N

N
N

HAL

open science

SNAKES: A flexible high-level Petri nets library

Franck Pommereau

» To cite this version:

Franck Pommereau. SNAKES: A flexible high-level Petri nets library. 36th International Conference
on Application and Theory of Petri Nets and Concurrency (Petri Nets 2015), Jun 2015, Brussels,
Belgium. pp.254-265, 10.1007/978-3-319-19488-2_ 13 . hal-01186407

HAL Id: hal-01186407
https://hal.science/hal-01186407
Submitted on 8 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01186407
https://hal.archives-ouvertes.fr

SNAKES: a Flexible High-Level
Petri Nets Library
(Tool Paper)

Franck Pommereau

IBISC, University of Evry/ Paris-Saclay, 23 bd de France, 91037 Evry Cedex, France
franck.pommereau@ibisc.univ-evry.fr

Abstract. SNAKESE is a general purpose Petri nets library, primarily for
the Python programming language but portable to other ones. It defines
a very general variant of Python-coloured Petri nets that can be created
and manipulated through the library, as well as executed to explore state
spaces. Thanks to a variety of plugins, SNAKES can handle extensions of
Petri nets, in particular algebras of Petri nets [4,[26]. SNAKES ships with a
compiler for the ABCD language that is precisely such an algebra. Finally,
one can use the companion tool Neco [14] that compiles a Petri net into
an optimised library allowing to compute efficiently its state space or
perform LTL model-checking thanks to library spoT [8l/13]. This paper
describes SNAKES’ structure and features.

Keywords: Petri nets library, prototyping, simulation, model-checking

1 SNAKES in a Nutshell

SNAKES is a general purpose Petri net library for the Python programming lan-
guage (but we show in Section [4] that it can be ported to other languages). Us-
ing SNAKES, one can create Petri nets, transform them (add/remove/... nodes,
add/remove/. .. arcs, etc.), manipulate their markings, and also fire transitions
(sequentially). SNAKES is not designed to perform analysis but because it can
execute modelled nets, it may be used to explore traces or state spaces. How-
ever, a companion tool called Neco is preferred for this purpose and provides
fast reachability and LTL explicit analysis.

SNAKES uses a very general variant of Python-coloured Petri nets (see Sec-
tion: tokens can carry arbitrary Python objects, transitions guards are arbi-
trary Python expressions and arcs may be annotated with arbitrary Python vari-
ables or expressions. Moreover, SNAKES provides support for various Petri nets
extensions: read arcs, whole-place arcs and inhibitor arcs. Because we use the
same language for the library and the Petri nets annotations, users are provided
with great flexibility. In addition to this flexibility, a general plugin mechanism
is provided to allow for redefining every aspect of SNAKES, like the firing rule

! SNAKES is the Net Algebra Kit for Editors and Simulators

mailto:franck.pommereau@ibisc.univ-evry.fr

T
django flask ansible requests tornado scrapy scikit-learn httpie fabric snakes

Fig. 1. SNAKES compared with the most popular Python projects on GitHub (on March
20th, 2015). From left to right, bars represent: B size of the project measured in number
of source lines of code, ranging from 184.6k for Django to 3.7k for HT'TPie; O number
of contributors, ranging from 1.0k for Ansible to 2 for SNAKES; [J popularity measured
as the number of stars (GitHub’s bookmarks) times the number of forks, ranging from
13.3k stars and 5.2k forks for Django to 2 stars and 1 fork for SNAKES (however, it is
worth noting that SNAKES has moved to GitHub only since March 15th, 2015).

in particular. For instance, in we show how SNAKES can be extended to
support time Petri nets (which requires less than 100 lines of code); or in [25],
we show how nets-within-nets, with transition firing synchronised between the
nested levels of nets, can be implemented using less than 30 lines of code.

