Leveraging Social Patterns in Web
Application Design

Devis Bianchini®?, Valeria De Antonellis, and Michele Melchiori

Department of Information Engineering, University of Brescia,
Via Branze, 38, 25123 Brescia, Italy
{devis.bianchini,valeria.deantonellis,michele.melchiori}@unibs.it

Abstract. In this paper we propose a multi-layered model meant for
the selection of data services for web application design. Our aim is
at complementing existing data service selection criteria, e.g., matching
based on (semantic) data coming from the services, by also considering
the experience of other developers, who used the services in the past for
designing their own web applications. In this sense, it becomes crucial the
importance that a developer gives to past experiences of other developers
in selecting a data service, that might depend on the social relationships
that relate the developers each other as well. The model proposed in this
paper takes into account these challenging issues by considering available
data services, web applications where services have been aggregated, and
social relationships between web application developers, which identify
different kinds of social patterns.

1 Introduction

Modern web applications should be created also exploiting information made
available in the form of data services, that enable to access data from different
web sources. Data services need to be selected, before being properly integrated
to become meaningful and valuable. Let’s consider a web application developer,
working for the marketing department of an enterprise, who has to build an
application that integrates information about potential markets, sales and demo-
graphic data. This application requires to merge data coming from sources inter-
nal to the enterprise (e.g., information about the target clients) and external data
sources (e.g., providing information about demographic data), made available as
data services. On the one hand, data services may be selected according to their
pertinence with respect to the application that is being designed, e.g., entailed
by the (semantic) type of data coming from the sources [1-3]. On the other hand,
there are many functional and non functional aspects, such as the ones related to
quality of service [4,5] or service trustworthiness and reputation [6], that are not
always available within data service descriptions, although they could improve
service selection strategies [7]. Nevertheless, in an enterprise context, such as the
one depicted in our running example, it is frequent that a developer, who learns
by examples, searches for advices based on design experiences of other developers
(of the same enterprise or different ones), rather than relying on votes/ratings

© Springer International Publishing Switzerland 2015
P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 13-23, 2015.
DOI: 10.1007/978-3-319-19890-3_2

14 D. Bianchini et al.

assigned to data services by developers over the Web. Moreover, even if devel-
opers’ votes would be available to rate data services, approaches for data service
selection that rely on such votes [7,8] do not consider another important aspect:
the relevance of a data service may depend on the web application design project
that is being carried on; such relevance might be high since the service has been
already used in similar applications. Finally, in the enterprise context we are
considering credibility of developers, who know each others, can be assumed as
high, compared to a development scenario where services are ranked and used
by developers over the Web. Therefore, for the moment, we do not use advanced
developers’ credibility assessment techniques such as the ones described in [7-9].
It is reasonable to assume that developer’s preference is for experts who can
be contacted/engaged, because some mutual social or organizational relation-
ships exist among them. Such relationships constitute particular structures that
in [10] are called social patterns, that can be fruitfully exploited for data service
selection.

The main contribution in this paper is a multi-layered model, meant for sup-
porting the selection of data services for web application design purposes, and
of metrics specifically based on the model elements. The model is organized on
three levels. At the lowest level (data service layer), the available data services
and corresponding metadata are taken into account to enable service search.
At a second level (web application layer), the model includes past experiences
of collection and aggregation of data services to design web applications; these
experiences act as a bridge between the data service layer and the social layer,
that includes the developers, who experienced the collection of data services,
organized according to different social patterns, that reflect different ways devel-
opers learn from each other experience in web application design.

The paper is organized as follows. In Section 2 we describe the multi-layered
model. In Section 3 we propose the criteria for data service selection based on
past experiences and social patterns, with some hints on preliminary experiments
that are being carried on. Finally, future work are discussed in Section 4.

