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Abstract. In this paper, we present a new method for egocentric video temporal
segmentation based on integrating a statistical mean change detector and agglom-
erative clustering(AC) within an energy-minimization framework. Given the ten-
dency of most AC methods to oversegment video sequences when clustering their
frames, we combine the clustering with a concept drift detection technique (AD-
WIN) that has rigorous guarantee of performances. ADWIN serves as a statisti-
cal upper bound for the clustering-based video segmentation. We integrate both
techniques in an energy-minimization framework that serves to disambiguate the
decision of both techniques and to complete the segmentation taking into account
the temporal continuity of video frames descriptors. We present experiments over
egocentric sets of more than 13.000 images acquired with different wearable cam-
eras, showing that our method outperforms state-of-the-art clustering methods.
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1 Introduction
Lifestyle behaviour is closely related with health outcomes, in particular, to noncom-
municable diseases such as obesity and depression, that represent a major burden in
developed countries. A promising way towards studying one’s lifestyle is through the

Fig. 1: Example of temporal segmentation of a SenseCam sequence.

use of wearable cameras, able to digitally capture a person’s everyday activities into the
so called lifelogging. However, the automatic recognition of daily routines using wear-
able devices is very challenging due to the huge amount of collected data (up to 3.000
images per day). Moreover, daily routines are typically composed of many complex
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events, with a large variability depending on factors such as time, location and individ-
ual. This work proposes an algorithm for grouping similar temporally adjacent images
into segments, providing a structure to egocentric videos, that is important for further
analysis such as video summarization and analysis. Considering the environment as a
strong characteristic of an event, these segments are supposed to characterize different
environments in which the camera wearer acts (Fig. 1).

Previous methods for egocentric temporal segmentation can be classified into two
broad classes, depending on whether they rely on low-level or high-level features. Ba-
sically, the former class has as focus what the wearer sees and uses as image represen-
tation features that are able to capture the characteristics of the environment around the
wearer, such as color and texture; the latter class focuses on what the wearer does and
thus uses as image representation high-level concepts such as objects and activities.

Early works based on low-level features include the one of Doherty et al. [5], which
is based on the use of MPEG-7 descriptors for image representation that are available
from the sensor, and the one of [16], that uses a time-constrained k-means algorithm
based on color descriptors. Recent methods focus on motion-based features. Usually,
optical flow is used to distinguish between static, moving the head/camera and in-transit
frames [17,3]. This classification offers a segmentation that focuses in the activities and
movements performed by the user, but is prone to fail when the environment changes
while performing the same activity (e.g. the user is in transit but, first gets out of their
workplace, then is walking on the street and finally enters to the underground). To focus
on long-term activities, Poleg et al. [21] proposed the use of integral motion, which is
closely related to wearers’ activity. By integrating the instantaneous displacements at
fixed image patches, the variations due to head rotation are eliminated, since their mean
is practically zero, leaving only the consistent displacement caused by forward motion.
Methods based on motion analysis assume high temporal resolution, but the temporal
resolution of many lifelogging devices, such those considered in this paper, is very low.

Works based on high-level features are generally more recent. In [14], first impor-
tant people and objects are discovered by measuring their interaction with the camera
wearer and then the frames which reflect the key objects happening are selected. In
[20], the authors propose a summarization tool based on analysis of video structures
and video highlights. By emphasizing on both the content balance and the perceptual
quality of the summary, the authors employ a normalized cut algorithm to globally and
optimally partition a video into clusters. Furthermore, in [13], the authors present a
video segmentation approach based on the study of spatio-temporal activities within
the video, that leads to a visual activity estimation by measuring the number of interest
points, jointly obtained in the spatial and temporal domains.

In this paper, we rely on low-level features. Our approach is a Graph-Cut (GC)
extension technique [4,3] that takes advantage of two methods having complemen-
tary properties: ADWIN [2] - a concept drift technique for mean change detection
that is highly precise, but usually leads to temporal under-segmentation; and agglom-
erative clustering (AC), which usually has a high recall, but leads to temporal over-
segmentation. Our approach, that we call R-Clustering, regularizes the over-segmentation
of the AC through the upper bound provided by ADWIN. Based on the excellent accu-
racy achieved recently for classification in a variety of computer vision tasks [12,8], we
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use Convolutional Neural Network (CNN) vector activation over the entire image as a
global image feature descriptor. CNN features are able to focus just in the environment
appearance and do not need to rely on a motion information that, would be unfeasible to
estimate reliably taking into account the very low temporal resolution of the wearable
devices we considered (up to 3fpm). As an example of application, we illustrate the
utility of the proposed method for the detection of social events. In the next section, we
detail the proposed approach. In section 3, we discuss experimental results and, finally,
in section 4 we draw some conclusions.

2 The R-Clustering Approach for Temporal Video Segmentation
Due to the low-temporal resolution of egocentric videos, as well as to the camera
wearer’s motion, temporally adjacent egocentric images may be very dissimilar be-
tween them. Hence, we need robust techniques to group them and extract meaningful
video segments. In the following, we detail each step of our approach that relies on an
AC regularized by a robust change detector within a GC framework.
Clustering methods: The AC method follows a general bottom-up clustering proce-
dure, where the criterion for choosing the pair of clusters to be merged in each step is
based on the distances among the image features. The inconsistency between clusters
is defined through the cut parameter. In each iteration, the most similar pair of clus-
ters are merged and the similarity matrix is updated until no more consistent clustering
are possible. We chose the Cosine Similarity to measure the distance between frames
features, since it is a widely used measure of cohesion within clusters, specially in high-
dimensional positive spaces [23]. However, due to the lack of incidence for determining
the clustering parameters, the final result is usually over-segmented.
Statistical bound for the clustering: To bound the over-segmentation produced by
AC, we propose to model the video as a multivariate data stream and detect changes in
the mean distribution through an online learning method called Adaptative Windowing
(ADWIN) [2]. ADWIN works by analyzing the content of a sliding window, whose size
is adaptively recomputed according to its rate of change: when the data is stationary the
window increases, whereas when the data is statistically changing, the window shrinks.
According to ADWIN, whenever two large enough temporally adjacent (sub)windows
of the data, say W1 and W2, exhibit distinct enough means, the algorithm concludes
that the expected values within those windows are different, and the older (sub)window
is dropped. Large enough and distinct enough are defined by the Hoeffding’s inequal-
ity [9], testing if the difference between the averages on W1 and W2 is larger than a
threshold, which only depends on a pre-determined confidence parameter δ. The Ho-
effding’s inequality guarantees rigorously the performance of the algorithm in terms of
false positive rate.

This method has been recently generalized in [6] to handle k−dimensional data
streams by using the mean of the norms. In this case, the bound has been shown to be:

εcut = k1/p
√

1

2m
ln

4

kδ′

where p indicates the p−norm, |W | = |W0| + |W1| is the length of W = W1 ∪W2,
δ′ = δ

|W | , and m is the harmonic mean of |W0| and |W1|. Given a confidence value δ,
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the higher the dimension k is, the more samples |W | the bound needs to reach assuming
the same value of εcut. The higher the norm is used, the less important is the dimen-
sionality k. Since we model the video as a high dimensional multivariate data stream,
ADWIN is unable to predict changes involving a small number of samples, which often
characterizes life-logging data, leading to under-segmentation. Moreover, since it con-
siders only the mean change, it is enable to detect changes due to other statistics such
as the variance. The ADWIN under-segmentation represents a statistical bound for the
AC (see Fig.2 (right)). We use GC as a framework to integrate both approaches and to
regularize the over-segmentation of AC by the statistical bound provided by ADWIN.

Fig. 2: Left: change detection by ADWIN on a 1 − D data stream, where the red line
represents the estimated mean of the signal by ADWIN; Center: change detection by
ADWIN on a 500-D data stream, where, in each stationary interva, the mean is depicted
with a different color in each dimension; Right: results of the temporal segmentation by
ADWIN (green) vs AC over-segmentation (blue) vs ground-truth shots (red) along the
temporal axis (the abscissa).

Graph-Cut regularization of egocentric videos: GC is an energy-minimization tech-
nique that minimizes the energy resulting from a weighted sum of two terms: the unary
energy U( ), that describes the relationship of the variables to a possible class and the
binary energy V ( , ), that describes the relationship between two neighbouring sam-
ples (temporally close video frames) according to their feature similarity. GC has the
goal to smooth boundaries between similar frames, while attempts to keep the cluster
membership of each video frame according to its likelihood. We define the unary en-
ergy as a sum of 2 parts (Uac(fi) and Uadw(fi)) according to the likelihood of a frame
to belong to segments coming from the AC and ADWIN. The GC energy to minimize
is as follows:

E(f) =
∑
i

((1− ω1)Uac(fi) + ω1Uadw(fi)) + ω2

∑
i,n∈Ni

1

Ni
Vi,n(fi, fn)

where fi, i = {1, ...,m} are the set of image features, Ni are the temporal frame neigh-
bours of image i, ω1 and ω2 (ω1, ω2 ∈ [0, 1]) are the unary and the binary weighting
terms respectively. Defining how much weight do we give to the likelihood of each
unary term (AC and Adwin, always combining the events split of both methods), and
balancing the trade-off between the unary and the pairwise energies, respectively. The
minimization is achieved through the max-cut algorithm, leading to a temporal video
segmentation with similar frames having as large likelihood as possible to belong to the
same event, while maintaining video segment boundaries in neighbouring frames with
high feature dissimilarity.
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Features: As image representation for both segmentation techniques, we used the CNN
features [10]. The CNN features trained on ImageNet [12] have demonstrated to be suc-
cessfully transferred to other visual recognition tasks such as scene classification and
retrieval. In this work, we extracted the 4096-D CNN vectors by using the Caffe [10]
implementation trained on ImageNet. Since each CNN feature has a large variation dis-
tribution in its value, and this could be problematic when computing distances between
vectors, we used a signed root normalization to produce more uniformly distributed data
[24]. First, we apply the function f(x) = sign(x)|x|α on each dimension and then we
l2−normalize the feature vector. In all the experiments, we take α = 0.5. Following we
apply a PCA dimensionality reduction keeping 95% of the data variance. Only in the
GC pair-wise term we use a different feature pre-processing, where we simply apply a
0-1 data normalization.

3 Results and validation
In this section, we discuss the datasets, the statistical validation measurements, tests and
comparison to other methods as well as a possible application of the R-Clustering.

Data: To evaluate the performance of our method, we used 2 datasets (one public [11]
and one made by us), composed of 10 days with a total of 13324 images, acquired by
two different wearable devices: SenseCam [22] and Narrative (http://getnarrative.com/).
The main differences between the two kind of devices are the frame rate (3 fpm vs 2
fpm) and the lens (fisheye vs normal). The data adquired by the SenseCam contain a
larger number of frames per day with a larger field of view and significant deformation
and blurring. Both datasets include 5 days each, containing a mix of indoor and outdoor
scenes with numerous foreground and background objects. All data has been manually
annotated to provide ground-truth segmentation.

Statistical measurements: As evaluation criterion (following [15]), we used the F-
Measure (FM): FM = 2(RP )/(R + P ), where P is the precision (P = TP/(TP +
FP ), R is the recall (R = TP/(TP + FN) and TP , FP and FN are the number of
true positives, false positives and false negatives.

Fig. 3: F-Measure evolution for the two kind of datasets, applying different clustering
methods and cut value. The abscissa (X) defines the cut value and the ordinate (Y) - the
F-Measure.

Tests on different agglomerative clustering methods: We performed several tests on
different AC, namely: single, centroid, average, weighted, complete, ward, and median,
that basically vary in the way the distance between cluster elements is estimated [19].
Fig. 3 (left) represents the F-Measure of the different clusterings on the SenseCam data,

http://getnarrative.com/
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Fig. 3 (center) - on the Narrative data and Fig. 3 (right) on all data. We can observe
that the clustering follows the same behaviour for the two types of data sets, although
for the SenseCam the methods are achieving better results than for the Narrative sets.
That is reasonable due to the significant difference in image appearance. Despite for
the SenseCam sets the complete is achieving the same results as the average methods,
the third figure shows how for the whole data the average method is achieving the best
results (FM=0.56), followed by the complete (FM=0.55) and the single (FM=0.54). The
cut value seems to be very influential for the results since there is a point from which,
for each method, clusters all data in one single cluster, leading to FM=0.

Fig. 4: Average F-Measure of R-Clustering with the best parameters for the SenseCam
data (left), and on all datasets (center). The abscissa (X) defines the pair-wise term, the
ordinate (Y) the ADWIN vs. AC trade-off and the applicate (Z) shows the corresponding
FM. The red surface represents the F-measure of AC and the orange one of ADWIN.
MeanShift performance for video segmentation (right). The abscissa (X) defines the
bandwith. The blue line represents the average FM, whereas the red lines are the FM
per each dataset.

Tests on R-Clustering using Graph-Cuts: We tested the R-Clustering performances
according to the parameters ω1 and ω2. Fig. 4 (left) shows the average measure on the
Sensecam data as a function of both parameters. The optimal F-Measure on all datasets
is achieved when ω1 = 1 and ω2 = 0.5 (Fig. 4 (center)). Despite the average AC
achieves the best performance on our data sets (FM=0.56), the R-Clustering based on
this AC method just achieves a FM=0.63. Whereas when it is based on the single clus-
tering, the one that was achieving in AC the second best results (FM=0.54), it achieves
the highest FM=0.66 with R-Clustering. Table 1 shows the optimal F-measure for AC,
ADWIN and R-Clustering, where the application of R-Clustering method clearly out-
performs the F-Measure obtained by the AC and ADWIN technique. Thus, by having
ω1 = 1 as unary energy parameter proves that the combination of ADWIN (by using
its resulting likelihoods and labels initialization) and AC (by using its clusters split in
the GC labels initialization) helps to obtain better results by the R-Clustering. In Fig.
4 (center), the lines depict the standard deviation on each combination of parameters,
hence the standard deviation of the best peak results is very low (std=0.17, short line)
compared to the higher deviation (longer lines) in the center, meaning that our method is
robust and stable. Final video segments can be seen in Fig. 5 that shows three segments
corresponding to metro, office and street environments, extracted from a Narrative set.

Tests on other clustering methods: We compare R-Clustering to K-Means [18] and
MeanShift (MS) [7] (see Fig. 4 (right) and Table 1) that achieved FM=0.52 and FM=0.49,
respectively. The worse performance can be explained by several facts. The k-Means
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algorithm requires the number of clusters to be specified and it is not a robust method
due to its local minima problem. Considering MeanShift (MS), it is based on density es-
timation which can deal with arbitrarily shaped data distributions, but its problem is that
it is very sensitive to the bandwith (BW) parameter: a large BW can slow down the con-
vergence and a small BW can make it quickly converge leading to over-segmentation.

Datasets K-Means Mean-Shift ADWIN AC R-Clustering
Narrative 0.32 0.38 0.32 0.45 0.55
SenseCam 0.65 0.60 0.31 0.68 0.79

All 0.52 0.49 0.31 0.56 0.66
Table 1: Average F-Measure result for each of the tested methods on our egocentric
datasets.

Fig. 5: Illustration of our R-Clustering segmentation results for 3 events from a Narra-
tive set.

Application to human tracking for social events characterization: Temporal seg-
mentation is very useful to detect social events, which are characterized by the presence
of people with whom the camera’s wearer communicates. Since the presence of people
in a specific event likely last from the beginning of the event to its end, social events
can be extracted by relying on temporal segmentation. As outlined in [1], due to the
substantial difference in frame rate between videos captured by a SenseCam and clas-
sical videos, state-of-the-art tracking methods are not directly applicable to lifelogging
videos. In [1], the authors introduced a novel approach, called bag-of-tracklets, that
allows to extract robust tracklet prototypes from video segments containing trackable
people. While in this work temporal segments are defined manually, we use our de-
tected segments as a pre-processing step for extracting tracklets of people in egocentric
videos (Fig. 6).

Non-Social Event Non-Social EventSocial Event

Fig. 6: Illustration of detecting social events in temporally segmented videos.
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4 Conclusions
In this work, we proposed a novel methodology for automatic egocentric video seg-
mentation that is able to segment low temporal resolution data by global low-level
processing. R-Clustering is a robust segmentation approach based on a GC extension
technique, that integrates a statistical bound by the concept drift method ADWIN and
AC, two methods with complementary properties for temporal video segmentation. We
evaluated the performance of R-Clustering on different clustering techniques and on 10
datasets acquired through different wearable devices, and we showed the improvement
of the proposed method with respect to the state-of-the-art.

Acknowledgments
This work was partially founded by TIN2012-38187-C03-01 and SGR 1219.

References

1. M. Aghaei and P. Radeva. Bag-of-tracklets for person tracking in life-logging data. In CCIA
2014, October 2014, Barcelona, Spain, pages 35–44, 2014.

2. A. Bifet and R. Gavalda. Learning from time-changing data with adaptive windowing. In
SDM, volume 7. SIAM, 2007.

3. M. Bolaños, M. Garolera, and P. Radeva. Video segmentation of life-logging videos. In
Articulated Motion and Deformable Objects, pages 1–9. Springer-Verlag, 2014.

4. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(11):1222–1239, 2001.

5. A. R. Doherty and A. F. Smeaton. Automatically segmenting lifelog data into events. In
Proceedings, WIAMIS ’08, pages 20–23, Washington, USA, 2008. IEEE Comp. Society.

6. M. Drozdzal, J Vitria, S Segui, C. Malagelada, F. Azpiroz, and P. Radeva. Intestinal event
segmentation for endoluminal video analysis. In ICIP, 2014.

7. K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function, with
applications in pattern recognition. IEEE Trans. Inf. Theor., 21(1):32–40, September 2006.

8. I. J. Goodfellow, J.Ibarz Y. Bulatov, S. Arnoud, and V. Shet. Multi-digit number recognition
from street view imagery using deep convolutional neural networks. Google Inc., CA, 2014.

9. W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):pp. 13–30, 1963.

10. Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding.
http://caffe.berkeleyvision.org/, 2013.

11. N. Jojic, A. Perina, and V. Murino. Structural epitome: a way to summarize one’s visual
experience. pages 1027–1035, 2010.

12. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS 25, pages 1097–1105. Curran Associates, Inc., 2012.

13. R. Laganire, R. Bacco, A. Hocevar, P. Lambert, G. Pas, and B. Ionescu. Video summarization
from spatio-temporal features. In TVS, pages 144–148. ACM, 2008.

14. Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important people and objects for egocen-
tric video summarization. In CVPR, pages 1346–1353. IEEE, 2012.

15. Z. Li, Z. Wei, W.n Jia, and M. Sun. Daily life event segmentation for lifestyle evaluation
based on multi-sensor data recorded by a wearable device. In EMBC’2013, pages 2858–
2861. IEEE, 2013.



IX

16. W.-H. Lin and A. Hauptmann. Structuring continuous video recording of everyday life using
time-constrained clustering. Computer Science Departament, 959, 2006.

17. Z. Lu and K. Grauman. Story-driven summarization for egocentric video. In CVPR, pages
2714–2721. IEEE, 2013.

18. J. B. MacQueen. Some methods for classification and analysis of multivariate observations.
In L. M. Le Cam and J. Neyman, editors, Proc. of the 5th Berkeley Symposium on Mathe-
matical Statistics and Probability, volume 1, pages 281–297, 1967.

19. F. Murtagh and P. Contreras. Methods of hierarchical clustering. CoRR, abs/1105.0121,
2011.

20. Ch.-W. Ngo, Y.-F. Ma, and H. Zhang. Automatic video summarization by graph modeling.
pages 104–109. IEEE Computer Society, 2003.

21. Y. Poleg, Ch. Arora, and Shm. Peleg. Temporal segmentation of egocentric videos. In
Computer Vision and Pattern Recognition (CVPR), IEEE Conference On, 2014.

22. SenseCam. Sensecam overview, 2013.
23. P..N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First Edition).

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.
24. L. Zheng, Sh. Wang, F. He, and Q. Tian. Seeing the big picture: Deep embedding with

contextual evidences. CoRR, abs/1406.0132, 2014.


	R-Clustering for Egocentric Video Segmentation

