Mixing and Mashing Website Themes

Linda Di Geronimo, Alfonso Murolo®™), Michael Nebeling, and Moira C. Norrie

Department of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
{lindad,amurolo,nebeling,norrie}@inf.ethz.ch

Abstract. WordPress offers users a wide choice of themes defining the
structure, functionality, layout and presentation of a website together
with its content types. These themes are shared by the WordPress com-
munity, enabling users to benefit from the skills of others. However, it is
not possible to mix themes, so users often have to choose from a set of
themes that only partially meet their requirements. We have developed
a theme editor that allows users to combine both static and dynamic ele-
ments of existing themes using simple drag-and-drop operations. These
elements are adapted to reflect the content and structure of the web-
site under construction so that there is no distinction between design-
time and run-time. We discuss in detail technical challenges along with
our solutions for developing such an editor and integrating it into the
WordPress platform. Further, we describe how the solutions could be
generalised to other modern content management systems.

Keywords: Website theme - Theme generator - Web development tool -
Content management system

1 Introduction

WordPress' has gone well beyond its origins as an open source blogging platform
to become the most widely used content management system (CMS) with over
60% of the market share and estimates that it is used in nearly a quarter of the
top 10 million websites?. Many of these sites manage large amounts of data and
offer rich functionality including the integration of third party services.

Each WordPress site is an instance of a theme which defines the structure,
functionality, layout and presentation of the website as well as the types of
content to be managed and published. One of the main reasons for the initial
popularity and widespread adoption of the platform was its support for end-
user development of websites. Users could set up their website in a matter of
minutes by selecting a theme, specifying a few customisation options through an
administrative dashboard and adding content. In this way, they could not only
create a website without any coding or deployment effort but also benefit from
the design skills of other users who shared their themes.

! http://www.wordpress.org
2 http://www.w3techs.com, 23.7% on 8 April 2015.
© Springer International Publishing Switzerland 2015

P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 34-51, 2015.
DOI: 10.1007/978-3-319-19890-3 4

http://www.wordpress.org
http://www.w3techs.com

Mixing and Mashing Website Themes 35

Over time, not only has the platform been extended to provide richer function-
ality and improved support for both end-users and developers, but the WordPress
community has itself developed and shared vast numbers of themes. Furthermore,
the WordPress platform provides a simple means for developers to extend the
functionality of a theme through its plugin mechanism and the community has also
developed and shared thousands of plugins. While some themes and plugins have
been developed by professional agencies, many of them are freely shared within the
community. For example, over 37114 plugins are available at wordpress.org>.
WordPress can therefore be considered as one of the most successful and influen-
tial examples of the power of crowdsourcing.

However, one limitation of the theme concept is that it only supports all-
or-nothing reuse since it is not possible to mix elements of different themes.
Consequently, users are forced to choose from a set of candidate themes each of
which may only partially meet their requirements. To address this issue, we have
developed a visual theme editor that allows users to compose their websites by
mixing and mashing elements of existing sites. Both static and dynamic elements
can be selected and reused via simple drag-and-drop operations. Developers can
choose whether to retain the styling of the copied elements, apply the styling
associated with the theme under creation or modify the styling via normal editing
operations. When a dynamic element is reused, it is immediately adapted to
reflect the content and structure of the website under construction. This means
that developers can already see their website in operation at design-time. In this
way, there is no distinction between design-time and run-time and, from the user
point of view, no distinction between a website and a theme. To achieve this,
it was necessary to integrate the theme editor into the WordPress platform and
structure themes in terms of reusable components.

An overview of our approach of providing an editor that generates themes
constructed from reusable components was presented previously in a short paper
at ICWE2014 [1]. In this paper, we take the work further and present the main
technical challenges and solutions of being able to dynamically mix and mash
themes within the WordPress platform. Further, we discuss how the approach
could be generalised to other popular modern CMS such as Drupal* and Joomla®
which do not have the same theme concept as WordPress.

We start in Sect. 2 by reviewing existing WordPress theme generators as
well as previous work addressing the technical challenges of reusing elements
of websites. An overview of our approach is then presented in Sect. 3 before
going on to provide details of how themes are structured in terms of reusable
components in Sect. 4. Details of the steps involved in generating a theme and
its components as well as dynamically reusing them in different content contexts
are given in Sect. 5, with a review of the technical challenges and solutions in
Sect. 6. We follow this in Sect. 7 with a discussion of how the approach could
be generalised to other CMS. Concluding remarks are given in Sect. 8.

3 http://www.wordpress.org, 8 April 2015.
* http://www.drupal.org
5 http://www.joomla.org

http://www.wordpress.org
http://www.drupal.org
http://www.joomla.org

36 L. Di Geronimo et al.

2 Background

WordPress has evolved into a flexible and powerful platform capable of support-
ing a wide variety of websites. If a developer can find a theme that fully meets
their requirements, the process of developing a website can be done through the
dashboard where customisation parameters can be set, pages created, navigation
menus defined and sidebars configured. The functionality of the theme can also
be extended through the dashboard by selecting and adding plugins. However,
as soon as a developer is faced with the task of adapting or extending a theme,
they have to start working at the level of the HTML, CSS, JavaScript and PHP
files as well as learning about the core WordPress model and system operation.

