Skip to main content

Development of a Remote Monitoring System for Respiratory Analysis

  • Conference paper
  • First Online:
Internet of Things. User-Centric IoT (IoT360 2014)

Abstract

In order to prevent the lack of appropriate respiratory ventilation which causes brain damage and critical problems, it is required to continuously monitor the breathing signal of a patient. There are different conventional methods for capturing respiration signal, such as polysomnography and spirometer. In spite of their accuracy, these methods are expensive and could not be integrated in a body sensor network. In this work, we present a real-time cloud-based respiration monitoring platform which allows the patient to continue treatment and diagnosis from different places such as home. These remote services are designed for patients who suffer from breathing problems or sleep disorders. Our system includes calibrated accelerometer sensor, Bluetooth Low Energy (BLE) and cloud database. Based on the high correlation between spirometer and accelerometer signals, the Detrended Fluctuation Analysis (DFA) has been applied on respiration signals. The obtained results show that DFA can be used as an efficient feature while classifying the healthy people from patients suffering from breath abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bannister, R., Cunningham, D.: The effects on the respiration and performance during exercise of adding oxygen to the inspired air. J. Physiol. 125, 118–137 (1954)

    Article  Google Scholar 

  2. Zhu, X., Chen, W., Nemoto, T., Kanemitsu, Y., Kitamura, K., Yamakoshi, K., Wei, D.: Real-time monitoring of respiration rhythm and pulse rate during sleep. IEEE Trans. Biomed. Eng. 53, 2553–2563 (2006)

    Article  Google Scholar 

  3. Mann, J., Rabinovich, R., Bates, A., Giavedoni, S., MacNee, W., Arvind, D.K.: Simultaneous activity and respiratory monitoring using an accelerometer. In: International Conference on Body Sensor Networks (BSN), pp. 139–143, May 2011

    Google Scholar 

  4. Neuman, M.R., Watson, H., Mendenhall, R.S., Zoldak, J.T., Di Fiore, J.M., Peucker, M., Baird, T.M., Crowell, D.H., Hoppenbrouwers, T.T., Hufford, D., Hunt, C.E., Corwin, M.J., Tinsley, L.R., Weese-Mayer, D.E., Sackner, M.A.: Cardiopulmonary monitoring at home: the CHIME monitor. Physiol. Meas. 22(2), 267–286 (2001)

    Article  Google Scholar 

  5. Lindberg, L.G., Ugnell, H., Oberg, P.A.: Monitoring of respiratory and heart rates using a fibre-optic sensor. Med. Biol. Eng. Comput. 30(5), 533–537 (1992)

    Article  Google Scholar 

  6. Matthews, G., Sudduth, B., Burrow, M.: A noncontact vital signs monitor. Crit. Rev. Biomed. Eng. 28(1–2), 173–178 (2000)

    Article  Google Scholar 

  7. Moody, G.B., Mark, R.G., Zoccola, A., Mantero, S.: Derivation of respiratory signals from multi-lead ECGs. Proc. Comput. Cardiol. 12, 113–116 (1985)

    Google Scholar 

  8. de Chazal, P., Heneghan, C., Sheridan, E., Reilly, R., Nolan, P., O’Malley, M.: Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Trans. Biomed. Eng. 50(6), 686–696 (2003)

    Article  Google Scholar 

  9. Dobrev, D., Daskalov, I.: Two-electrode telemetric instrument for infant heart rate and apnea monitoring. Med. Eng. Phys. 20(10), 729–734 (1998)

    Article  Google Scholar 

  10. Bates, A., Ling, M., Geng, C., Turk, A., Arvind, D.K.: Accelerometer-based respiratory measurement during speech. In: International Conference on Body Sensor Networks (BSN), pp. 95–100, May 2011

    Google Scholar 

  11. Dehkordi, P.K., Marzencki, M., Tavakolian, K., Kaminska, M., Kaminska, B.: Validation of respiratory signal derived from suprasternal notch acceleration for sleep apnea detection. In: International Conference of the IEEE on Engineering in Medicine and Biology Society EMBC, pp. 3824–3827 (2011)