2 The Three-Layer Model

Data Service Layer. The multi-layered model we propose in this paper is
shown in Figure 1. We define a (web) data service s as a single operation,
method or query to access data from a web data source Y. We model a data
service s as a set of service inputs s’V and a set of service outputs s°U7. Ser-
vice outputs represent data that are accessed through the service s, service
inputs are parameters that are needed to invoke the service and access data.
We denote with S the overall set of available data services and with X[S]CS
the set of data services made available by the source Y. Examples of data ser-
vices are the methods of a Web API (for instance, the method of GeoData
Demographics API' that provides demographic data for a given zone), queries
formulated by using search-specific languages (such as Yahoo! Query Language,

! http://geodataservice.net.

 http://geodataservice.net

Leveraging Social Patterns in Web Application Design 15

2% "~~~ Peer-based PUT \\‘\Hierarchical web application
- - Sdc(a\l pattern e f°”°‘f"e"'°_f Sovial pattern develor)er ________
1 \ ’ relationship N AN T~<_ Hybrid
X S N 7] ~~Social pattern
Q‘\\ Y , \\\\\‘“\\\\
$ \ / N

\ \
L
N M 1 !
\ N i
N '

Q
N

A\ / \
. ; !
A7
de

3
SO .
N SO

\
\
= \

2

/

g,

\

Data service
aggregation

8y =<{s;5,}d¢>

Data service
aggregation

8y =<{5;5,s5},d >

2 N T o
Data service layer -

s, (provides the distribution by age of customers
(S, (provides the distribution by gender of customers who bought a given product)
who bought a given product)

Web application layer

s'lN: product
IN

s, : product
2P S?UTZ distribution by age

sZOUT: distribution by gender

<product, {merchandise, ware}, “commodities offered

<product, ...> <distribution, ...> for sale”>
< 4 . isted”>
<gender, {sex, sexuality}, “the properties that distinguish age, {}, "how long something has existed
organisms on the basis of their reproductive role”> <distribution, {statistical distribution}, “(statistics) an
- arrangement of values of a variable showing their
‘L observed or theoretical frequency of occurrence”>
Sy (provides the median age for all people per zip code)] Q]
SI3N: Zipcode (Sy (provides the median age of male and female people

given the latitude and longitude values)
sg’UT: median age

SLN: latitude, longitude

<age, ..>

ou
54

T) .
: male median age, female median age
<zip code, {ZIP, postcode, postal code}, “a code of letters 8 8

and digits added to a postal address to sort mails”>

<demography, {human ecology}, “the branch of 3 “ .
sociology that studies the characteristics of human <latitude, {}, “the angular distance between an
population”> imaginary line around a heavenly body parallel to its

equator and the equator itself”> <longitude,>

<age, ...> <demography,>

<male, {masculinity, male person}, “a person who
belongs to the sex that cannot have babies”> <female, >)

Fig. 1. The multi-layered model for data service selection

https://developer.yahoo.com/yql/), services delivering data in tabular for-
mat (e.g., Google Fusion Tables, tables.googlelabs.com/) or in row format
(such as Factual, http://www.factual.com). Data services are usually wrapped
as web services, that can be implemented according to different styles (e.g., using
REST or WSDL).

A data service s is also associated with some metadata, that in the current
version of the model contains (semantic) tags, used to enable coarse-grained
search of the data services. In our model, we admit different ways of assigning
(semantic) tags to data services: (i) keywords extracted from the data service
name, I/O names and textual description through the application of text mining

16 D. Bianchini et al.

techniques (such as stop words removal, stemming, camel case word decompo-
sition, etc.) [11]; (ii) tags, assigned by developers who used the data services
to design their own applications. Developers, while assigning tags, might apply
sense disambiguation techniques such as the ones we described in [12], based on
WordNet lexical system. In Figure 1 four sample data services are shown for
the running example, where tags have been disambiguated using WordNet. For
each tag, the tag name, the set of synonyms and a human readable definition
are given.

Web Application Layer. A data service aggregation represents a web appli-
cation, that integrates a set of services used to access data coming from different
data sources. An aggregation g is modeled as a pair, composed of the set of data
services, and the reference to the developer who has been in charge of designing
the web application. We denote with G the overall set of data service aggrega-
tions, that is, g€G, and with S[g] = {s1,...,sn} the data services used in g,
that is, g = (S]g], d), where d is the developer who designed the web application.
Conversely, G[s] denotes the set of aggregations where s has been used.

Social Layer. The set D of developers, who used data services to design their
applications, is included in the social layer. Each developer d;€D is modeled
as (G[d;],D*), where G[d;]CG is the set of data service aggregations designed
by d; in the past, D*CD is the set of other developers, whom d; declares to
be inclined to learn from in order to design new web applications, formally

defined as D* = {dj€D|dii>dj}. In the current version of our approach, the
follower-of relationships are only set after an explicit endorsement of developers.
An overview over the network of social relationships between developers might
reveal different kinds of social patterns, that is, particular configurations of social
relationships that can be recognised and represent different design scenarios. In
our model, we consider three distinct patterns, exemplified in the social layer
of Figure 1: (a) hierarchical pattern; (b) peer-based pattern; (c) hybrid pattern.
The first pattern is typical of organisations where the work is performed in a
hierarchical way: each developer learns from past choices made by the developer
who leads the hierarchy. Usually, in this case we are inside the same enterprise
or across different departments of the same enterprise. The second pattern is
typical of a totally collaborative environment, both within the same enterprise
and across different ones, where a leadership in the selection of data services
can not be identified. The third scenario represents an hybrid situation, where
a developer is or has been involved in different web application design projects
and, maybe depending on the particular application domain, has different other
developers whose past choices could be considered to learn from. Automatic
detection of social patterns, based on social network properties such as degree
centrality, betweness centrality and closeness centrality [13], will be addressed in
future work.

Leveraging Social Patterns in Web Application Design 17

3 Data Service Selection Driven by Social Patterns

3.1 Problem Statement

Given a developer d"€D, hereafter denoted as the requester, who is designing a
new web application starting from a set of available data services S, given the
set G[dy] of data service aggregations designed in the past by developer di€D,
our aim is at supporting d” in performing data service selection, by proposing
an ordered set of candidate data services S*CS taking into account the past

experiences in G[dy] for each developer dj such that dTLdk, that is, for each
developer from whom d” explicitly declared to learn from. The request s” is
formulated as a set of desired (semantic) tags and a set of data services, that
have been already included in the application, namely s = ({t"},g"), where
{t"} is a list of tags and ¢g" = {s1, S2,... 8, } is the list of already selected data
service descriptions. Tags in the set {t"} can be disambiguated using WordNet
as well. For example, the following request s” is formulated to find a demography
data service, annotated with a postal code, to produce a distribution of people
by sex. The service must be used in a web application, that is being designed
and already contains data services s; and sg (see Figure 1):
s" = (t] = {(postal code, {zip code, ZIP, postcode}, "a code of letters and digits added to a
postal address to sort mails”)};
t;, = {(sex, {gender, sexuality}, "the properties that distinguish organisms on the basis of
their reproductive roles”)};
t; = {(demography, {human ecology}, "the branch of sociology that studies the characteristics

of human populations”)};
9" = {s1, s2})

3.2 Data Service Selection

The overall similarity between s” and each available data service s€S, denoted
with Sim(s", s)€[0,1], is used to filter out not relevant data services and is
computed as linear combination of two matching techniques:

Sim(s",) = ws - Simtag(s”,s) + (1 — ws) « Simagg(s”, s)€[0, 1] (1)
Simyqq(s”, s) is based on WordNet and has been widely described in [12],:

2. er,z TagAff(t',t)
[{t7 H + {t}]

where TagAff(t",t) = 0.8, if there is a path of L hyponymy/hypernymy rela-
tions between t" and ¢. In the running example, Simqq(s",s3) = 0.667 and
Simyeg(s™, s4) = 0.862, since TagAf f(zipcode, postalcode) = 1.0, TagAff
(sex, male) = 0.8, TagAff(sex,female) = 0.8, TagAff(postalcode,
latitude) = 0.64, TagAf f(postalcode,longitude) = 0.64. Simggy(s",s)
quantifies the average similarity between g" and the aggregations where s has

€[0,1] (2)

Simiag(s™, s) =

18 D. Bianchini et al.

been used in the past. Such similarity relies on the Dice formula and is com-

puted as:
237, Simiag(si, s5)

AggSim(g",Slg]) = lg”| + |Sg]]

€[0,1] (3)

The rationale here is that the more similar are data services used in the two
compared aggregations according to their tag similarity, the more similar are
the two aggregations as well. For example, since ¢" already contains s; and s,
we have

2% (1.0 + 1.0 4 0.667)
3+3

2% (1.0 + 0.862)
3+2

= 0.745

(4)

The weight ws€]0, 1] is used to balance the impact of similarity based on (seman-
tic) tags and similarity based on data service aggregations. If g" = (), that is,
the developer is looking for the first data service to be included in the new
web application that is being designed, then ws = 1. In the running example,
Sim(s", s3) = 0.8224 and Sim(s", s4) = 0.7801, where w, = 0.3. Data services
included in the search results (that we denote with S’CS) are those whose overall
similarity Sim(s", s)>7, where 7 is set by the requester.