Developers often work on a need-to-know basis, learning only enough to solve
the particular task at hand. Since WordPress offers developers a very loose frame-
work in which to work, many different approaches are used to achieve the same
look and functionality. Consequently, the documentation and tutorials vary a lot
in terms of guidelines and solutions offered and it is clear from reading tutorial-
style books on theme development, e.g. [2,3] as well as online forums®, that many
developers simply copy and paste bits of code with the hope that it will achieve
the desired effects. However, often these attempts to reuse code fail because they
are inconsistent with how other parts of the site have been developed.

A number of WordPress theme generators are available to support end-user
development of themes. These focus on creating new themes from scratch but
many of them have serious limitations. For example, Templatr” only allows users
to select from a fixed set of layouts, while Lubith® enables users to customise
layout via drag-and-drop operations, but does not support the customisation of
functionality. Further, many generators are not integrated into the WordPress
platform, so it is not possible to perform content-related tasks at design-time
and it can lead to compatibility problems across versions. It was therefore our
goal to develop our theme editor on top of, and fully integrated into, WordPress.

Other tools and frameworks, for example Themify?, have been developed
to facilitate the customisation of themes. The budget limitations of a customer
usually determine the amount of customisation that can take place and hence
tools that make it easier for developers as well as end-users to create or customise
themes can have a major impact on the quality of websites produced. However,
often the required customisations could be achieved by simply mixing elements
of different themes but this is currently not supported. In a recent survey of 110
WordPress developers [4], 75% indicated that they would like to be able to mix
the functionality of different themes, while 56% answered that they would like
to be able to mix layout elements.

Approaches that allow end-users to design their websites by selecting and
combining parts of existing websites have been explored by researchers in the

5 for example, http://www.wpbeginner.com
" http://templatr.cc

8 http://www.lubith.com

9 http://themify.me

http://www.wpbeginner.com
http://templatr.cc
http://www.lubith.com
http://themify.me

Mixing and Mashing Website Themes 37

HCI community [5,6]. Their studies demonstrated the benefits of the design-by-
example paradigm, but their solutions only addressed the reuse of elements of
website design in terms of layout and presentation and not the dynamic aspects
dealing with functionality and content. Modern websites tend to make heavy
use of JavaScript and jQuery'? and, rather than being static, pages are often
dynamically generated. This is particularly true in the case of CMS in general,
and WordPress in particular, where “the Loop” is used to define the content
to be displayed in an element of a web page in terms of a database query and
templates to extract data from the query result.

Extracting components from an existing web page involves identifying and
extracting all the necessary HTML, CSS, JavaScript and resources. Various tech-
niques for this have been proposed in the mashup research community. For example,
Ghiani et al. [7] allow users to select mashup components from arbitrary websites
through direct manipulation of the GUI. Note that to extract and reuse elements
of WordPress themes, it is necessary to not only extract components of a web page,
but also the PHP functionality of the theme defining the dynamic parts of the page,
i.e. the code that generates these elements: This raises many new challenges that
have not been addressed previously.

To support reuse, component models for web development have been pro-
posed to ensure that pages are constructed from reusable components. Web-
Composition [8] was an early effort in this direction where they proposed an
object-oriented support system for building web applications through hierarchi-
cal compositions of reusable application components. MashArt [9] is a system
developed in the mashup community that enables advanced users to create their
own applications through the composition of user interface, application and data
components. More recently, an extension to WordPress was proposed that allows
websites to be developed from a component model that supports composition at
the data, application and interface levels [10]. The approach requires developers
to model the different aspects of a website and specify the composition logic. In
contrast, our goal is to support end-user development by allowing themes to be
created using a visual editor where users can simply drag and drop elements of
existing themes that encapsulate presentation, content and functionality.

As detailed in the next sections, our approach combines many features of the
related work described above. To support reuse, we first defined a metamodel
for themes that can be used to structure them in terms of reusable components.
Second, we developed a theme editor that enables users to mix and mash ele-
ments of web pages at the GUI level, thereby hiding the details of the component
model but ensuring that the created themes conform to the model. In an earlier
paper [1], we described how this approach could be used to support the design-
by-example paradigm advocated by the HCI community in contrast to the model-
driven approaches proposed by the web engineering community [11-13]. Here we
take this work further by detailing the technical challenges underlying the approach
and the solutions that we developed. Specifically, we describe the implementation
of our theme editor and how it was integrated into the WordPress platform.

10 http://jquery.com

http://jquery.com

38 L. Di Geronimo et al.

3 Approach

Our overall goal is to allow end-users and developers to create themes by reusing
elements of existing themes that can be searched and browsed in an online gallery.
We illustrate this in Fig. 1 by showing elements of two web pages that have been
selected and copied into a web page under construction.