SNAKES has been developed since 2002, progressively growing to about 81.5k
lines of portable Python, which represents quite a big effort as shown in Figure [}
One reason that increases the size of SNAKES is that it does not rely on exter-
nal or system-dependant libraries and includes features that are not directly
related to Petri nets, for instance: a LL(1) parser generator; tools for Python
code parsing, refactoring and generation; tools for API documentation extraction
and generation. On the other hand, this allows SNAKES to work out-of-the-box
on any system with Python starting from version 2.5, including the 3.x series as
well as alternative implementations like PyPy, Jython, IronPython, or stackless
Python [27]. SNAKES is free software released under the GNU LGPL [10]. Because
it is freely available, it is hard to say how many users it has, but we measured
that the online documentation receives more than 300 unique visitors per month.
SNAKES is available at https://github.com/fpom/snakes!

1.1 Modules and Plugins

The whole library comes as a Python package organised as a hierarchy of modules
among which the main ones are:

— snakes is the top-level module that defines commonly used exceptions;

— snakes.data defines data structures like multisets, substitutions, etc.;

— snakes.typing defines a type system used to restrict the tokens in places;

— snakes.plugins gathers all the plugins provided with SNAKES (see below);

— snakes.pnml defines import/export functions to/from PNML (see below);

— snakes.nets is the main module that defines all the Petri net related structures
like places, transitions, arcs, marking graph, etc.

https://github.com/fpom/snakes

Users typically need to import only snakes.nets that itself imports most of
the other modules. At the time module snakes.pnml| was written, PNML used to
support only places/transitions nets and such nets are correctly imported from
or exported to PNML by SNAKES. But nets with high-level features like coloured
tokens are exported into a dialect that does not conform nowadays PNML, and
reciprocally, high-level PNML cannot be loaded into SNAKES. Adding this support
represents a huge work regarding the complexity of the latest standard.

The most useful plugins shipped with SNAKES are:

— gv allows to draw Petri nets using GraphViz [5] (see Figure [3|for pictures);

— ops provides nets compositions from algebras of Petri nets (sequence, choice,
iteration and parallel composition);

— pids offers dynamic process identifiers creation and destruction [20];

— labels allows to annotate nets and their nodes with arbitrary values;

— let allows to assign variables within expressions, which is useful to avoid
computing several times the same expression (more at the end of Section.

Generally, plugins are based on a set of hooks in the tools, allowing the plugin
to perform a specific action when the hook is activated. SNAKES takes a more
general approach: a plugin is basically a set of classes that extends the classes of
a module (snakes.nets in general). This is thus much more general since anything
can be extended or redefined. Moreover, it is also more flexible than standard
classes inheritance because it is made dynamically, depending on which plugins
are actually loaded. In order to avoid incompatible extensions and to simplify
the use, plugins declare which other plugins they conflict with as well as which
other they depend on.

1.2 Hello World

Figure [2| shows a simple example of SNAKES usage: this code loads snakes.nets
extended with plugin gv (lines 1-3); creates a Petri net (line 4); adds three places
(lines 5-7) and a transition (line 8); adds arcs (lines 9-11); draws the net once
(line 12); gets the modes for the transition (line 13, the returned modes are
given in the comment lines 14-17); fires the transition with one of these modes
(line 18); and finally draws the net once more (line 19). The resulting pictures
are displayed in Figure[3] One can note that places are here marked with string
objects and that the output arc from transition “concat” to place “sentence” is
labelled with a Python expression that concatenates three strings, two of which
being obtained by consuming tokens in the other places.

1.3 Transition Firing

As said previously, every Petri net in SNAKES can be executed, i.e., its transi-
tions can be fired. To achieve this, we need to make a compromise between the
generality of nets definitions and some implementation restrictions. Informally,
our definition is as follows: a Petri net is a tuple (S, T, ¢, M) where,

1 import snakes.plugins

> snakes.plugins.load("gv", "snakes.nets", "snk")

5 from snk import x

i pn = PetriNet("hello world,in SNAKES")

5 pn.add_place(Place("hello", ["hello", "salut"]))

¢ pn.add_place(Place("world", ["world", "le monde"]))
7 pn.add_place(Place("sentence"))

s pn.add_transition(Transition("concat"))

9 pn.add_input("hello", "concat", Variable("h"))

10 pn.add_input("world", "concat", Variable("w"))

