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Abstract. Energy price forecasting is a relevant yet hard task in the
field of multi-step time series forecasting. In this paper we compare a well-
known and established method, ARMA with exogenous variables with a
relatively new technique Gradient Boosting Regression. The method was
tested on data from Global Energy Forecasting Competition 2014 with a
year long rolling window forecast. The results from the experiment reveal
that a multi-model approach is significantly better performing in terms
of error metrics. Gradient Boosting can deal with seasonality and auto-
correlation out-of-the box and achieve lower rate of normalized mean
absolute error on real-world data.
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1 Introduction

Forecasting electricity prices is a difficult task as they reflect the actions of var-
ious participants both inside and outside the market. Both producers and con-
sumers use day-ahead price forecasts to derive their unique strategies and make
informed decisions in their respective businesses and on the electricity market.
High precision short-term price forecasting models are beneficial in maximizing
their profits and conducting cost-efficient business. Day-ahead market forecasts
also help system operators to match the bids of both generating companies and
consumers and to allocate significant energy amounts ahead of time.

The methodology of the current research paper originates from the GEF-
COM 2014 forecasting contest. In last year’s contest our team achieved a high
ranking position by ensembling multiple regressors using the Gradient Boosted
Regression Trees paradigm. Promising results encouraged us to further explore
potential of the initial approach and establish a framework to compare results
with one of the most popular forecasting methods; ARMAX.

Global Energy Forecasting Competition is a well-established competition first
announced in 2012 [I] with worldwide success. The 2014 edition [2] put focus
on renewal energy sources and probabilistic forecasting. The GEFCOM 2014


http://www.tmit.bme.hu
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Probabilistic Electricity Price Forecasting Track offered a unique approach to
forecasting energy price outputs, since competition participants needed to fore-
cast not a single value but a probability distribution of the forecasted variables.
This methodological difference offers more information to stakeholders in the
industry to incorporate into their daily work. As a side effect new methods had
to be used to produce probabilistic forecasts.

The report contains five sections:

—_

. Methods show the underlying models in detail with references.

2. Data description provides some statistics and description about the target
variables and the features used in research.

3. Experiment Methodology summarizes the training and testing environment
and evaluation scheme the research was conducted on.

4. Results are presented in a the corresponding section.

5. Conclusions are drawn at the end.

2 Methods

Previous experience showed us that oftentimes multiple regressors are better
than one[d]. Therefore we used an ensemble method that was successful in vari-
ous other competitions: Gradient Boosted Regression Trees[5l6/7]. Experimental
results were benchmarked using ARMAX; a model widely used for time series re-
gression. GBR implementation was provided by Python’s Scikit-learn[8] library
and ARMAX by Statsmodels[9].

2.1 ARMAX

We used ARMAX to benchmark our methods because it is a widely applied
methodology for time series regression [TOJTTIT2UT3IT4]. This method expands
the ARMA model with (a linear combination of) exogenic inputs (X). ARMA
is an abbreviation of auto-regression (AR) and moving-average (MA). ARMA
models were originally designed to describe stationary stochastic processes in
terms of AR and MA to support hypothesis testing in time series analysis [15].
As the forecasting task in question has exogenic inputs by specification therefore
ARMAX is a reasonable candidate to be used as a modeler.

Using the ARMAX model (considering a linear model wrt. the exogenous
input) the following relation is assumed and modeled in terms of X; which is the
variable in question at the time denoted by ¢. According to this the value of X;
is a combination of AR(p) (auto-regression of order p), MA(q) (moving average
of order ¢) and a linear combination of the exogenic input.

p q b
X, =&+ Z w0iXi—; + Z Oici—i + Z e (’L) (1)
=1 =1 =0

The symbol &; in the formula above represents an error term (generally re-
garded as Gaussian noise around zero). > -_, ¢; X;_; represents the autoregres-
sion submodel with the order of p: ¢; is the i-th parameter to weight a previous
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value. The elements of the sum E‘f:l O;e¢_; are the weighted error terms of the
moving average submodel with the order of ¢q. The last part of the formula is
the linear combination of exogenic input d;.

Usually p and ¢ are chosen to be as small as they can with an acceptable error.
After choosing the values of p and ¢ the ARMAX model can be trained using
least squares regression to find a suitable parameter setting which minimizes the
error.