[eoxo = S — | [ooxe =)

| |

s M
A new beginning o

Mario and Wario
et

Fig. 1. Components from left and right web pages mixed at GUI level in middle page

At first sight, this appears very similar to the previous research within the
HCI community where users can design a website by selecting elements from
galleries of examples. However, there are important and far-reaching differences.
First, as mentioned before, they only handle static web pages and have no
support for the reuse of client-side functionality. Second, they only deal with
web pages rather than with themes defining how web pages are generated from
database content. We illustrate the different layers involved in extracting and
reusing a component of a theme in Fig. 2.

Check when

we are open <p> Check when
we are open</p>

® B ,

= GUI element index.php functions.php
php register_sidebar();} X

<div id=‘cal’>...

style.css « plugin-calendar.js l , DB
#cal { $(‘#cal’).calendar{ SZphpigettsidebar()7> g CONTENT
Client Side Server Side

Fig. 2. Layers involved in extracting and reusing a theme component

On the left of Fig. 2, we show a rendered component of a web page and
how it is defined in the underlying theme. A user should be able to extract and
reuse this component by simply selecting the corresponding element within the
rendered web page and copying it into their new page via drag-and-drop. They
should also be able to choose whether to keep the source styling or adopt the
target styling and be able to use basic editing operations to change its size,
position or style. For more advanced users, there should be an option to switch
to a mode where they can edit CSS code directly.

Mixing and Mashing Website Themes 39

To achieve this, the corresponding DOM elements need to be identified and
the required CSS and JavaScript code extracted along with the HTML. The first
step of identifying the DOM elements is common to all projects dealing with the
extraction and reuse of components of a web page. However, to import a selected
element into a new theme, we also need to identify and extract the parts of the
underlying theme that were responsible for generating them. This means that
we need to extract code from the source theme’s PHP templates stored on the
server-side. We achieve this by exposing parts of the server-side code shown on
the right of Fig. 2. Access is read-only and limited to the particular theme rather
than the entire WordPress installation so that other software and users do not
gain access to credentials and therefore control over the database and private
data. It is further important to note that when the selected element is imported
into the theme under construction, there is an immediate switch from executing
queries against the WordPress database for the source theme to the database
associated with the target theme.

In addition, as shown on the right of Fig. 2, some properties of a WordPress
site such as content shown in a sidebar or a header are defined on the server-side
and customised through the WordPress administrative interface and so we also
need to handle these correctly when extracting and reusing elements.

To support our requirements, we have developed a visual theme editor with
both design and reuse capabilities. This means that it can be used to design
new themes from scratch or to compose new themes by mixing and mashing
components of existing themes accessed in a gallery. This is important not only
because it offers users full flexibility in how users create and customise their
themes, but it also provides the initial motivation for users to participate that
is essential to any crowdsourcing model [14]. By providing a visual editor with
full capabilities for creating, positioning and styling both static and dynamic
elements of a theme, including creating nested structures of arbitrary complexity,
the functionality of the editor is comparable to that of the most powerful theme
generators. The tool therefore has value to users and developers even without
the ability to reuse components of existing themes. The themes generated by
the tool are referred to as X-Themes since they are structured according to
our metamodel and represented as a set of reusable components. As soon as an
X-Theme is generated, it is added to the interactive gallery of existing themes
accessible to the X-Themes editor and its components are immediately available
for reuse. In this way, we can avoid the cold start problem and motivate users
to participate.

The X-Themes editor is realised as a WordPress plugin and, once installed
and activated, can be accessed via the main menu of the administrative interface.
An advantage of making the editor available as a plugin is that it provides an easy
means of deploying the tool to the vast developer community, while achieving
our goal of integrating it into the WordPress platform.

40 L. Di Geronimo et al.

4 Metamodel

A theme can be considered as a skeleton for a website that defines the essential
form and function of the site with the dynamic content missing. It therefore
defines the types of content, the structure and navigation of the site, the func-
tionality, the presentation styles and any static content including images.

In the case of WordPress, a theme mainly consists of a set of PHP templates,
CSS stylesheets and images. The templates are structured in a hierarchy to rep-
resent not only the home page and structural elements of pages such as header,
footer and sidebar, but also templates for displaying different kinds of content.
Since the WordPress platform was originally developed for blogging sites, the
basic content types are posts and pages. While a default template should be
provided for pages that display posts, it is possible through a naming scheme to
construct a whole hierarchy of page templates ranging from customised pages
for specific posts and categories of posts to a generic post page. Details of the
WordPress model including the full template hierarchy are given in [15].

The model underlying the WordPress system is not as well-defined or doc-
umented as research systems with clearly defined concepts and a metamodel.
Also, there is a lot of flexibility in terms of how and where different aspects of a
theme are defined. Most parts of themes are tightly coupled and often not kept
separate, making it difficult to identify, extract and reuse them. Until now, sepa-
ration was up to the developer who, if following good principles of design, could
manually separate code components to support future reuse. But it is important
to remember that many WordPress developers are part-designer/part-developer
with limited training in principles of software engineering [4].

We therefore defined a metamodel for themes consistent with the WordPress
model, but introducing a notion of Components. Fig. 3a shows the core elements
of the metamodel that define the structure of a theme and references to each
component’s resources so that they can be further accessed and reused. Specif-
ically, we have defined Component as the reusable super-type of the model. A
component can be an LComponent or an FComponent. An LComponent spec-
ifies the layout structure of a part of the page, and it is defined by CSS and
HTML markup. An FComponent embeds functionality which can be defined
through PHP or JavaScript logic, the former on the server-side and the latter
on the client-side.

In order to give complete freedom in design, LComponents can contain other
LComponents, allowing an arbitrarily nested structure, as shown in Fig. 3a.
However, although LComponents can be placed with freedom within the page,
FComponents instead need to be linked to an LComponent, in which they are
loaded and displayed.

The code defined in the FComponents can either be integrated directly into
pages via inclusion, or through widgets which provide easy access to plugins.
Plugins are a means of extending the functionality of a theme and may either
be integrated into a theme or added later by a user.

Elements such as headers, footers and sidebars are part of the core WordPress
model, and custom content types can be added to support application-specific

Mixing and Mashing Website Themes 41

<?xml version="1.0"?>
<feature name="dropdown">
<clientlogic>

i I <name>dropdown.js</name>
</clientlogic>
<serverlogic>

<name>dropdown.php</name>

</serverlogic>

e
<name>stylel.css</name>

</styles>

’ Post Page ‘StaﬁcPage

<include>dropdown.php</include>
<dependency>dropdown.js</dependency>
5 <dependency>dropdown.code</dependency>
<dependency>stylel.css</dependency>
‘(} | Container <dependency>common.css</dependency>

<dependency>demo.css</dependency>
<dependency>icons.css</dependency>
> <dependency>icommon.eot</dependency>
PEES DB <dependency>icommon.svg</dependency>
P <dependency>icommon.ttf</dependency>

~ 3
_ (CONTENT <dependency>icommon.woff</dependency>
</feature>

(a) X-Themes metamodel (b) XML example

JavaScript

Fig. 3. Metamodel and XML representation

data. For example, custom types could be defined in an e-commerce system
to manage product data. The actual database and content are defined by an
instance of a website and not the theme and therefore are not targeted by our
reuse mechanism.

The generated X-Themes are structured so that all the resources and code
required for each component are stored in a separate directory. The model distin-
guishes between server-side resources such as PHP templates, resources which
enhance the client-side experience such as JavaScript and other required files
such as images. For each component, we store a representation of this infor-
mation in XML which is then used during theme generation to include all the
required resources. The XML representation of a component is also used when
a user drags-and-drops that component into a theme to identify which resources
need to be loaded into the editor and displayed.

An example of the XML representation of a component is shown in Fig. 3b.
The elements serverlogic, clientlogic and styles are used to identify the primary
resources needed for a component to work. Moreover, a general dependency ele-
ment is used to specify additional resources required, such as images and non-
standard fonts. An include element specifies the file responsible for starting the
execution of component.

All elements of the metamodel also have a DOM-based implementation which
annotates the design created within the editor by exploiting the HTML5 dataset
API. These annotations are then used in the generation and the reuse steps
detailed in Section. 5. For example, during theme design, the root element of the
component for the navigation menu represented in Fig.3b will be annotated with
the data-clientlogic attribute specifying a DOM reference to enable fast access
from the JavaScript modules of our editor.

42 L. Di Geronimo et al.

- EEy =
(] localhost/wordpress/wp-- x I
€ cH localhost/wordpress/wp-admin/tools,php?page=themes-invoker&xthemespage= heme# %0 =
xtheme
g, f 2
{ 3 Desigh and mix themes as you wish
o 18
_ t o
:‘_/
=

XTheme says hello!

avigation Bar

March 4, 2014

[Static Container

Welcome to the X-Themes blog, where

ou will find updates on our project. Feel
free to take every piece of our website.
That's exactly what XThemes was made
for!

rt Your Code

{Powered by X-Themes|

Fig. 4. X-Themes editor

We note that while the metamodel was designed around the original Word-
Press model, we were careful to design it in a such a way that it could be
generalised to other CMS as described later in Sect. 7.

5 Implementation

The X-Themes editor is accessible through the dashboard of WordPress, and its
interface is shown in Fig. 4. There is a menu on the left and the main three
elements of a web page—header, body and footer—in the main editing area.
Users can create an arbitrary nesting of containers within the main elements.
The user can perform basic style customisations such as changing the font and
background through menu options, while more expert users can also add and
edit CSS rules directly.

Containers can be associated with functionality by creating or copying com-
ponents into containers. To create a new FComponent, the user can import the
necessary HTML, PHP, CSS and JavaScript files. When this is done, the editor
performs two operations. First, it executes the FComponent directly and shows
it running in the design being edited. Second, it creates a package, which is a
zip archive, containing not only the source files specified by the user, but also
the metamodel information as specified in Section 4. In this way, the tool cre-
ates a new FComponent which can be reused either via a drag-and-drop from
the generated X-Theme accessed in an online gallery or through the zip archive.
When the user is finished editing, they click on the generate button and their

Mixing and Mashing Website Themes 43

X-Theme will be generated and immediately available for use via the WordPress
dashboard, and for reuse via the X-Themes gallery.

We will now describe the generation process in detail referring to Fig. 5. We
will first present the steps of the generation process shown on the left and then
the reuse process on the right.

1. Design. When the editing of a theme is complete, the editor generates a
set of templates for that theme together with the files defining its components
and associated metadata based on the X-Themes metamodel. We will assume a
simple example of a design with only two LComponents in the header and one
in the body as shown in Fig. 6 to explain the steps.

1.a) Design theme Since our editor is a web-based tool, the design will be a
subtree of the DOM structure of the page. It is important to know that the
theme header, body and footer are handled as LComponents individually since
this is how they are handled in WordPress. The DOM structure will contain
the elements of the example together with the contents of the user’s WordPress
installation in the markup. As mentioned in Section 4, the root elements of
the component subtrees have annotations based on the HTML5 dataset API to
represent metadata for our model.

1.b) Metamodel Generation. A browser node recursively builds metamodel
strings for each of the components present in the design. This involves recreating
the XML structure, shown in Fig. 3b, by reading the HTML5 dataset attributes,
reversing the mapping between the XML-based implementation of our meta-
model and the DOM-based one, as explained in Section 4. In the case of Fig. 6,
it builds an XML string for LC1, LC2 and FC as well as for the three default
LComponents. Within the same recursive traversal, it also builds strings with

Design

Reuse

Invoke
execution of | s]
resources

Fetch resources 2c
from X-Theme
Access remote 2b
theme
Extract of 2a
metamodel info

N
o
%%306 e"“\o
01) o

1a Theme Design Display in editor

Collect
metamodel
information

Separate
Components

Filter Dynamic
Content and
Components

Global Information Systems
ETH Zurich Switzerland

Generate
Theme

Fig. 5. X-Themes’ process of generation and reuse

44 L. Di Geronimo et al.

Fig. 6. Simple example design structure of an X-Theme

CSS style rules for each component so that they can be bound to the correspond-
ing metamodel element, which from now on are referred to as meta-elements.
1.c) Separate Components. The first use we make of our XML specification
is to distinguish the individual meta-elements and allocate a directory for each
of them. For each meta-element, all files which have to be executed or loaded
with it are saved in its directory, along with a copy of the PHP code (in a
different format) that will allow future reuse. Also during this step, the CSS
style information, which up until this point is represented as a string in inline
rules, is separated out into CSS files. The theme’s header, footer and body get
processed in the same way. For the example in Fig. 6, this means it would create
a separate self-contained structure for LC1, LC2 and FC nodes in the tree as
well as for H, B and F. It is important to note that up to this point, the content
originally shown to the user for each LComponent is still part of the markup
saved to the PHP files.

1.d) Filter Components. The LComponents are analysed and code for any
dynamic elements generated, including specific WordPress template functions,
namely template tags. For example, assume that the node H in Fig. 6 contains two
containers—one with a logo and one with the site’s name. Our implementation
operates over the theme DOM tree which in this case would have the parent
node and its two child nodes. The site’s name is a dynamic element since this
information is contained in a site parameter and the corresponding PHP code
bloginfo(’name’) would therefore be inserted into the container in place of its
original output. Now that every meta-element is in the form of a self-contained
package, we can replace their occurrence in the markup with an include() call
to the PHP file responsible for executing it. Until this step, the theme’s header,
body and footer are processed in exactly the same way as any other LComponent.
They now need special handling since their inclusions have to be in specific
locations according to the structure of a WordPress theme, and this requires
additional inclusions to be placed in some files for the theme to work.

1.e) Generate. The editor now creates an XML representation of the theme
that defines all the components. This is useful for the gallery as it allows the
complete theme structure to be analysed from a single source.

Mixing and Mashing Website Themes 45

2. Reuse. On the right of Fig. 5, we show the main processing steps to extract an
FComponent of an existing X-Theme for inclusion in the theme being edited. We
name this approach Clone-and-execute since it performs local clones of the
FComponent and executes it through an AJAX call accessing the WordPress
API. It is important to note that we chose to develop a special approach for
the reuse of simple LComponents and will explain this in our review of the
implementation given in Section 6.

2.a) Metamodel extraction. When the user selects and drags an FComponent,
such as a navigation menu implemented in PHP /JavaScript and CSS, the editor
accesses the metamodel information of that FComponent and acquires references
to the theme’s location in the source web server. Moreover, for each file of a meta-
element, each metamodel description contains references which are local to the
source theme. These sub-references are also retrieved and act as an input for the
next step.

2.b) Theme Access. The theme HTTP location and the local sub-references
are now chained together to obtain an absolute HTTP-based location for each
individual dependency of the meta-element itself. In this way, the editor prop-
agates the selection and is ready to get the FComponent. Note that resources
stored in remote WordPress installations first have to be cloned in order that
the FComponent can be executed in the editor.

2.c) Fetch resources. The selected resources (JavaScript, CSS, PHP, images,
etc.) are then fetched in order to clone them in the user’s WordPress installation.
The access is done via the HT'TP protocol directly on the source theme server
and the necessary connections made to download the required files. Note that
only the resources in the component’s directory get copied during this process.
Remote resources that are referenced but not part of the WordPress installation
do not get copied, for example a picture from a different website linked via
a remote URL. Moreover, as remote access to PHP is not possible for security
reasons, our implementation instead uses a copy of the FComponent’s PHP code
created when the X-Theme was generated.

2.d) Execution. After every resource has been selected, accessed and copied
locally, the FComponent can be executed in the context of the X-Themes editor
running on the user’s own WordPress installation and accessing their database
transparently. We perform this through an AJAX request to an endpoint meant
to evaluate meta-elements coming from reused components and requiring access
to the WordPress API. This endpoint is registered through some WordPress
specific functions, namely hooks, which allow us to execute our code taking
advantage of the WordPress API. Unfortunately, this approach comes with some
disadvantages which will be explained in more detail in Section 6. Since our
meta-element is sent to this AJAX endpoint within WordPress, all PHP and the
WordPress-related queries can be executed and the result is used as output to
the user. Once the AJAX response has been received, the editor will dynamically
load any other CSS or JavaScript code that is required. As a result, the FCom-
ponent can directly display the actual contents of the target database rather
than the source one. For example, any imported navigation menus, would imme-

46 L. Di Geronimo et al.

diately reflect the structure and labels defined by the user in the administrative
dashboard for the theme under creation rather than those that appear in the
source theme.

Allowing users to design their own themes by letting them reuse any PHP or
JavaScript code raises potential security issues. For example, it would be possi-
ble to have a malicious FComponent containing JavaScript code which accesses
other components through the DOM and somehow modifies them. While out of
scope at this stage, the topic of detecting and preventing such side-effects is one
direction for possible future work.

6 Review of Technical Challenges and Solutions

As is often the case when a system is extended to support goals for which it
was not originally designed, realising the theme editor as a WordPress plugin
brought many challenges. Specifically, there were many issues that had to be
addressed to enable run-time components to be dragged-and-dropped from a
web page running in a browser and deal with coherence of the components,
the performance/efficiency of reuse and the re-execution of such components in
a totally new environment. Moreover, while realising the editor as part of the
WordPress dashboard offered potential advantages in terms of deployment and
acceptance in the community, it meant that some compromises were necessary
to display the editor within the WordPress administration pages. We will first
discuss the main choices and compromises that we had to make to coexist with
the WordPress dashboard, and then detail the trade-offs related to efficiency and
performance.

As shown in Section 5, our tool makes heavy use of AJAX requests. Our X-
Themes editor is reachable from a page registered to the WordPress dashboard
through hooks and we also had to declare AJAX endpoints for our plugin in
the same way, namely as a page in the WordPress dashboard. This is how many
CMS achieve extensibility in contrast to the plugins developed for desktop appli-
cations such as MS Office and integrated development environments. The overall
advantage of this approach is that the entire definition of the WordPress API is
already complete before the flow of execution reaches the hooking point where
the developer’s plugin is executed, and therefore all of the required dependen-
cies have been correctly prepared for the plugin to work. WordPress offers many
hooks, some of them before an HTML component is generated and some of them
after. Unfortunately, this means that the dashboard is prepended or appended,
depending on the position in the flow of our target hook, to every AJAX request
started by the editor, introducing noise that has to be filtered within the HTTP
responses.

There were also challenges faced while developing the reuse process detailed
in Section 5. When the user performs a drag-and-drop reuse operation, we could
choose between two reuse techniques planned for our editor which act as a trade-
off between reliability of the reused component and performance:

Mixing and Mashing Website Themes 47

— Clone-and-execute: This is the approach presented in the reuse process in
Section 5. It creates separate HT'TP connections to retrieve each of the files.
With slow source web servers, this can perform quite poorly.

— Copy-and-filter: CSS rules are identified and inlined to the markup. Then,
we filter the output of WordPress template tags (which are PHP functions)
from markup and replace it with the resulting output of the same functions
in the target installation. This approach can be performed almost instantly,
but it is not applicable when using components which have JavaScript or
other PHP dependencies. Moreover, this approach can also cause issues when
trying to infer which CSS rules are applied to the selected components.

During our implementation, we tested the tool on both fast and slow source
servers and decided to opt for an approach that makes the choice of technique
applied dependent on the type of component to be migrated. If the component
is an LComponent, the editor filters out WordPress template tags and replaces
their output from the resulting markup with a Copy-and-filter approach in the
target installation. When it comes to bigger and more complex FComponents
involving JavaScript and PHP dependencies, the editor applies a Clone-and-
execute approach and triggers the correct execution of all the required resources
for each component. The reason is that the Copy-and-filter approach heavily
relies on the capabilities of matching calls to WordPress functions and replacing
them with the correct output from the target installation. Unfortunately, this
cannot always be guaranteed and, generally, it may be an unsafe approach: Some
elements might be missed and therefore the data of the target website might not
be incorporated into the new design. This makes the Clone-and-execute approach
more reliable than the Copy-and-filter, but it can be much slower.

Another potential issue of the Copy-and-filter approach also has performance
implications. Dragging an LComponent to the X-Themes editor requires knowl-
edge of which CSS rules must be applied so they can be inlined. This could
be implemented in two ways. The first method is to ask the browser about the
computed style of each element, which is, however, not cross-browser compatible
and may have serious performance issues for complex LComponents. Therefore,
we chose the option of implementing our own algorithm which visits every CSS
rule specified in the loaded stylesheets and only includes it if it influences the
display of the corresponding elements. While this works well for most CSS rules
that explicitly target DOM elements by ID or class, it can still raise performance
issues in the case of many page-wide or deeply cascaded CSS rules.

7 Generalisation of Approach for Other CMS

The approach implemented for X-Themes was conceived with the goal of being
general enough to be applied to other CMS. The metamodel itself avoids
platform-specific concepts. This could be thought of as implying that the meta-
model provides limited support for specific platforms, however we argue that
our metamodel can support platform-specific concepts through taxonomy-like

48 L. Di Geronimo et al.

(a) WordPress FComponents (b) WordPress LComponents

Fig. 7. WordPress theme concepts implemented as elements of our metamodel

extensions of LComponents and FComponents which in turn can be powered by
platform-specific implementations of theme generators.

We will begin by presenting which concepts of WordPress we have been able
to represent in our metamodel and then map these to similar ones in other widely
used CMS, providing details of how these concepts work in each target CMS and
how they can be implemented as an instance of our metamodel. According to
W3Techs!'!, WordPress is the most widely used CMS with over 60% of the market
share. The main competitors sharing the podium are Drupal and Joomla, with
7.3% and 5.1% of the market share, respectively. We will therefore use these to
explain how the approach can be generalised by analysing what the equivalent
concept of a theme is in each of these CMS, and providing an insight into the
differences and similarities between each of the platforms and WordPress. We
will then assess how well the concepts of each platform can be handled in our
proposed approach.

In all three platforms, themes consist of template files used to generate out-
put for different parts of the theme. The level of granularity of the template
hierarchy is specific to each CMS and varies a lot. However, all of these plat-
forms provide the opportunity to code specific layout details or functionality
within the templates.

WordPress provides a lot of freedom in terms of the way in which a theme
can be developed. Some developers choose to embed functionality within the
theme templates, while others try to create a more decoupled structure making
use of more advanced concepts such as sidebars and widgets. The former are
areas of the template which can be configured through the administrative dash-
board to show specific widgets providing functionality such as showing some
dynamic content or overviews of other content areas of the website. Widgets
can also be registered from plugins providing functionality that will be accessed
through widgets. Additionally, developers often exploit functionality provided
by the WordPress platform itself such as Customisable headers.

As shown in Fig. 7, sidebars have been implemented in X-Themes as an
LComponent, since they shape where and how widgets can be displayed in the
page. Widgets, on the other hand, often introduce functionality, for example a
search box, and therefore are implemented as FComponents. Moreover, we have
an interest in reproducing the functionality that the widgets provide and not

1 http://www.w3techs.com /on8April2015

http://www.w3techs.com/ on 8 April 2015

Mixing and Mashing Website Themes 49

FComponent LComponent

Meta

Drupal

Embedded

Functionality VRl (e

Region

(a) Drupal FComponents (b) Drupal LComponents

Fig. 8. Drupal theme concepts implemented as elements of our metamodel

only the way the content is shown, therefore a clone-and-execute approach is
more suitable for widgets. Customisable headers allow users to specify either
a single or set of header images to be shown randomly and so have also been
implemented as FComponents through the re-execution of content.

Drupal provides theme developers with similar tools for dynamically config-
uring a theme but uses the concepts of regions and blocks. Regions are areas of
the layout designed to host atomic blocks of content, which have been defined by
users or through so-called modules which act as plugins. Differently from Word-
Press, regions and blocks have default templates and specific templates. However,
similarly to WordPress, we can distinguish components that specify layout from
those that may involve functionality. Consequently, individual regions can be
implemented as LComponents and blocks as FComponents as shown in Fig. 8.
Further, the sidebars of WordPress can be mapped to Drupal’s regions, and wid-
gets to blocks. Drupal uses the concept of nodes to represent individual units
of data, which are generally shown iteratively, and therefore is equivalent to
the Loop in WordPress. Therefore, we are able to implement Node through an
LComponent.

Joomla also distinguishes between components that define layout and those
that define functionality as shown in Fig. 9. In the case of Joomla, positions are
declared which have special placeholder code in the theme template, and these
are detected and processed by the Joomla template engine, which replaces them
with the template generated for the so-called modules. Positions and modules
can be realised as LComponents and FComponents, respectively. It is clear that
Joomla’s positions can be mapped to Drupal’s regions. We can do the same with
Joomla’s modules, which can be mapped to Drupal’s blocks. The automatic
query of the current content being viewed, handled by the Loop in WordPress
and the execution of Nodes in Drupal, is handled by a specific Joomla module,
internally called component.

Although the three CMS use different terminology and the details of the
concepts and features offered vary, they all distinguish between components that
deal only with layout and those that offer functionality. In addition, they all
provide some means of querying and displaying the content that is equivalent
to the Loop in WordPress and also support extensibility through some kind

50 L. Di Geronimo et al.

FComponent

LComponent
Meta Meta

Joomla Joomla

Embedded
Functionality

(a) Joomla FComponents (b) Joomla LComponents

Template part Position

Fig. 9. Joomla theme concepts implemented as elements of our metamodel

of plugin mechanism. As discussed, it is therefore possible to map the main
concepts of all of these CMS to our metamodel, extending the LComponent and
FComponent hierarchies where necessary to deal with specialisations.

8 Conclusion

We have shown how the arbitrary reuse and mixing of both layout and func-
tionality of WordPress themes can be supported. Compared to previous work,
users are able to select, reuse and combine parts of existing themes, transpar-
ently propagating the reuse to dynamic resources that define functionality on
both the client and server sides. Since a theme must be based on the metamodel
in order for it to be an X-Theme and accessible to the visual editor, we have
defined a manual procedure for converting existing themes to an X-Theme, and
are currently investigating semi-automated approaches.

There are also other research questions that we plan to address in the future.
The first of these concerns data-intensive web sites which require the integration
of custom post types to manage data. In previous work within our group, a tool
was developed that generates a WordPress plugin with custom post types based
on an entity-relationship data model defined by a developer [16]. We have now
started to investigate an alternative approach that lets the user annotate sample
data content from mockups or other similar websites and then automatically
generates a data schema which is implemented as custom post types in the
WordPress platform [17].

Acknowledgments. We acknowledge the support of the Swiss National Science Foun-
dation who financially supported part of this research under project FZFSP0_.147257.

References

1. Norrie, M.C., Nebeling, M., Di Geronimo, L., Murolo, A.: X-Themes: supporting
design-by-example. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014.
LNCS, vol. 8541, pp. 480-489. Springer, Heidelberg (2014)

2. McCollin, R., Blakeley-Silver, T.: WordPress Theme Development. Packt Publish-
ing (2013)

10.

11.

12.

13.

14.

15.

16.

17.

Mixing and Mashing Website Themes 51

Casabona, J.: Building WordPress Themes from Scratch. Rockable Press (2012)
Norrie, M.C., Di Geronimo, L., Murolo, A., Nebeling, M.: The forgotten many?
A survey of modern web development practices. In: Casteleyn, S., Rossi, G.,
Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 290-307. Springer,
Heidelberg (2014)

Hartmann, B., Wu, L., Collins, K., Klemmer, S.R.: Programming by a sample:
rapidly creating web applications with d.mix. In: Proc. of the 20th ACM Symp.
on User Interface Software and Technology (UIST). ACM (2007)

Lee, B., Srivastava, S., Kumar, R., Brafman, R., Klemmer, S.: Designing with
interactive example galleries. In: Proc. of the 28th Conf. on Human Factors in
Computings Systems (CHI). ACM (2010)

Ghiani, G., Paterno, F., Spano, L.D.: Creating mashups by direct manipulation of
existing web applications. In: Piccinno, A. (ed.) IS-EUD 2011. LNCS, vol. 6654,
pp. 42-52. Springer, Heidelberg (2011)

Gellersen, H., Wicke, R., Gaedke, M.: WebComposition: An Object-Oriented Sup-
port System for the Web Engineering Lifecycle. Computer Networks 29(8) (1997)
Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Florian, D., Matera, M.: A Frame-
work for rapid integration of presentation components. In: Proc. of the 16th Intl.
Conf. on the World Wide Web (WWW). ACM (2007)

Leone, S., de Spindler, A., Norrie, M.C., McLeod, D.: Integrating component-based
web engineering into content management systems. In: Daniel, F., Dolog, P., Li,
Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 37-51. Springer, Heidelberg (2013)
Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann (2002)

Houben, G., Barna, P., Frasincar, F., Vdovjak, R.: Hera: development of seman-
tic web information systems. In: Cueva Lovelle, J.M., Rodriguez, B.M.G.,
Gayo, J.E.L., Ruiz, M.P.P., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722,
pp. 529-538. Springer, Heidelberg (2003)

Knapp, A., Koch, N., Zhang, G.: Modeling the structure of web applications with
ArgoUWE. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS,
vol. 3140, pp. 615-616. Springer, Heidelberg (2004)

Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a
growing field. In: Proc. of the 29th Intl. Conf. on Human-Computer Interaction
(CHI). ACM (2011)

Williams, B., Damstra, D., Stern, H.: Professional WordPress Design and Devel-
opment. Wiley (2013)

Leone, S., de Spindler, A., Norrie, M.C.: A meta-plugin for bespoke data manage-
ment in wordpress. In: Wang, X.S., Cruz, 1., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 580-593. Springer, Heidelberg (2012)

Murolo, A., Norrie, M.: Deriving custom post types from digital mockups. In: Proc.
of the 15th Intl. Conf. on Web Engineering (ICWE). Springer (2015)

	Mixing and Mashing Website Themes
	1 Introduction
	2 Background
	3 Approach
	4 Metamodel
	5 Implementation
	6 Review of Technical Challenges and Solutions
	7 Generalisation of Approach for Other CMS
	8 Conclusion
	References