    Google Scholar 

  12. Tilt measurement using a low-g 3-axis accelerometer, Application note, STMicroelectronics group of companies (2010)

    Google Scholar 

  13. Fekr, A.R., Janidarmian, M., Sarbishei, O., Nahill, B., Radecka, K., Zilic, Z.: MSE minimization and fault-tolerant data fusion for multi-sensor systems. In: IEEE 30th International Conference on Computer Design (ICCD), pp. 445–452 (2012)

    Google Scholar 

  14. Gifani, P., Rabiee, H.R., Hashemi, M.H.: Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification. J. Franklin Inst. 344, 212–229 (2007)

    Article  MATH  Google Scholar 

  15. Kushida, C.A., Littner, M.R., Morgenthaler, T., Alessi, C.A., Bailey, D., Coleman, J., Friedman, L., Hirshkowitz, M., Kapen, S., Kramer, M., Lee-Chiong, T., Loube, D.L., Owens, J., Pancer, J.P., Wise, M.: Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 28(4), 499–521 (2005)

    Google Scholar 

  16. Gifani, P., Rabiee, H.R., Hashemi, M.H.: Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification. J. Franklin Inst. 344, 212–229 (2007)

    Article  MATH  Google Scholar 

  17. Lee, J.M., Kim, D.J., Kim, I.Y.: Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data. Comput. Biol. Med. 32, 37–47 (2002)

    Article  Google Scholar 

  18. Fekr, A.R., Janidarmian, M., Radecka, K., Zilic, Z.: A medical cloud-based platform for respiration rate measurement and hierarchical classification of breath disorders. Sensors 14(6), 11204–11224 (2014)

    Article  Google Scholar 

  19. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  Google Scholar 

  20. Acharya, R.U., Lim, C.M., Joseph, P.: Heart rate variability analysis using correlation dimension and detrended fluctuation analysis. ITBM-RBM 23(6), 333–339 (2002)

    Article  Google Scholar 

  21. Rodriguez, E., Echeverria, J.C., Alvarez-Ramirez, J.: Detrended fluctuation analysis of heart intrabeat dynamics. Phys. A 384, 429–438 (2007)

    Article  Google Scholar 

  22. Ihlen, E.A.F.: Introduction to multifractal detrended fluctuation analysis in matlab. Front Physiol. 3(141) 4 June 2012

    Google Scholar 

  23. Wilkinson, T.M.A., Donaldson, G.C., Hurst, J.R., Seemungal, T.A.R., Wedzicha, J.A.: Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 169(12), 1298–1303 (2004)

    Article  Google Scholar 

  24. William, H., Myron, L., Robin, D., Mark, A.: Current Diagnosis and Treatment in Pediatrics. 21 edn., McGraw-Hill Professional, New York City, p. 989

    Google Scholar 

  25. Kumar, P., Clark, M.: “13”. In: Clinical Medicine, 6 edn., p. 733. Elsevier Saunders, Philadelphia (2005). ISBN 0-7020-2763-4

    Google Scholar 

  26. Farney, R.J., Walker, J.M., Boyle, K.M., Cloward, T.V., Shilling, K.C.: Adaptive servoventilation (ASV) in patients with sleep disordered breathing associated with chronic opioid medications for non-malignant pain. J. Clin. Sleep Med. 4(4), 311–319 (2008). PMC 2542501. PMID 18763421

    Google Scholar 

  27. Wilkinson, T.M.A., Donaldson, G.C., Hurst, J.R., Seemungal, T.A.R., Wedzicha, J.A.: Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 169(12), 1298–1303 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atena Roshan Fekr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Fekr, A.R., Janidarmian, M., Radecka, K., Zilic, Z. (2015). Development of a Remote Monitoring System for Respiratory Analysis. In: Giaffreda, R., et al. Internet of Things. User-Centric IoT. IoT360 2014. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-319-19656-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19656-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19655-8

  • Online ISBN: 978-3-319-19656-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics