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Abstract. Computing systems are vulnerable to anomalies that might
occur during execution of deployed software: e.g., faults, bugs or dead-
locks. When occurring on embedded computing systems, these anomalies
may severely hamper the corresponding devices; on the other hand, em-
bedded systems are designed to perform autonomously, i.e., without any
human intervention, and thus it is difficult to debug an application to
manage the anomaly. Runtime anomaly detection techniques are the pri-
mary means of being aware of anomalous conditions. In this paper, we
describe a novel approach to detect an anomaly during the execution of
one or more applications. Our approach describes the behaviour of the
applications using the sequences of memory references generated during
runtime. The memory references are seen as signals: they are divided in
overlapping frames, then parametrized and finally described with Hidden
Markov Models (HMM) for detecting anomalies. The motivations of us-
ing such methodology for embedded systems are the following: first, the
memory references could be extracted with very low overhead with soft-
ware or architectural tools. Second, the device HMM analysis framework,
while being very powerful in gathering high level information, has low
computational complexity and thus is suitable to the rather low memory
and computational capabilities of embedded systems. We experimentally
evaluated our proposal on a ARM9, Linux based, embedded system using
the SPEC 2006 CPU benchmark suite and found that it shows very low
error rates for some artificially injected anomalies, namely a malware, an
infinite loop and random errors during execution.

1 Introduction

Embedded computing systems are extensively used in every-day life. Their use
include automotive applications, consumer applications and particular domains
such as industrial subsystems or military applications. Embedded systems share
some important properties, namely the fact that their failures often result in se-
vere consequences (whose degree of gravity depends on the specific application),
the fact that it is hard or even impossible to interact with them, and the fact
that the number of concurrent executions is limited and very often well known
a-priori. Embedded system failures may be caused by software errors (bugs),



faults, or by injection of new applications, including those deliberately designed
to cause failures (malware), possibly coming from the network to which some
embedded systems could be connected. All of these events could result in run-
time anomalies: the ability to automatically detect these anomalies may allow
preventing failures in embedded systems, and hence avoiding damages to the
controlled systems.

Anomalies are events that differ from some standard or reference events.
They can be detected explicitly, i.e., through pattern recognition which aims to
classify patterns using a-priori knowledge or on statistical information extracted
from the patterns [1]. Our anomaly detection technique establishes a behavior of
the normal executions under examination, compare the observed behavior with
the normal behavior, and signals when the observed behavior differs significantly
from its normal profile. Since anomaly detection techniques signal all anomalies,
false alarms are expected when anomalies are caused by behavioral irregularities.

In this paper, we propose a technique to build a profile of the behavior of
a program and to detect deviations from this profile. The profile is based on a
statistical model of the memory references generated during the execution. Our
technique is designed to operate, for the detection phase, on embedded devices:
its computational complexity is low and hence the overhead on the embedded
device is limited. In particular, our prototypical implementation on an embedded
device currently introduces an overhead lower than 35%. However, it can easily
speeded-up.

Our approach uses the memory address sequences generated by the applica-
tions during their execution, since these sequences contain a lot of information
about the running applications. After an initial time period where the appli-
cations perform initialization tasks, we learn, for each application, a Hidden
Markov Model of the execution. Then, we compute the likelihood that the se-
quences observed during the following execution is consistent with the HMM
models and we use this figure to detect the anomalies.

This paper is organized as follows. In Sec. 2 we summarize some work done
in embedded systems, and in Sec. 3 we report preliminary basic concepts used
through the paper. Then, Sec. 4 describes the analysis algorithm and in Sec. 5
we show experimentally that the analysis framework gives good performances
when applied to classification. In Sec. 6 we describe some detection experiments
with artificial anomalies. In Sec. 7 some final remarks are reported.

2 Related Work

Anomaly detection, also called intrusion detection in networked systems, is a
very important problem that has been widely studied in different areas and
applications. Markovian techniques are one of the best methods for detecting
anomalies in a sequence of discrete symbols [2]. Training a Markov model means
learning the parameters of a probabilistic model of a sequence without anoma-
lies; after training, the likelihood of unknown sequences are computed given the
parameters of the learned model. In [3] Maxion and Tan present two methods for



detecting anomalies in embedded systems, namely Markov and Stide (Sequence
Time Delay Embedding). The Markov approach evaluates the probabilities of
the transitions between events in a training set and uses these probabilities to
see if they correspond to the transitions of the test set. The Stide approach
builds templates of normal executions and compares the templates with un-
known sequences. Other approaches, such as [4], use Markov Models of system
call sequences. In some cases, better models can be obtained with Hidden Markov
Models, which are widely used for sequence modeling. Wang et al. report in [5]
a survey of HMM based techniques for intrusion detection. Despite their power,
there are few papers dealing with the use of HMM for anomaly detection in em-
bedded system. Sugaya et al. describe in [6] an anomaly detection system based
on HMM modeling of resource consumption such as CPU, memory and network.
In [7], Zandrahimi et al. propose two methods, a buffer-based and a probabilistic
detector. The buffer based detector builds a cache formed with events consid-
ered as normal. During test stage, the method counts the cache misses. The
probabilistic detector employs the probability of events to evaluate the testing
sequence. The approaches are suitable for embedded systems because require
lower memory size and can be easily implemented in hardware. Some authors,
for example [8–10], consider the discrete sequences as signals, and use signal
processing techniques to analyze them.

3 Preliminaries

3.1 Spectral Description of Memory References

The short-term Fourier transform, is a Fourier-related transform used to deter-
mine the sinusoidal frequency and phase content of local sections of a signal as it
changes over time. It describe how the energy is distributed on a spectral range.

We show hereafter that memory references can be described with spectral
parameters. In fact, important parts of a program are composed by loops, that
becomes peaks in the spectral domain, as we point out shortly.

Let us consider for example a simple cycle of the type:

i=0;

while(i<N) {

i++;

}

The virtual memory references sequence generated during the execution of this
loop can be modeled with a sawtooth signal. Calling F (ω) the amplitude spec-
trum of a single ramp, the analytic form of the sawtooth spectrum is F (ω)

∑
n δ(n−

N) where N is the wideness of the cycle. The spectrum is therefore composed
by a periodic series of peaks with decreasing amplitudes whose period is related
to the loop width N .

As a more practical example, let us consider the code of a simple bubble
sort, which is basically formed by inner cycles. After acquisition of the virtual



memory sequence, a Short Time Fourier Transform (STFT) described in (1) is
performed.

X(n) =

∞∑
−∞

x(n)w(n−m)e−jωn (1)

The sequence of memory addresses is divided into chunks or frames (which usu-
ally overlap each other, to reduce artifacts at the boundary). Each chunk is
Fourier transformed, and the resulting amplitude spectrum over time is reported
in Fig. 1. It is worth observing that the spectra peaks represent the wideness
of the cycles in the code. Thus, the spectral patterns well characterize the ex-
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Fig. 1. Spectral representation of a Bubble sort.

ecutions. Indeed, spectral representation is obtained with Fast Discrete Cosine
Transform.

3.2 Discrete Cosine Transform Representation

DCT [11] is a method to obtain spectral information, and it is used in this work
instead of STFT, because it is fast and has a good energy compaction capability.
Energy compaction means the capability of the transform to redistribute signal
energy into a small number of transform coefficients. It can be characterized
by the fraction of the total number of signal transform coefficients that carry
a certain (substantial) percentage of the signal energy. The lower this fraction
is for a given energy percentage, the better the transform energy compaction
capability is.

The principle advantage of DCT transformation is the removal of redundancy
between neighboring addresses. This leads to uncorrelated transform coefficients
which can be processed independently. Efficacy of a transformation scheme can



be directly gauged by its ability to pack input data into as few coefficients as
possible. This allows the quantizer to discard coefficients with relatively small
amplitudes without introducing visual distortion in the reconstructed image.

4 The Proposed Algorithmic Anomaly Detection
Framework and Its Implementation

4.1 Parametrization of Memory Reference Sequences

The initial part of the executions is normally devoted to initialization tasks, and
is very different from the steady-state phase of the programs. For this reason,
we simply blindly fast forward for 1 billion instructions before starting data
analysis.

After that, each sequence of memory address references is divided into 1024
addresses blocks; on these blocks a spectral vector is computed with Discrete
Cosine Transform (DCT) and from each vector the first sixteen coefficients are
extracted. The following step is to perform Vector Quantization with 64 cen-
troids[12] to reduce the 16-dimension vectors into 1 symbol; the final result is
that each block of 1024 addresses is represented by a discrete symbol from 0 to
63. The sequences of memory addresses are then transformed in sequences of
symbols which are called Observations.

Given N programs running in our system, we have thus N observations, O1,
O2, . . ., ON , which are the sequences of symbols estimated from the memory
reference sequences with DCT analysis and vector quantization.

The N observations are used to train a Hidden Markov Model (HMM) of
each application, called λ1, λ2, . . ., λN in the following. The training of the
HMM models is performed as follows. For each observation, nine thousand blocks
are randomly chosen within the first 20000 symbols (recall that each symbol
corresponds to a block, which is composed of 1024 addresses) and the HMM
parameters are computed with the Baum-Welch algorithm. Thus, we use 20
million addresses of each execution to train a HMM. It is worth recalling that
the first billion of addresses is omitted from the training procedure because it is
generally related to an initialization phase.

After HMM modeling, the observations are used to compute, with the forward-
back-word algorithm [13], the P (O|λ) likelihoods. The data used for computing
the likelihoods is chosen into the subsequent billion memory addresses in the
following way: twenty sub-sequences of 100 symbols are chosen randomly within
the sequence corresponding to the billion addresses. The final value of likelihood
is obtained by averaging all the computed likelihoods. It is worth recalling that
the observations used to compute the P (O|λ) are formed by sequences of 100
symbols.

In conclusion, the sequence of memory references is divided in sections of
one billion addresses that we call epochs. For each epoch we compute the like-
lihoods by averaging the values obtained on twenty sets of 100 blocks of mem-
ory reference, each block is of 1024 addresses, chosen randomly. The analysis



algorithm does not work continuously: as said before, during each epoch the al-
gorithm acquires addresses, computes DCT coefficients and vector quantization
and computes likelihoods by randomly sampling portions of data.

4.2 Anomaly Detection Algorithm

According to the previous discussion, during the execution of the programs, a
series of likelihoods matrices, one for each epoch, are computed:

· · ·
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· · ·

where Ok
1 , . . . , O

k
N are the observations of the k-th epoch for process 1 to N and

P (Ok
i |λj) is the likelihood that the jth model generates the ith observation, at

the kth time epoch.
Our monitoring algorithm is based upon the difference between the Obser-

vations. The distance between observation Oi and Oj at epoch k is given by
(4):

d(Ok
i , O

k
j ) =

√√√√ N∑
n=1

[P (Ok
i |λn)− P (Ok

j |λn)]2 (4)

In the same way, we can compute the distance between observation Oi at epoch
k−1 and Oj at epoch k. The key of the algorithm is that, in normal executions,
the distance between Oi at epoch k− 1 and Oi at epoch k should be lower than
the distances between Oi at epoch k−1 and Oj at epoch k, for all the j different
from i.

Using for simplicity a vector representation, that is calling Vk,i the i-th col-
umn of the Lk matrix, Vk,i = |P (Ok

i |λ1), . . . , P (Ok
i |λN )|T , the above mentioned

condition means that, in normal conditions the Euclidean distance between
Vk−1,i and Vk,i is less than the distances between Vk−1,i and Vk,j , for j 6= i.
However, if the execution of the application i is corrupted by an anomaly the
condition is not true.

In other words, the algorithm must look if√
Vk−1,i · V T

k,i = min
j=1≤N≤n

√
Vk−1,i · V T

k,j (5)



4.3 Runtime Implementation using PIN

Tools capable of extracting and processing memory traces from running processes
have been developed to monitor systems in real-time. We chosen Intel PIN as
binary instrumentation framework, as it is freely available on both x86, x86 64
and ARM architectures under a Linux environment. Using the API of PIN [14],
we developed a tool that attach to a running process, track memory accesses until
requested then detach and let the monitored application continue its execution
unharmed. Provided a rule set to detect processes to monitor (e.g. processes
listening on a specific port, processes running as a specific user), standard system
tools can be used to find matching process IDs (PID). PIDs will be used by
training and tracking PIN tools to attach to each process and produce models
or test workload resemblance as requested.

A tracking system daemon is devoted to run the testing tool at regular time
intervals: the tool attaches to target process, dumps memory references and then
detaches, so target process is able to keep running without any more overhead.
Memory addresses are then processed and output is used to classify the tracked
process as belonging to the claimed application or not.

5 Validation of the HMM-based Machine Learning
Approach

Before performing experimental evaluations of the detection tool, we performed
extensive classification experiments to verify the described analysis framework.
Namely, the HMM models computed from each observation are used to see if
the observations with the higher likelihood correspond to the related model. To
perform this classification, we use the programs contained in the suite CINT2006
of the SpecCPU2006 benchmark. The suite is composed by twelve programs with
different inputs. Of course, a program with a different input generates different
observations.

Classification results are reported in Fig. 2 for all the SPEC benchmarks:
h264, gcc, perl, bzip, go, mcf, hmmer, sjeng, quantum, omnet, astar, xalanc.

It was impossible to perform this analysis using stored address traces, because
of the extremely large amount of data required to perform the experiments,
and the high processing time due to the reading operations. In fact, a single
classification experiment may require to analyze several billion bytes. For this
reason we developed a Valgrind tool, that we called Tracehmm, to perform on
line all the described processing.

5.1 Valgrind

Valgrind [15] is an instrumentation framework designed to give the possibility
to perform dynamic analysis of software, i.e. analysis performed during the code
execution. Valgrind is distributed with several tools designed to perform common
analysis of memory, threading etc. Valgrind is available under the GNU GPLv2



Fig. 2. The figure shows one bar for each application whose height corresponds to the
classification accuracy for that application

licence; it is possible to modify the available tools and to modify also the code of
the framework itself, i.e. Coregrind. Coregrind [16] has been designed to analyze
already developed execution code. When the name of the executable file is given
as input to Valgrind, the code itself is loaded in memory together with the
related libraries. The instructions are translated into instructions of a RISC-like
language, called VEX IR, and then executed on a virtual CPU.

The Tracehmm tool performs the DCT analysis and the HMM training using
directly the memory addresses generated during execution. The direct porting of
the off line analysis tools cannot be performed because Coregrind cannot use any
library. For this reason, we rewrite all the writing/reading, memory allocation
and memory copy functions of the standard library. Moreover, we rewrite also
some necessary mathematical functions, namely cos(), sqrt() and log(). The tool
is called from the command line as follows:

valgrind --tool=tracehmm [opt] prog & args

With this tool it is possible to perform the training of a new HMM model or the
re-estimation of an already computed HMM model. It perform also the Viterbi
test on a previously trained HMM model for computing the likelihood that the
model λ may generate the execution sequence O.

6 Experimental Results

The tool based on PIN described above has been tested in three different ex-
periments. In all the tests of this section, an embedded device equipped with an
ARM9 at 500 MHz, 128 Mb RAM and a Debian Linux has been used.



6.1 Experiment 1 - Malware Detection

In this test, the PIN tool has been attached to two different processes, and the
anomaly detector changes artificially its input at a given epoch. This test aims
at simulating a malware affecting a process, that suddenly change its behavior
becoming a different process. For this test 8 different models of SPEC CPU2006
benchmark (see Appendix for further details on the benchmarks) have been
used, namely sjeng, omnet, astar, h264, xalanc, mcf, perl, quantum, changing
this 8 execution suddenly into gcc, hmm, bzip 0, bzip 1, bzip 2, bzip 3, go 0,
go 1, go 2, go 3, where for bzip and go different execution have been considered.
Thus, 80 different anomalies has been tested. For example, in this test, at a
given epoch, the execution of astar suddenly becomes gcc (or bzip 0, etc.). This
behavioral change can be detected by the proposed algorithm.