11 pn.add_output("sentence", "concat", Expression("h +,’ 1’ L+uw"))
12 pn.draw("hello-1.eps")

15 modes = pn.transition("concat").modes()

14 # modes = [Substitution(h=’salut’, w=’world’),
15 # Substitution(h=’salut’, w=’le monde’),

16 # Substitution(h="hello’, w=’world’),

17 # Substitution(h="hello’, w=’le monde’)]
15 pn.transition ("concat").fire(modes[2])

1o pn.draw("hello-2.eps")

Fig. 2. Python code for the “hello world” example.

world hello
{*world’, "le monde’} {’salut’, "hello’}
w h
concat
True

Fig. 3. Pictures generated by the “hello world” example.

— S is a finite set of places;
— T is a finite set of transitions, disjoint from S;
— £ is a labelling function such that
e for all s € S, {(s) is the type of s, i.e., a restriction on the tokens it may
hold. This is implemented in snakes.typing as Boolean functions used to
check whether tokens can be accepted or not,
o forallt € T, ¢(t) is the guard of ¢, implemented as a Python expression,
o forall (z,y) € (SxT)U(T x S), £(x,y) is the annotation of the arc from
x to y and is a multiset of expressions to specify the tokens produced or
consumed through the arc;
— M is the marking, i.e., a mapping from places to multisets of Python values.

In general, such a Petri net cannot be implemented, in particular in Python.
For instance, imagine an arc from a place s to a transition ¢ and labelled with a
call to a function f(z). To fire t, we would need, for each token value v in s to

solve v = f(z) in order to discover the possible bindings for variable x. This is
clearly not feasible when f is an arbitrary Python function. So, SNAKES adopted
the following restrictions:

— input arcs (in S x T) cannot be labelled with expressions, but only with
values, variables or combinations of them within structures that allow for
pattern matching (currently, only tuples are implemented);

— all the variables used in a transition, its guard and surrounding arcs should
appear on at least on one input arc so it can be bound.

Given this setting, the firing rule is quite straightforward and can be decom-
posed into two methods of a transition object t. First, t.modes() computes all
the possible bindings of the transition’s variables by matching input arcs an-
notations with respect to all the tokens available in input places. The second
limitation above is not enforced but the modes of a transition that does not
respect are simply not computed by SNAKES (see below about relaxing a bit
this limitation); however, they could be provided by the user. Then, each such
binding m is checked to be a mode as follows:

— for each input place s, check if “eval({(s,t), m)” yields a multiset of tokens
actually held by s, where eval is a Python function that evaluates arbitrary
Python expressions in a given environment (m plays this role here);

— check if “eval(£(t), m)” returns True;

— for each output place s, check if every token in “eval(¢(t,s), m)” is accepted
by the type of s.

The second method, t.fire(m), actually fires the transition for a mode m by
consuming and producing the tokens as computed above.

To overcome a bit the limitation that every variable is bound from the input
arcs, plugin let provides a function also called let that allows to bind new variables
during the evaluation of an expression. In practice, this is useful only during
the evaluation of the guard, for instance “x > 10 and let(y="£ (x)", z="g(x)")”
allows to introduce two new variables y and z whose values can be computed
arbitrarily (here by calling functions f and g), and that can be used in the output
arcs avoiding potential redundant calls to f and g. Note that let returns True if
it can successfully bind the variables, and False otherwise (e.g., if an expression
yields an exception), which is adequate for its use in guards.

2 ABCD for Friendly Modelling

SNAKES being a library, it is mainly targeted towards developers and researchers
who need to program with Petri nets. However, for the modeller, defining nets
using SNAKES directly may be tedious. A user friendly syntax is thus desirable
for users that mainly want to build models and explore them. For this purpose,
SNAKES comes with a compiler for the ABCD modelling language (Asynchronous
Box Calculus with Data) which is a process algebra with friendly Python-like syn-
tax, that embeds full Python, and with a Petri nets semantics (see [26} sec. 3.3]

i buffer hello : str = "hello", "salut"

> buffer world : str = "world", "le monde"