Simagg(s’, s3) = = 0.889 Simagy(s’,s4) =

3.3 Data Service Ranking

Each data service s€S’ is ranked taking into account both its overall similarity
compared to the request, Sim(s",s), and the value assigned to s through a
ranking function p : &’ +— [0, 1], that is based on the ranking of developers in
terms of number of their followers at the Social layer. In particular, the better
the ranking of developers who used the data service s, the closer the value p(s)
to 1.0 (maximum value). The Sim(s", s) and p(s) elements are combined in the
following harmonic mean:

2 p(s) - Sim(s", s)

p(s) + Sim(s,s) €1 (5)

rank(s) =

In the following, we further discuss how we estimate the ranking of developers
for evaluating p(s). For simplicity, let’s denote the ranking of a developer deD
as DR[d]€[0,1]. The value p(s) is computed as follows:

p(s) = Z= DI g (6)

where {d;}CD are the developers who used the data service s in their own web
application design projects, DR][d}] is the ranking of developer dy, N is the num-
ber of times s has been selected (under the hypothesis that a developer might
use a data service s in m > 1 projects, then DR[dj] is considered m times). The
computation of DR[d], based on the number of followers of d, depends on the

Leveraging Social Patterns in Web Application Design 19

type of social pattern, among the ones shown in Figure 1, as discussed in the
following.

Hierarchical Social Pattern. This pattern can be represented through a tree
structure, where children nodes follow their own parent node and only one parent
is allowed for each child. Now, let’s consider the structure shown in Figure 2(a),
where we partially expanded the social layer of Figure 1. The developer d. is the
requester and has to choose among data services that have been used in the past
by developers d,, dy, d4, de and dy, whose social relationships are depicted in
figure. In particular, note that d. and d; designed the two aggregations ¢g; and
go, that contain data services s3 and sy, respectively.

multiple
parents

%,

jo
%,
iy,
//
b’
ity mo'
2
il “,,
e
)

(=8
o

requester
(a) (b)

Fig. 2. An example of hierarchical social pattern (a) and a variant of the example, that
represents a hybrid social pattern (b)

In this scenario, a developer d; is ranked better than another developer d;, under
the viewpoint of a requester d, denoted with d;<4 d;, if one of the following
conditions holds:

1. condition (C1) - d; is one of the ancestors of d in the tree, while d; is not;
the rationale is that d always prefers to learn from developers, for whom
d explicitly declared a follower-of relationship; for instance, considering the
example in Figure 2(a), d.<q, dg;

2. condition (C2) - both d; and d; are ancestors of d in the tree, and ¢(d, d;) <
4(d, d;), where ¢(d, d;) denotes the distance (in terms of number of follower-
of relationships) between d and d;; for instance, in Figure 2(a), de<g4, da,
since {(d.,d.) = 1 < £(d.,d,) = 2, ; the rationale here is that developer d,.
prefers to follow the examples of closer developers, for whom d. explicitly
declared a follower-of relationship.

In all the other cases, there is not a direct follower-of relationship or a chain
of such relationships from the requester d to d; or d;, therefore the precedence

20 D. Bianchini et al.

d;<q4 d; or d;j=g4 d; is chosen, according to the number of d; and d; followers and
in turn of the followers themselves, in a recursive way. The following formula is
used, inspired by the PageRank metric:

11—«

w(d) = D] +a-;w(dk) (7)

where: w(d) is the weight of developer d; |D| is the number of developers; n is
the number of developers dy, who follow d; w(dy) is the weight of developer dy;
« is the dumping factor, that, following the studies of the PageRank metric, has
been set to 0.85, to weight the most those developers who have more followers.
This metric has been adapted to the proper tree structure of the hierarchical
social pattern, where only one parent is allowed for each node.