Results shows that the algorithm can determine in an accurate way the epoch
that has produced the error, with an error rate below 1%.

6.2 Experiment 2 - Loop Bug Detection

In this experiment, an infinite loop substitutes the normal execution of the
benchmark at a given epoch. This experiment shows if the proposed algorithm
is capable to detect anomalies in programs that remain blocked in loops.

This test has been conducted using the following benchmarks: omnet, astar,
h264, xalanc, mcf, perl, gcc, bzip. In all the 8 tested cases, the epoch in which
the anomaly has occurred has been always correctly determined. In this test, the
execution that introduces the anomaly has also been detected with an accuracy
of 87.5%.

6.3 Experiment 3 - Memory Reference Random Error Detection

In this experiment, the memory trace gathered using PIN has been modified by
adding a white Gaussian noise. This experiment shows that energy differences
in memory reference are detected as anomaly by the proposed program.

The results have been conducted on the same 8 benchmark of Experiment 2,
namely: omnet, astar, h264, xalanc, mcf, perl, gcc, bzip, and the noise has been
added to one benchmark at a time, resulting in 8 tests for each value of SNR.
From 0 dB to 35 dB, all the anomalies where correctly detected, while if the
sequence shows a SNR greater that 40 dB, which means really low injected
noise, no anomalies were detected.

As a final remark, we observe that some experiments were conducted looking
at the values of the single likelihoods P (O|λ). Clearly, it can be expected that
in presence of an anomaly, the value of the likelihood is modified with respect
to the normal executions. However, this procedure leads to a very high number
of false positive because it is impossible to set that right threshold. Using the
procedure depicted in (5) no thresholds must be found; the false positive are
limited by the fact that (5) measures the behaviour of all the applications with
respect to the HMM models.



6.4 Overhead Analysis

Most of the complexity relies on the binary instrumentation method which is
needed to extract the memory references. We experimentally evaluated that
the instrumentation causes a slowdown of about 30%. Our tool, each time a
memory address is accessed by the instrumented application, executes a callback
function in order to save the memory reference, hence introducing an overhead to
the normal execution of the application. This is done for the strictly necessary
number of references to provide good values of accuracy, then tool detaches
from the application, which can continue its execution normally. Those memory
references are shared with a tracking process, typically on a different machine
on the same network, that will begin the analysis of the trace avoiding the
instrumenting tool to slow down the application even more.

There are many other possibilities to reduce this overhead, from statistical
methods to software tools to architectural methods: in the ARM architectures,
for example, there is a register which furnish the running value of the program
counter. The other task which requires high computation is the Baum-Welch
algorithm, but it is computed once, at the beginning of the executions, to com-
pute the HMM models. The other operations, namely DCT, Vector quantization,
forward-backward are much less computationally intensive and it was evaluated
that their overhead is less than 5%.

7 Final Remarks and Conclusions

In this paper, we propose a technique to determine anomaly behaviors in pro-
grams based on a model built from memory reference sequences. We present a
detailed modeling techniques based on spectral representation of memory ref-
erence sequences and Hidden Markov Models, and show that the executions
epochs of each program can be clustered and represented using multidimen-
sional scaling. This modeling technique is the base of the proposed algorithm
for anomaly detection, that is capable of accurately determine the epoch where
an anomaly has occurred. It is also capable to determine the program subject
to the anomaly. In a multi-thread program, this technique should be extended
to consider an aggregate model of all the different threads. In the scenario of
monitoring programs running on a given embedded system this is not a problem,
as typically the processes in such environments are single threaded.

The experimental evaluations of the algorithm reported in the paper is rather
limited. Indeed, we obviously plan to further experimentally investigate the al-
gorithm through extensive experiments with different faults and anomaly injec-
tions.
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