2.2 Gradient Boosting Decision Trees

Gradient boosting is another ensemble method responsible for combining weak
learners for higher model accuracy, as suggested by Friedman in 2000 [16]. The
predictor generated in gradient boosting is a linear combination of weak learners,
again we use tree models for this purpose. We iteratively build a sequence of
models, and our final predictor will be the weighted average of these predictors.
Boosting generally results in an additive prediction function:

JH(X) =Bo+ filX1) + ..o+ fp(Xp) (2)

In each turn of the iteration the ensemble calculates two set of weights:

1. one for the current tree in the ensemble
2. one for each observation in the training dataset

The rows in the training set are iteratively reweighted by upweighting previ-
ously misclassified observations.

The general idea is to compute a sequence of simple trees, where each suc-
cessive tree is built for the prediction residuals of the preceding tree. Each new
base-learner is chosen to be maximally correlated with the negative gradient of
the loss function, associated with the whole ensemble. This way the subsequent
stages will work harder on fitting these examples and the resulting predictor is
a linear combination of weak learners.

Utilizing boosting has many beneficial properties; various risk functions are
applicable, intrinsic variable selection is carried out, also resolves multicollinear-
ity issues, and works well with large number of features without overfitting.

3 Data description

The original competition goal was to predict hourly electricity prices for every
hour on a given day. The provided dataset contained information about the
prices on hourly resolution for a roughly 3 year long period between 2011 and
2013 for an unknown zone. Beside the prices two additional variables were in
the dataset. One was the Forecasted Zonal Load ('z’) and the other was the
Forecasted Total Load (‘t'). The first attribute is a forecasted electricity load
value for the same zone where the price data came from. The second attribute
contains the forecasted total electricity load in the provider network. The unit
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of measurement for these variables remain unknown, as is the precision of the
forecasted values. Also, no additional data sources were allowed to be used for
this competition.

Table 1. Descriptive statistics for the input variables and the target

Price Forecasted Total Load Forecasted Zonal Load

count 25944 25944 25944
mean 48.146034 18164.103299 6105.566181
std  26.142308 3454.036495 1309.785562
min 12.520000 11544 3395
25% 33.467500 15618 5131
50% 42.860000 18067 6075
75% 54.24 19853 6713.25
max 363.8 33449 11441

In Table[I]we can see the descriptive statistic values for the original variables
and the target. The histogram of the target variable (Figure|l) is a bit skewed to
the left with a long tail on the right and some unusual high values. Due to this
characteristic we decided to take the natural log value of the target and build
models on that value. The model performance was better indeed when they were
trained on this transformed target.
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Fig. 1. Price histogram

The distribution of the other two descriptive variables are far from normal
as we can see on Figure [2] As we can see the shapes are very similar for these
variables with the peak, the left plateau and the tail on the right. They are also
highly correlated with a correlation value of ~0.97, but not so much with the
target itself (~0.5-0.58).
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Fig. 2. Forecasted Total Load and Forecasted Zonal Load histograms

Table 2. Correlation matrix of input variables

Price Forecasted Zonal Load Forecasted Total Load

Price 1.0 0.501915 0.582029
Forecasted Zonal Load 0.501915 1.0 0.972629
Forecasted Total Load 0.582029 0.972629 1.0

Beside the variables of Table [[l we also calculated additional attributes based
on them: several variables derived from the two exogenous variable 'z’ and 't’,
also date and time related attributes were extracted from the timestamps (see
Table |3| for details).

During the analysis we observed from the autocorrelation plots that some
variables value have stronger correlation with its +/- 1 hour value, so we also
calculated these values for every row. Figure |3 shows 3 selected variables to be
shifted as the autocorrelation values are extremely high when a lagging window
of less than 2 hours is used.

Autocarrelation

05

Fig. 3. Autocorrelation of tzdif, zdif and y_M24 variables
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Table 3. Descriptive features used throughout the competition

Variable name Description

dow
doy
day
woy
hour
month
t_M24
t_M48
z_M24
z_M48
tzdif
tdif
zdif

Day of the week, integer, between 0 and 6
Day of the year, integer, between 0 and 365
Day of the month, integer, between 1 and 31
Week of the year, integer, between 1 and 52
Hour of the day, integer, 0-23

Month of the year, integer, 1-12

t value from 24 hours earlier

t value from 48 hours earlier

z value from 24 hours earlier

z value from 48 hours earlier

The difference between t and z

The difference between t and t_M24

The difference between z and z_M24

In Figure [4] figure we can see an autocorrelation plot of price values in spe-
cific hours and they are shifted in days (24 hours). It is clearly seen that the
autocorrelation values for the early and late hours are much higher than for
the afternoon hours. That means it is worth to include shifted variables in the
models as we did. Not surprisingly the errors at the early and late hours were
much lower than midday and afternoon.

10

08

06

Autocomelation

02

00

Fig. 4. Autocorrelation of price values at specific hours, shifted in days

Gradient Boosting Regression Trees also provided intrinsic variable impor-
tance measures. Table [f] shows that (apart from the original input variables) the
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calculated differences were found to be important. The relatively high impor-
tance of the hour of day suggests strong within-day periodicity.

Table 4. Attribute importances provided by GBR

Attribute GBR variable importance

tzdif 0.118451
tdif 0.092485
zdif 0.090757
z 0.090276
hour 0.085597
t 0.078957
z_M48 0.078718
t_M48 0.076352
t_M24 0.069791
z_M24 0.069072
doy 0.067103
day 0.056018
dow 0.024973
month 0.001449

4 Experiment Methodology

In our research framework we abandoned the idea of probabilistic forecasting as
this is a fairly new approach and our goal was to gain comparable results with
well-established conventional forecasting methods; ARMAX in this case.

We used all data from 2013 as a validation set in our research methodology
(unlike in the competition where specific dates were marked for evaluation in
each task). To be on a par with ARMAX we decided to use a rolling window
of 30 days to train GBR. This means much less training data (a substantial
drawback for the GBR model), but yields comparable results between the two
methods.

The target variable is known until 2013-12-17, leaving us with 350 days for
testing. For each day the training set consisted of the previous 1 month period,
and the subsequent day was used for testing the 24 hourly forecasts. On some
days the ARMAX model did not converge leaving us with 347 days in total to
be used to assess model performance. The forecasts are compared to the known
target variable, we provide 2 metrics to compare the two methods: Mean Abso-
lute Error (MAE) and Root Mean Squared Error (RMSE). Gradient Boosting
and ARMAX optimizes Mean Squared Error directly meaning that one should
focus more on RMSE than MAE.
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5 Results

Figure [5] compares the model outputs with actual prices for a single day. While
Table [5] shows the descriptive statistics of the error metrics: mae_p_armaz,
rmse_p_armazx, mae_p_gbr and rmse_p_gbr are the Mean Absolute Errors and
Root Mean Squared Errors of ARMAX and GBR models respectively. The av-
erage of the 24 forecasted observations are used for each day, and the average
of daily means are depicted for all the 347 days. In terms of both RMSE and
MAE the average and median error is significantly lower for the GBR model;
surpassing ARMAX by approx. 20% on average.

During the evaluation we came across several days that had very big error
measures, filtering out these outliers represented by the top and bottom 5% of
the observed errors we have taken a t-test to confirm that the difference between
the two models is indeed significant (¢ = 2.3187, p = 0.0208 for RMSE).

Table 5. Descriptive statistics for the error metrics

mae_p_armax rmse_p_armax mae_p_gbr rmse_p_gbr

count 347 347 347 347
mean 8.640447 10.395176 7.126920  8.496357
std 11.809438 13.822071 10.396122 11.627084
min 1.223160 1.781158 1.020160 1.302484
5.0% 2.083880 2.673257 1.439134  1.785432
50% 5.152181 6.088650 3.520733  4.144649

95% 27.049138 31.339932 27.171626 31.122828
max 101.081747  106.317998 77.819519 83.958518

6 Conclusions and future work

The GEFCOM competition offered a novel way of forecasting; probabilistic fore-
casts offer more information to stakeholders and is an approach worth investi-
gating in energy price forecasting. Our efforts in the contest were focused on
developing accurate forecasts with the help of well-established estimators in
the literature used in a fairly different context. This approach was capable of
achieving roughly 10*" place in the GEFCOM 2014 competition Price Track and
performs surprisingly well when compared to the conventional and widespread
benchmarking method ARMAX overperforming it by roughly 20%.

The methodology used in this paper can be easily applied in other domains of
forecasting as well. Applying the framework and observing model performance
on a wider range of datasets yields more robust results and shall be covered in
future work.

During the competition we filtered the GBR training set to better represent
the characteristics of the day to be forecasted, which greatly improved model
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Fig. 5. Within-day price forecasts for 2013-02-19

performance. Automating this process is also a promising and chief goal of on-
going research.
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