Skip to main content

A Switched Parameter Differential Evolution for Large Scale Global Optimization – Simpler May Be Better

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 378))

Abstract

In this article we present two very simple modifications to Differential Evolution (DE), one of the most competitive evolutionary algorithms of recent interest, to enhance its performance for the high-dimensional numerical functions while still preserving the simplicity of its algorithmic framework. Instead of resorting to complicated parameter adaptation schemes or incorporating additional local search methods, we present a simple strategy where the values of the scale factor (mutation step size) and crossover rate are switched in a uniformly random way between two extreme corners of their feasible ranges for different population members. Also each population member is mutated either by using the DE/rand/1 scheme (where the base vector to be perturbed is a randomly chosen member from the population) or by using the DE/best/1 scheme (where the base vector is the best member of the population). The population member is subjected to that mutation strategy which was responsible for the last successful update at the same population index under consideration. Our experiments based on the benchmark functions proposed for the competitions on large-scale global optimization with bound constraints held under the IEEE CEC (Congress on Evolutionary Computation) 2008 and 2010 competitions indicate that the basic DE algorithm with these simple modifications can indeed achieve very competitive results against the currently best known algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Foli, K., Okabe, T., Olhofer, M., Jin, Y., Sendhoff, B.: Optimization of micro heat exchanger: CFD, analytical results and multiobjective evolutionary algorithms. Int. J. Heat Mass Transf. 49(5–6), 1090–1099 (2006)

    Article  MATH  Google Scholar 

  2. Sonoda, T., Yamaguchi, Y., Arima, T., Olhofer, M., Sendhoff, B., Schreiber, H.A.: Advanced high turning compressor airfoils for low Reynolds number condition, part I: Design and optimization. J. Turbomach. 126(3), 350–359 (2004)

    Article  Google Scholar 

  3. Wang, C., Gao, J.: High-dimensional waveform inversion with cooperative coevolutionary differential evolution algorithm. IEEE Geosci. Remote Sens. Lett. 9(2), 297–301 (2012)

    Article  Google Scholar 

  4. Das, S., Suganthan, P.N.: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Technical Report, Jadavpur University, India and Nanyang Technological University, Singapore (2010)

    Google Scholar 

  5. Tang, K., Yao, X., Suganthan, P., MacNish, C., Chen, Y., Chen, C., Yang, Z.: Benchmark functions for the CEC’2008 special session and competition on large scale global optimization. In: Nature Inspired Computat. Applicat. Lab., Univ. Sci. Technol. China, Hefei, China, Tech. Rep. http://nical.ustc.edu.cn/cec08ss.php (2007)

  6. Tang, K., Li, X., Suganthan, P., Yang, Z., Weise, T.: Benchmark functions for the CEC’2010 special session and competition on large scale global optimization. In: Nature Inspired Computat. Applicat. Lab., Univ. Sci. Technol. China, Hefei, China, Tech. Rep. http://nical.ustc.edu.cn/cec10ss.php (2009)

  7. Potter, M., De Jong, K.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  8. Ray, T., Yao, X.: A cooperative coevolutionary algorithm with correlation based adaptive variable partitioning. In: Proceedings of the IEEE CEC, pp. 983–999, May 2009

    Google Scholar 

  9. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2986–2999 (2008)

    Article  MathSciNet  Google Scholar 

  10. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16(2), 210–224 (2011)

    Google Scholar 

  11. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2013)

    Article  Google Scholar 

  12. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization, SPIE 1196. Intell. Control Adapt. Syst. (1989). doi:10.1117/12.969927

    Google Scholar 

  13. Huang, T., Mohan, A.S.: Micro–particle swarm optimizer for solving high dimensional optimization problems. Appl. Math. Comput. 181(2), 1148–1154 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dasgupta, S., Biswas, A., Das, S., Panigrahi, B.K., Abraham, A.: A micro-bacterial foraging algorithm for high-dimensional optimization. In: IEEE Congress on Evolutionary Computation (CEC 2009), pp. 785–792, Tondheim, Norway, May 2009

    Google Scholar 

  15. Rajasekhar, A., Das, S., Das, S.: μABC: a micro artificial bee colony algorithm for large scale global optimization. In: Soule, T. (ed.) Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO ‘12), pp. 1399–1400, ACM, New York, NY, USA. doi:10.1145/2330784.2330951. http://doi.acm.org/10.1145/2330784.2330951

  16. Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: IEEE Congress on Evolutionary Computation (CEC 2008), pp. 3052–3059, Hong Kong, June 2008

    Google Scholar 

  17. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-trajectory search for large scale optimization. Soft. Comput. 15, 2175–2185 (2011)

    Article  Google Scholar 

  18. Molina, D., Lozano, M., Herrera, F.: MA-SW-Chains: memetic algorithm based on local search chains for large scale continuous global optimization. In: IEEE Congress on Evolutionary Computation (CEC 2010), pp. 3153–3160, Barcelona, July, 2010

    Google Scholar 

  19. Molina, D., Lozano, M., Sánchez, A.M., Herrera, F.: Memetic algorithms based on local search chains for large scale continuous optimization problems: MA-SSW-Chains. Soft. Comput. 15, 2201–2220 (2011)