5 buffer sentence : str = ()

i [hello—(h), world—(w), sentence+(h + ’,’ + w)]

Fig. 4. “Hello world” example revisited in ABCD.

i buffer bag : int = ()

> net prod (mod) :

3 buffer count : int =0

4 [count—(x), count+(x+1), bag+(x % mod)] * [False]

5 net cons (div) :

6 ([bag—(x) if x % div == 0] ; [bag—(x) if x % div != 0]) * [False]
7 prod(5) | prod(7) | cons(2) | cons(3)

Fig.5. A producer-consumer example in ABCD.

for more details). The compiler translates ABCD code into Petri nets, called from
the command line, it can draw the computed net or save it into a file (in SNAKES’
PNML dialect) for a later use. It may also be called from a Python program to
obtain a net object directly.

The example from Figure [2| could be expressed as shown in Figure |4l We
can see that places are expressed as typed buffers (str is Python’s type for
strings) with an initial content (empty in the case of “sentence”), and transitions
are expressed as atomic actions enclosed into square brackets within which the
tokens consumed from or produced into buffers are specified. However, ABCD
is not designed as a textual syntax for Petri nets and it cannot express any
Petri net. Instead, it provides the modeller with a notion of control flow and
parametrised processes with local data. This is illustrated in Figure [f| where two
producers and two consumers share a buffer bag (defined line 1). Lines 2-4 define
a net (which can be considered as a process factory) parametrised by a value
mod, two instances of which being created in line 7 with distinct values for mod.
Net prod declares a local buffer count, this means that every instance of prod has
its own private copy of count. Line 4, the process itself consists of two atomic
actions connected by an iteration operator “x”. The left action increments the
value in buffer count and produces in bag the current value of count modulo mod.
The right action [False] is a special one that can never be executed; because it
is used here as the exit of the iteration, process prod is forced to iterate forever
producing values in bag. Net cons shows two more features: guards for atomic
actions, given after keyword if, and sequential composition “;”. We can also see
the parallel composition “|” in the main process line 7. A fourth composition that
is not shown here is the choice “+”.

The ABCD compiler also features an interactive simulator that allows step-
by-step execution of an ABCD model, directly on the source code, like when using
a debugger for a programming language.

3 Efficient Model-Checking

SNAKES is first designed to be flexible and general, not to be efficient: instru-
menting Python code from a Python program is definitely not the fastest way to
explore the state space of a Petri net. In order to do this efficiently, one can use
tool Neco [14] that is available separately [11]. This tool compiles SNAKES Petri
nets into fast native code with an optimised marking structure and per-transition
optimised firing. Using the declared place types, it can type the variables on in-
put arcs and generate Cython code [2], a dialect of Python extended with C
types. Then, Cython code is compiled into C source code that is finally compiled
into native code (all this process is automated). However, note that Neco com-
piles and optimises Petri nets, not the embedded Python code. So, if a Petri net
embeds slow Python code and provides too few types (e.g., in Figure [2| we did
not provide any typing for the places, so they are constrained to the universal
type object) Cython is forced to rely on the Python interpreter instead of gener-
ating fast C code. Neco can also compile ABCD models. In such a case, it exploits
many properties of the resulting Petri net that are known by construction (for
instance, control flow places are low-level 1-safe places and form 1-invariants on
the sequential parts) and performs further optimisation during the compilation.

Apart from its compiler, Neco also features a tool to build the state space
of a compiled net, and a tool to perform LTL model-checking on-the-fly. For the
latter purpose, it relies on library spoT [§] that is exactly the complement to
Neco: on the one hand, Neco is able to construct a Kripke structure by firing
the transitions of the compiled Petri net; on the other hand, SPOT can turn a
LTL formula into a Biichi automaton and check on-the-fly the emptiness of its
product with the Kripke structure.

Neco was awarded at the Model-Checking Contest 2013 (satellite event of
the PETRI NETS conference) as the most efficient explicit LTL model-checker.
Moreover, in many cases, it was the only tool to actually provide a result, which
assesses its robustness. A tutorial for using Neco is available online [11].

4 SNAKES out of Python

Using Cython [2] again, it is easy to create a C binding for SNAKES (i.e., export its
API to a C library) so it can be called from another programming language. This
is not provided by default because there is not one unique binding of SNAKES,
but instead one possible binding for every combination of plugins. Fortunately,
writing such a binding is easy when we know where the technical difficulties are.
Moreover, one advantage of writing the binding for each such use case is that we
are able to produce an API that is exactly suited to our particular need.

The main difficulty is that, when calling SNAKES from another programming
language, we shall send references to Python objects outside of the Python run-
time. If it happens that an object is no more referenced from the Python runtime,
it is garbage collected and the outer reference becomes dangling, which is likely
to crash the program with a segmentation fault. To avoid this, we have to provide

1 # here we write regular Python code to import SNAKES or other
2 # modules, load plugins, define functions,
cdef public int newnet (char xname) :
1 # here we just write regular Python code that uses SNAKES
cdef public int addplace (char xnet, char xname, int tokens) :
6 # and so on...

Fig. 6. Cython source code of the binding (file 1ibsnk.pyx).

a storage for the objects with our own references. For instance, we may store net
objects and provide access to them through their names.

So, basically, our binding consists of a Cython file 1ibsnk.pyx as sketched
in Figure [f] (see [22] for the full details). The Cython tool allows to compile this
source into a dynamic library (1ibsnk.so under Linux) along with a C header
file 1ibsnk.h that can be used from a C program. The only constraint is to take
care to initialise the Python runtime and the library before to call its functions.

To use SNAKES from another programming language than C, a simple pos-
sibility is to rely on SWIG that allows to automatically generate bindings of C
libraries for almost 20 programming languages [1].

5 Use Cases

As explained already, it is very hard to have a clear picture of who is using
SNAKES because it is freely available and very few users actually ask for support.
Fortunately, there are works we known well about [67,/12}[14}|15[21}29}/30] and
that illustrate typical use cases for SNAKES as listed below.

Prototyping tools. A prototype implementation of a massively parallel cTL*
model-checking algorithm for ABCD models of security protocols allowed to as-
sess scalability |15]. A new approach to process-symmetry reductions initially
defined in [20] has been prototyped in Neco by generating Python code, showing
a dramatic performance boost [12], and can be now ported to Cython.

Compilation from/to Petri nets. Neco compiler is entirely implemented in
Python using SNAKES to handle the Petri nets and ABCD as an input lan-
guage [14]. Apart from ABCD, the Petri net semantics of various other for-
malisms has been implemented using SNAKES, recently: a graphical variant of
the m-calculus [30] and a modelling language dedicated to toxic risk assessment
in biological and bio-synthetic systems [7].

Modelling. SNAKES is also used to create Petri net models, like in [21] where
models of cloud services are represented as token-nets instrumented by a system-
net that models the elasticity mechanism. For this task, SNAKES is presumably
the only tool available because it allowed to create token-nets whose structures
and markings are determined during the firing of the transitions in system-net.
More often, an input language is used, like in [7,[30], or ABCD is used like in [15].
ABCD has also been used to model peer-to-peer protocols for an industrial case
of distributed storage system [6}[29].

Analysis. Many modelling works are made with model-checking in perspec-
tive, but very often, only reachability analysis is performed to check safety prop-
erties and this is surprisingly often made directly using SNAKES [6}21,/29]. Neco
is also used to speedup state space computation [6] or to perform LTL model-
checking [30]. Another kind of analysis is to collect data along a collection of
randomly generated traces and to perform statistical analysis, either to assess
performances [21] or to evaluate other quantitative information, like in [6] where
the number of file loss of a peer-to-peer storage system is evaluated with respect
to the percentage of malicious peers present in the system.

6 Conclusion

We have presented SNAKES that enables to develop Petri net tools with great flex-
ibility regarding the variant of Petri nets, and allowing their execution for simu-
lation purpose or for limited reachability analysis. Efficient LTL model-checking
can be performed using Neco. SNAKES also ships with a compiler for the ABCD
algebra of Petri nets allowing user-friendly modelling of high-level systems.

Ongoing and Future Work. Despite its age and reported stability, SNAKES is still
considered as a beta software because it lacks a real development team to meet
the standard expectations from a stable software. In particular, it is very hard
to provide a roadmap of planned features because they are added in a demand-
driven fashion and depend a lot on the time the author can spend. So, current
version is 0.9.17 and is slowly converging towards 1.0, which will be reached
when at least the following features will be covered:

— replace current PNML support that does not conform to the standards with
simpler file formats and rely on third-party tools [17] to handle PNML;

— integrate Neco through a plugin to allow its use transparently and bring LTL
model-checking directly to the users;

— fill a few holes in the documentation and perform minor code cleanup and
simplification.

This does not mean that no other features will be introduced in the meantime,
some in particular are very much desired:

— interactive simulation of any Petri net (in addition to ABCD processes), and
fast automatic simulation coupled with statistical analysis of the traces;

— integration with other tools (user interfaces, analysers, etc.), in particular
with CosyVerif [17], notably by supporting more inputs/outputs languages;

— genericity with respect to the annotation language by generalising the com-
pilation approach;

— automated API generation to other languages by extending the API docu-
mentation extraction tool to generate Cython bindings as presented above;

— extend ABCD with a syntax for raw Petri nets, and with support for thread-
like processes as defined in [20] and [26] sec. 4.3].

Interface with other tools and integration with other programming languages
are two crucial features to open SNAKES to more researches out of the Python
ecosystem. It looks very useful not to limit its use to one particular programming
language so it can be helpful for a broader community.

Related Works. To the best of our knowledge, SNAKES is quite a unique tool
in that there is no other such general purpose Petri net library aimed at tools
developers, that is still actively developed and maintained. The Petri Net Ker-
nel [19] used to have similar goals for Java or Python, depending on the version,
but it received no update since October 2003.

Taking apart its purpose and considering only the Petri net variant proposed
in SNAKES, we may find similarities with other high-level Petri nets tools. In
particular, the coloured Petri nets [18] implemented in CPN tools [16] are also
Petri nets annotated with a programming language which is a variant of ML in
this case. A variant of coloured Petri nets coloured with the Haskell programming
language was proposed in 28] but the project appears stopped since 2004. The
TINA toolbox [3] supports interfacing with C code, allowing to implement guards
for the transitions of a time Petri net, and to perform computation on transition
firing. But this is quite far from providing C-coloured Petri nets because the net
and C parts remain separated and the data is attached to the state instead of
to the tokens, which is a serious limitation from a modelling perspective.

When considering Neco together with SNAKES, it becomes relevant to com-
pare with explicit model-checkers for high-level Petri nets. CPN tools cited above
can perform CTL-like model-checking on a fully computed state space, while Neco
uses SPOT to perform LTL model-checking on-the-fly. This is similar to Helena [9)
that also works with Petri nets annotated with an ad-hoc language; moreover,
like Neco, Helena compiles the Petri net into C code in order to speedup tran-
sitions firing. However, this compilation is limited to the annotations and the
marking, but not generalised to the whole Petri net structure like in Neco.

References

1. Beazley, D.M., Fulton, W.: SWIG — Simplified Wrapper and Interface Generator.
http://wuw.swig.org

2. Behnel, S., Bradshaw, R., Dalcin, L., Florisson, M., Makarov, V., Seljebotn, D.S.:
Cython — C-extensions for Python. http://cython.org

3. Berthomieu, B., Vernadat, F.: Time Petri nets analysis with TINA. In: Proc. of
QEST’06. IEEE Computer Society (2006)

4. Best, E., Devillers, R., Koutny, M.: Petri net algebra. Springer (2001)

5. Bilgin, A., Ellson, J., Gansner, E., Hu, Y., North, S.: Graphviz — Graph Visual-
ization Software. http://graphviz.org

6. Chaou, S., Utard, G., Pommereau, F.: Evaluating a peer-to-peer storage system in
presence of malicious peers. In: Proceedings of HPCS’11. IEEE Computer Society
(2011)

7. Di Guisto, C., Klaudel, H., Delaplace, F.: Systemic approach for toxicity analysis.
In: Proc. of BioPPN’14. Workshop Proceedings, vol. 1159. CEUR (2014)

http://www.swig.org
http://cython.org
http://graphviz.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Duret-Lutz, A.: LTL translation improvements in Spot. In: Proc. of VECoS’11.
Electronic Workshops in Computing, British Computer Society (2011)
Evangeliste, S.: HELENA| a high level net analyzer. http://lipn.univ-parisi3.
fr/~evangelista/helena

Free Software Foundation: GNU Lesser General Public License. http://www.gnu.
org/licenses/lgpl.html

Fronc, L.: Neco net compiler. http://code.google.com/p/neco-net-compiler
Fronc, L.: Effective marking equivalence checking in systems with dynamic process
creation. In: Proc. of Infinity’12. Electronic Proceedings in Theoretical Computer
Science (2012)

Fronc, L., Duret-Lutz, A.: LTL model checking with Neco. In: Proc. of ATVA’13.
LNCS, vol. 8172. Springer (2013)

Fronc, L., Pommereau, F.: Building Petri nets tools around Neco compiler. In:
Proc. of PNSE’13 (2013)

Gava, F., Pommereau, F., Guedj, M.: A BSP algorithm for on-the-fly checking
CTL* formulas on security protocols. The Journal of Supercomputing (2014)
Group, T.C.: CPN tools. http://cpntools.org

Haddad, S., Kordon, F., Petruci, L.: CosyVerif. http://cosyverif.org

Jensen, K., Kristensen, L.M.: Coloured Petri Nets, Monographs in Theoretical
Computer Science, vol. 2. Springer (1997)

Kindler, E., Weber, M.: The Petri Net Kernel: An infrastructure for building Petri
net tools. Software Tools for Technology Transfer 3 (1999)

Klaudel, H., Koutny, M., Pelz, E., Pommereau, F.: State space reduction for dy-
namic process creation. Scientific Annals of Computer Science 20 (2010)
Mohamed, M., Amziani, M., Belaid, D., Tata, S., Melliti, T.: An autonomic ap-
proach to manage elasticity of business processes in the Cloud. Future Generation
Computer Systems (to appear) (2014)

Pommereau, F.: SNAKES out of Python. http://www.ibisc.univ-evry.fr/
~fpommereau/SNAKES/snakes-out-of-python.html

Pommereau, F.: Quickly prototyping Petri nets tools with SNAKES. Petri net
newsletter 10 (2008)

Pommereau, F.: Quickly prototyping Petri nets tools with SNAKES. In: Proc. of
PNTAP’08. ACM Digital Library, ACM (2008)

Pommereau, F.: Nets in nets with SNAKES. In: Proc. of MOCA’09. Universitét
Hamburg, Dept. Informatik, Hamburg (2009)

Pommereau, F.: Algebras of coloured Petri nets. Lambert Academic Publishing
(2010)

Python Software Foundation: Alternative Python implementations. http://www.
python.org/download/alternatives

Reinke, C.: Haskell-coloured Petri nets. In: Proc. of IFL’99. LNCS, vol. 1868.
Springer (1999)

Sanjabi, S., Pommereau, F.: Modelling, verification, and formal analysis of security
properties in a P2P system. In: Proceedings of COLSEC’10. IEEE Digital Library,
IEEE Computer Society (2010)

Van Pham, V.: Modelling and analysing open reconfigurable systems. Ph.D. thesis,
Univ. Evry / Paris-Saclay (2014)

http://lipn.univ-paris13.fr/~evangelista/helena
http://lipn.univ-paris13.fr/~evangelista/helena
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://code.google.com/p/neco-net-compiler
http://cpntools.org
http://cosyverif.org
http://www.ibisc.univ-evry.fr/~fpommereau/SNAKES/snakes-out-of-python.html
http://www.ibisc.univ-evry.fr/~fpommereau/SNAKES/snakes-out-of-python.html
http://www.python.org/download/alternatives
http://www.python.org/download/alternatives

	SNAKES: a Flexible High-Level Petri Nets Library