Specifically, d;<q d; if w(d;) > w(d,), according to Equation (7). Note that
the computation of w(d;) and w(d;) is independent from their relative position
in the tree with respect to d, that is, in this case d;<q d; coincides with d;< d;.
However, we maintain the former notation to indicate that we are weighting
developers after a request issued by d. For instance, w(dy) = 0.0483 (given
that its children, who have no followers, have a weight equal to 0.0136) and
w(dy) = 0.0367, therefore d;<q, dg. If w(d;) = w(d;), then the following further
conditions are checked: (a) number of data service aggregations designed by d;
and d;, namely G[d;] and G[d;], respectively, that is, d;<q d; if G[d;] > G[d;]; (b)
average complexity of data service aggregations designed by d; and d;, in terms
of average number of data services included within the aggregations, denoted
with G[d;] and G[d;], respectively. We compute G[d;] as:

5 1S
gt = oSt ®

where |S[g]| denotes the number of data services in g and |G[d;]| denotes the
number of aggregations in G[d;]. Therefore di<4 d; if G[d;] > G[d;]. For the
example shown in Figure 2(a), the final ranking is: de<q, do<a, dr<d, da<d, db-
Note that, de<q, dy even if w(de) < w(dy), since in our approach our aim is
at giving more importance to the developers among which follower-of relation-
ships have been explicitly declared. The final developer’s ranking DR[d] used in
Equation (6), is computed as:

DR[d] = we[o’ 1] (9)

N

where pos(d) represents the position of d in the ranking and N is the total
number of ranked developers. For example, DR[d.| = (5 —0)/5 =1, DR[dy| =
(5—2)/5 = 0.6. Therefore, according to Equation (6), p(s3) = 1 and p(s4) = 0.6,
that is, rank(ss) = 1.556/1.778 = 0.875 and rank(ss) = 0.9688/1.404 = 0.687,
according to Equation (5).

Peer-Based Social Pattern. This pattern can be represented through a graph,
where there is not a hierarchical structure to be recognized. Therefore, conditions
C1 and C2 meant for the hierarchical social pattern are not applicable, due to

Leveraging Social Patterns in Web Application Design 21

the possible presence of cycles. In this case, we use the following equation to
weight developers:

(10)

£
&
|
3}
|
Q
Jr
Q
i
E
%
z

The equation is a slight variation compared to Equation (7): w(d) is the weight
of developers d; |D| is the number of developers; n is the number of developers
dy who follow d; w(dy) is the weight of developer di; « is the dumping factor
(set to 0.85); C(dg) is the number of developers followed by dj, where, in this
case, C(dy) can be greater that 1, while in the case of hierarchical pattern C(dy)
can be at most equal to 1, due to the constraint on the single parent node. If
w(d;) = w(d;), then the following further conditions are checked: (a) number of
data service aggregations designed by d; and d;; (b) average complexity of data
service aggregations designed by d; and d;, in terms of average number of data
services included within the aggregations. The final developer’s ranking D R|[d]
is computed according to Equation (9).

Hybrid Social Pattern. This pattern can be represented through a tree struc-
ture, where children nodes follow their own parent node and also multiple parents
are allowed. Therefore, conditions (C1) and (C2) still hold. Now, let’s consider
the structure shown in Figure 2(b), where a new follower-of relationship from d.
to dg4 has been added. In the scenario depicted in Figure 2(b), conditions (C1)
and (C2) are not satisfied, because, for the developer d., both d. and d4 are
ancestors, but £(d.,d.) = ¢(d.,dq). Therefore, we add the following additional
condition:

3 condition (C3) - both d; and d; are ancestors of d in the tree, ¢(d,d;) =
4(d, d;), where (d, d;) denotes the distance (in terms of number of follower-of
relationships) between d and d;, and w(d;) > w(d;), where w(d) is computed
as shown in Equation (10); for instance, in Figure 2(b), dq<g4. d., since
U(d¢,de) =1 =4(dc,dg), but w(de) = 0.0309 and w(dy) = 0.0425.

In all the other cases, there is not a direct follower-of relationship or a chain of
such relationships from the requester d to d; or d;, therefore the final developer’s
ranking DR[d] is computed as for the peer-based social pattern. Preliminary
laboratory experiments are being performed to test the effectiveness of our app-
roach, on a proper dataset that is compliant with the model depicted in Figure 1.
First experiments show how our system presents better results in the first posi-
tions of the search outcome. As expected, considering only Simyqg() values for
selecting relevant data services is not effective, since the use of a specific data
service for a particular web application cannot be inferred by only inspecting
tags used to classify the service; instead, also Sim,g, values and ranking based
on social patterns should be exploited to this purpose. This has been investi-
gated by varying the ws parameter. In the first experiments, we are obtaining
satisfying results for wys = 0.3 (see Equation (1)): this means that in the dataset
considered in the experiments, the importance of past developers’ experiences in

22 D. Bianchini et al.

using candidate data services is even greater than the information coming from
data service (semantic) tagging.

4 Conclusions

In this paper, we proposed a multi-layered model and proper metrics relying
on it, meant for supporting the selection of data services for web application
design purposes, taking into account also past experiences of other developers in
collecting and aggregating data services in similar contexts, i.e., to build similar
applications. Moreover, we modeled the network of social relationships between
developers as third layer of the model, in order to exploit it for estimating the
importance that a developer assigns to past experience of other developers. Fur-
ther information might be integrated within the model, such as quality features
among metadata and automatic annotation of service interfaces at the data ser-
vice and web application layers, to refine the selection step. Extension of the
approach to different contexts, where high credibility of developers cannot be
assumed, will require the introduction of additional social patterns and the inte-
gration of credibility estimation techniques, such as the ones described in [7-9].
Finally, extensive experimentation (also considering real cases of web application
design) has to be completed.

References

1. Li, Y., Wang, Y., Du, J.: E-FFC: an enhanced form-focused crawler for domain-
specific Deep Web databases. J. of Intelligent Information Systems 40(1), 159-184
(2013)

2. Quarteroni, S., Brambilla, M., Ceri, S.: A Bottom-up, Knowledge-Aware Approach
to Integrating and Querying Web Data Services. ACM Trans. on the Web 7(4),
44-76 (2013)

3. Bozzon, A., Brambilla, M., Ceri, S., Mazza, D.: Exploratory Search Framework for
Web Data Services. VLDB Journal 22, 641-663 (2013)

4. Bianchini, D., De Antonellis, V., Melchiori, M.: QoS in ontology-based service
classification and discovery. In: 15th International Workshop on Database and
Expert Systems Applications, pp. 145-150. IEEE Computer Society, Los Alamitos
(2004)

5. Dillon, S., Stahl, F., Vossen, G.: Towards the web in your pocket: Curated data
as a service. In: Nguyen, N.T., Trawinski, B., Katarzyniak, R., Jo, G.S. (eds.)
Advanced Methods for Computing Collective Intelligence, pp. 25-34. Springer,
Berlin Heidelberg (2013)

6. Balakrishnan, R., Kambhampati, S., Manishkumar, J.: Assessing Relevance and
Trust of the Deep Web Sources and Results Based on Inter-Source Agreement.
ACM Trans. on the Web 7(2), 32 (2013)

7. Al-Sharawneh, J., Williams, M., Wang, X., Goldbaum, D.: Mitigating risk in web-
based social network service selection: follow the leader. In: 6th Int. Conference
on Internet and Web Applications and Services, pp. 156-164. IARIA XPS Press
(2011)

10.

11.

12.

13.

Leveraging Social Patterns in Web Application Design 23

Malik, Z., Bouguettaya, A.: RATEWeb: Reputation Assessment for Trust Estab-
lishment among Web Services. VLBD Journal 18, 885-911 (2009)

Bianchini, D., De Antonellis, V., Melchiori, M.: Capitalizing the designers’ experi-
ence for improving web API selection. In: Meersman, R., Panetto, H., Dillon, T.,
Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS,
vol. 8841, pp. 364-381. Springer, Heidelberg (2014)

Fuxman, A., Giorgini, P., Kolp, M., Mylopoulos, J.: Information systems as social
structures. In: 2nd Int. Conf. on Formal Ontologies for Information Systems, pp.
12-21. ACM, New York (2001)

Gupta, V., Lehal, G.: A Survey of Text Mining Techniques and Applications. J. of
Emerging Technologies in Web Intelligence 1(1), 60-76 (2009)

Bianchini, D., De Antonellis, V., Melchiori, M.: Semantic collaborative tagging for
web APIs sharing and reuse. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.)
ICWE 2012. LNCS, vol. 7387, pp. 76-90. Springer, Heidelberg (2012)

dos Santos, T., de Araujo, R., Magdaleno, A.: Identifying Collaboration Patterns in
Software Development Social Networks. J. of Computer Science, 51-60 (2010)

	Leveraging Social Patterns in Web Application Design
	1 Introduction
	2 The Three-Layer Model
	3 Data Service Selection Driven by Social Patterns
	3.1 Problem Statement
	3.2 Data Service Selection
	3.3 Data Service Ranking

	4 Conclusions
	References