    Article  Google Scholar 

  20. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  22. Qin, A.K., Huang, V., Suganthan, P.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  23. Zhang, J., Sanderson, A.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  24. Epitropakis, M., Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M.: Enhancing differential evolution utilizing proximity based mutation operators. IEEE Trans. Evol. Comput. 15(1), 99–119 (2011)

    Article  Google Scholar 

  25. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012)

    Article  Google Scholar 

  26. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

    Article  MathSciNet  Google Scholar 

  27. Mallipeddi, R., Suganthan, P.N.: Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies. In: Proc. Swarm Evol. Memet. Comput., Chennai, India, pp. 71–78 (2010)

    Google Scholar 

  28. Zamuda, A., Brest, J., Boˇskovi´c, B., Zumer, V.: Large scale global optimization using differential evolution with self-adaptation and cooperative co-evolution. In: IEEE Congress on Evolutionary Computation (CEC 2008), pp. 3718–3725, Hong Kong, June 2008

    Google Scholar 

  29. Parsopoulos, K.E.: Cooperative micro-differential evolution for high-dimensional problems. In: Genetic and Evolutionary Computation Conference 2009 (GECCO 2009), pp. 531–538, Montreal, Canada (2009)

    Google Scholar 

  30. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-trajectory search for large scale optimization. Soft. Comput. 15, 2175–2185 (2011)

    Article  Google Scholar 

  31. Brest, J., Maučec, M.S.: Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft. Comput. 15(11), 2157–2174 (2011)

    Article  Google Scholar 

  32. Wang, H., Wu, Z., Rahnamayan, S.: Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems. Soft. Comput. 15(11), 2127–2140 (2011)

    Article  Google Scholar 

  33. Weber, M., Neri, F., Tirronen, V.: Shuffle or update parallel differential evolution for large-scale optimization. Soft. Comput. 15(11), 2089–2107 (2011)

    Article  Google Scholar 

  34. Wang, H., Wu, Z., Rahnamayan, S., Jiang, D.: Sequential DE enhanced by neighborhood search for large scale global optimization. In: IEEE Congress on Evolutionary Computation (CEC 2010), pp. 4056–4062, Barcelona, July, 2010

    Google Scholar 

  35. Zaharie, D.: Influence of crossover on the behavior of the differential evolution algorithm. Appl. Soft Comput. 9(3), 1126–1138 (2009)

    Google Scholar 

  36. Zaharie, D.: Critical values for the control parameters of differential evolution algorithms. In: Proc. 8th Int. Mendel Conf. Soft. Comput., pp. 62–67 (2002)

    Google Scholar 

  37. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real parameter optimization with differential evolution. In: The 2005 IEEE Congress on Evolutionary Computation (CEC2005), vol. 1, pp. 506–513. IEEE Press (2005)

    Google Scholar 

  38. Hu, J., Zeng, J., Tan, Y.: A diversity-guided particle swarm optimizer for dynamic environments. In: Proceedings of Bio-Inspired Computational Intelligence Applivations, vol. 9, no. 3, pp. 239–247. Lecture Notes in Computer Science (2007)

    Google Scholar 

  39. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  40. Hsieh, S.T., Sun, T.Y., Liu, C.C., Tsai, S.J.: Efficient population utilization strategy for particle swarm optimizer. IEEE Trans. Syst. Man Cybern. B Cybern. 39(2), 444–456 (2009)

    Article  Google Scholar 

  41. Ros, R., Hansen, N.: A simple modification in CMA-ES achieving linear time and space complexity. Lect. Notes Comput. Sci. 5199, 296–305 (2008)

    Google Scholar 

  42. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization. In: Proc. IEEE Congr. Evol. Comput., pp. 1663–1670, June 2008

    Google Scholar 

  43. Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: Proc. IEEE Congr. Evol. Comput., pp. 1762–1769, July 2010

    Google Scholar 

  44. Wang, Y., Huang, J., Dong, W.S., Yan, J.C., Tian, C.H., Li, M., Mo, W.T.: Two-stage based ensemble optimization framework for large-scale global optimization. Eur. J. Oper. Res. 228, 308–320 (2013)

    Article  MathSciNet  Google Scholar 

  45. Korošec, P., Šilc, J.: The differential ant-stigmergy algorithm for large scale real-parameter optimization. In: Ant Colony Optimization and Swarm Intelligence, Lecture Notes in Computer Science, vol. 5217, pp. 413–414, Springer, Berlin Heidelberg (2008)

    Google Scholar 

  46. Zhao, S., Liang, J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 3845–3852 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagatam Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Das, S., Ghosh, A., Mullick, S.S. (2015). A Switched Parameter Differential Evolution for Large Scale Global Optimization – Simpler May Be Better. In: Matoušek, R. (eds) Mendel 2015. ICSC-MENDEL 2016. Advances in Intelligent Systems and Computing, vol 378. Springer, Cham. https://doi.org/10.1007/978-3-319-19824-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19824-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19823-1

  • Online ISBN: 978-3-319-19824-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics