experimental results.

3.1 Data

In order to evaluate our approach, we used the publicly available EEG dataset?
from the UCI machine learning repository [28]. This collection contains in total
11028 EEG signals recorded from 122 persons. Out of the 122 persons, 77 were
alcoholic patients and 45 were healthy individuals.

% http:/ /archive.ics.uci.edu/ml/datasets/EEG+Database



Both alcoholic patients and healthy individuals were exposed to three dif-
ferent stimuli: subjects were shown either one picture or two different pictures
or the same picture twice. The dataset contains recordings for all these three
types of stimuli for all the subjects. The electrical activity of the brain was cap-
tured at 256 Hz for 1 second on 64 channels. Therefore, each EEG signal is a
64-dimensional time series of length 256 in this collection. For more information
about data collection and selection of patients we refer to [28]. In order to fil-
ter noise, as a simple preprocessing step, we reduced the length of the signals
from 256 to 64 by binning with a window size of four, i.e., we averaged four
consecutive values of the signal.

3.2 Baselines

We compared our approach, PROCESS, with k-NN using DTW and its hubness-
aware extensions, i.e., hw-kNN, hFNN, NHBNN and HIKNN; as well as further
state-of-the-art classifiers such as neural networks and SVMs. Both for k-NN and
its hubness-based extensions, we tried all odd k values in the range 1...10. For
simplicity, we only report results for the best-performing variant of k-NN and
its hubness-aware extensions. As further baselines, we used the logistic classifier,
Support Vector Machines (SVMs) and neural networks from the Weka software
package.® In logistic classifiers, neural networks and SVMs, we used the time se-
ries as 64-dimensional vectors. Neural networks were trained for 100 epochs. We
tried five different neural networks: (i) simple perceptrons, multilayer percep-
trons (MLPs) with one hidden layer containing (ii) 4, (iii) 16 and (iv) 64 nodes
and (v) MLPs with two hidden layers containing 64 and 4 nodes. For brevity,
we only report results for the best performing neural network in Table 1.

3.3 Experimental Protocol

We compared the accuracy of our approach and the baselines in three different
contexts.

— In the Disease context the task is to recognize, based on the EEG signals,
whether a person is affected by the disease (alcoholism) or not, i.e., the class
label of an EEG-signal reflects whether this signal originates from an alco-
holic patient or a healthy individual. In this context, both for our approach
and the baselines, we make use of the information that we know which sig-
nals originate from the same person: we classify a person as healthy (or
alcoholic, respectively) if majority of the signals originating from that per-
son were classified as healthy (or alcoholic, respectively). While we do not
claim that alcoholism should be diagnosed using EEG, with this context we
aim to simulate scenarios in which EEG is used to asses the presence or the
severity of a disease.

® Weka is available at http://www.cs.waikato.ac.nz/ml/weka/



— In the Stimulus context we classified signals according to the stimulus. There-
fore, signals belong to one of three classes: (i) one picture was shown to the
person, (ii) the same picture was shown twice, (iii) two different pictures
were shown. We performed three experiments in this context: in the first one
(Stimulus) we used the entire dataset, in the second experiment (Stim.H)
only the signals originating from healthy individuals were used, while in the
third context (Stim.A) we only used the signals describing the electrical ac-
tivity of the brain of alcoholic patients. This context simulates scenarios in
which patterns of different brain activities has to be distinguished, such as
in case of EEG-based spelling devices or web browsers.

— The Application context extends the Stimulus context: the goal is to recog-
nize the stimulus again, however, we aim to simulate scenarios in which the
system is trained using a particular dataset, but the system is subsequently
applied to new data originating from a slightly different distribution. In the
App.I experiment we used only signals originating from healthy individuals
to train the classifier and we test the classifier on signals of alcoholic patients;
whereas in the App.II experiment we used signals of alcoholic patients to
train the classifier and we test it on signals of healthy individuals.

In all the aforementioned experiments, we used the 10 x 10-fold crossvali-
dation protocol to evaluate our approach and the baselines. While splitting the
data for cross-validation, we pay attention that all the signals belonging to the
same person are assigned to the same split, and therefore each person either
appears in the training data or in the test data, but not in both. On the one
hand, this allows to simulate the real-world scenario in which the recognition
system is applied to new patients; on the other hand, EEG signals are known
to be characteristic to individuals, see e.g. person identification systems using
EEG [16], therefore, if the same person would appear in both the train and test
data, this could lead to overoptimistic results.

As performance measure we used accuracy, i.e., the number of correct clas-
sifications divided by the number of all the classifications.

While implementing PROCESS we used the publicly available implemen-
tation of logistic regression [7] from the aforementioned Weka software pack-
age. We determined the number of selected signals n using a validation subset
of the training data. In particular, we used one out of the 9 training splits
as validation split and we trained PROCESS on the remaining 8 splits with
n = 100,200, 300, ..., 1000 and evaluated its accuracy on the validation split.
Finally, we set n to the value that resulted in the best performance on the
validation split. Then we retrained our classifier using the entire training data.

3.4 Experimental Results

We run the experiments on a computer with 6 CPU-cores, 16 GB RAM and 2TB
HDD. Table 1 summarizes the results of our experiments. We show accuracies
averaged over 10 x 10 folds for the previously described experiments. We show the
corresponding standard deviations on the right of the & symbol. The symbol /o



Table 1. Accuracy + standard deviation of PROCESS and its competitors averaged
over 10 x 10 folds. Bold font denotes the best approach in each row. The symbol
e /o denotes if the difference between PROCESS and its competitor is statistically
significant () or not (o) according to t-test at significance level of 0.01.

Context k-NN best hubness- Logistic best neural SVM PROCESS
aware classifier network (our approach)
Disease 0.656+0.049e¢ 0.786+0.1130 0.7914+0.1100 0.78240.1100 0.7984+0.0890 0.800+0.110
Stimulus 0.57740.019e 0.588+0.017e 0.444+0.066e 0.513+0.094e 0.490+0.081e 0.687+0.022
Stim.H  0.579+0.035e 0.58240.035e 0.623+0.073e 0.640+0.0680 0.666+£0.0760 0.64510.040
Stim.A  0.573+0.028e 0.588+0.026e 0.435+0.064e 0.497+0.096e 0.488+0.081e 0.673+0.031
App.I  0.550£0.022e 0.557+0.024e 0.572+0.053e 0.602+0.056e 0.61140.0490 0.622+0.040
App.IT  0.574£0.030e 0.586+0.033e 0.431+£0.066e 0.507+0.113e 0.48240.077e¢ 0.648+0.035

denotes if the difference between PROCESS and its competitor is statistically
significant (e) or not (o) according to t-test at significance level of 0.01.

The results show that in the vast majority of the cases, our approach outper-
formed the baselines and the difference was statistically significant. An exception
is the Stim.H experiment in which SVMs performed slightly better than our ap-
proach. However, the difference is statistically non-significant in this case.

In our experiments, the training time of PROCESS was close to the training
time of SVMs and neural networks, while PROCESS was much faster to train
then the best hubness-aware classifier. Regarding classification times, PROCESS
was more than an order of magnitude quicker than k-NN and hubness-aware clas-
sifiers which may be attributed to the fact that PROCESS needs substantially
less DTW calculations than these other classifiers. On the other hand, neural
networks and SVMs were even quicker than PROCESS. Note, however, that in
practical applications, PROCESS should be considered as an alternative even to
SVMs or neural networks in cases where accuracy is more important than pre-
diction time or if several CPU-cores are available in order to execute the DTW
calculations of PROCESS in parallel.

4 Conclusions and Outlook

In this paper, we proposed a new approach for the analysis of electroencephalo-
graph (EEG) signals. We demonstrated that the proposed projection approach
may be useful to represent EEG signals of a real dataset in a low dimensional
vector space and therefore it may allow exploratory analysis of the data by vi-
sual inspection. Our experiments on a publicly available real-world EEG dataset
showed that our approach significantly outperforms the state-of-the-art in var-
ious EEG-related recognition tasks, including cases when the training and test
data originate from slightly different distributions.

Our approach, PROCESS, maps multivariate time-series into a vector space.
In order to do so, PROCESS calculates distances from randomly selected in-
stances. As our experimental results show, this random selection leads to good



results. However, in order to further increase classification performance, one may
consider more advanced selection strategies.

In principle, the vector representation of the data constructed by PROCESS
allows to use (almost) any vector classifiers including ensemble methods and
semi-supervised classifiers. Furthermore, the projection might be useful for clus-
tering or anomaly detection. Therefore, these applications are subject to fu-
ture work. Additionally, we point out that PROCESS might be used for various
classification tasks related to multivariate time-series, such as recognition tasks
related to electrocardiograph (ECG) signals, gesture recognition or signature
verification. From the point of view of medical diagnosis, classification of class-
imbalanced data is of special interest, therefore, we aim at combining PROCESS
with classifiers for class-imbalanced data in our future work.
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