
Partition into heapable sequences, heap
tableaux and a multiset extension of

Hammersley’s process

Gabriel Istrate, Cosmin Bonchiş∗

Abstract

We investigate partitioning of integer sequences into heapable
subsequences (previously defined and established by Mitzenmacher
et al.
[BHMZ11]). We show that an extension of patience sorting computes
the decomposition into a minimal number of heapable subsequences
(MHS). We connect this parameter to an interactive particle system,
a multiset extension of Hammersley’s process, and investigate its ex-
pected value on a random permutation. In contrast with the (well
studied) case of the longest increasing subsequence, we bring exper-
imental evidence that the correct asymptotic scaling is 1+

√
5

2 · ln(n).
Finally we give a heap-based extension of Young tableaux, prove a
hook inequality and an extension of the Robinson-Schensted corre-
spondence.

1 Introduction

Patience sorting [Mal63] and the longest increasing (LIS) sequence are well-
studied topics in combinatorics. The analysis of the expected length of
the LIS of a random permutation is a classical problem displaying inter-
esting connections with the theory of interacting particle systems [AD99]

∗Dept. of Computer Science, West University of Timişoara, Timişoara, Romania. and
e-Austria Research Institute, Bd. V. Pârvan 4, cam. 045 B, Timişoara, RO-300223, Roma-
nia. Corresponding author’s email: gabrielistrate@acm.org

1

ar
X

iv
:1

50
2.

02
04

5v
2

 [
m

at
h.

C
O

]
 1

0
Fe

b
20

15

and that of combinatorial Hopf algebras [Hiv07]. Recursive versions of pa-
tience sorting are involved (under the name of Schensted procedure [Sch61])
in the theory of Young tableaux. A wonderful recent reference for the
rich theory of the longest increasing sequences (and substantially more)
is [Rom14].

Recently Mitzenmacher et al. [BHMZ11] introduced, under the name
of heapable sequence, an interesting variation on the concept of increas-
ing sequences. Informally, a sequence of integers is heapable if it can be
successively inserted into a (not necessarily complete) binary tree satisfy-
ing the heap property without having to resort to node rearrangements.
Mitzenmacher et al. showed that the longest heapable subsequence in a
random permutation grows linearly (rather than asymptotically equal to
2
√
n as does LIS) and raised as an open question the issue of extending the

rich theory of LIS to the case of heapable sequences.
In this paper we partly answer this open question: we define a fam-

ily MHSk(X) of measures (based on decomposing the sequence into sub-
sequences heapable into a min-heap of arity at most k) and show that
a variant of patience sorting correctly computes the values of these pa-
rameters. We show that this family of measures forms an infinite hier-
archy, and investigate the expected value of parameter MHS2[π], where
π is a random permutation of order n. Unlike the case k = 1 where
E[MHS1[π]] = E[LDS[π]] ∼ 2

√
n, we argue that in the case k ≥ 2 the cor-

rect scaling is logarithmic, bringing experimental evidence that the pre-
cise scaling is E[MHS2[π]] ∼ φ lnn, where φ = 1+

√
5

2
is the golden ratio.

The analysis exploits the connection with a new, multiset extension of the
Hammersley-Aldous-Diaconis process [AD95], an extension that may be
of independent interest. Finally, we introduce a heap-based generaliza-
tion of Young tableaux. We prove (Theorem 6 below) a hook inequality
related to the hook formula for Young tableaux [FRT54] and Knuth’s hook
formula for heap-ordered trees [Knu98], and (Theorem 8) an extension of
the Robinson-Schensted (R-S) correspondence.

2 Preliminaries

For k ≥ 1 define alphabet Σk = {1, 2, . . . , k}. Define as well Σ∞ = ∪k≥1Σk.
Given words x, y over Σ∞ we will denote by x v y the fact that x is a prefix
of y. The set of (non-strict) prefixes of xwill be denoted by Pref(x). Given

words x, y ∈ Σ∗∞ define the prefix partial order x �ppo y as follows: If x v y
then x �ppo y. If x = za, y = zb, a, b ∈ Σ∞ and a < b then x �ppo y. �ppo is
the transitive closure of these two constraints. Similarly, the lexicographic
partial order �lex is defined as follows: If x @ y then x �lex y. If x = za,
y = zb, a, b ∈ Σ∞ and a < b then x �lex y. �lex is the transitive closure of
these two constraints.

A k-ary tree is a finite, �ppo-closed set T of words over alphabet Σk =
{1, 2, . . . , k}. That is, we impose the condition that positions on the same
level in a tree are filled preferentially from left to right. The position pos(x)
of node x in a k-ary tree is the string over alphabet {1, 2, . . . , k} encoding the
path from the root to the node (e.g. the root has position λ, its children
have positions 1, 2, . . . , k, and so on). A k-ary (min)-heap is a function f :
T → N monotone with respect to pos, i.e. (∀x, y ∈ T), [pos(x) v pos(y)] ⇒
[f(x) ≤ f(y)].

A (binary min-)heap is a binary tree, not necessarily complete, such that
A[parent[x]] ≤ A[x] for every non-root node x. If instead of binary we
require the tree to be k-ary we get the concept of k-ary min-heap.

A sequence X = X0, . . . , Xn−1 is k-heapable if there exists some k-ary
tree T whose nodes are labeled with (exactly one of) the elements of X ,
such that for every non-root node Xi and parent Xj , Xj ≤ Xi and j < i. In
particular a 2-heapable sequence will simply be called heapable [BHMZ11].
Given sequence of integer numbers X , denote by MHSk(X) the smallest
number of heapable (not necessarily contiguous) subsequences one can decom-
pose X into. MHS1(X) is equal [LP94] to the shuffled up-sequences (SUS)
measure in the theory of presortedness.

Example 1. Let X = [2, 4, 3, 1]. Via patience sorting MHS1(X) = SUS(X)
= 3. MHS2(X) = 2, since subsequnces [2, 4, 3] and [1] are 2-heapable. On the
other hand, for every k ≥ 1, MHSk([k, k − 1, . . . , 1]) = k.

Analyzing the behavior of LIS relies on the correspondence between
longest increasing sequences and an interactive particle system [AD95]
called the Hammersley-Aldous-Diaconis (shortly, Hammersley or HAD) pro-
cess. We give it the multiset generalization displayed in Figure 1. Techni-
cally, to recover the usual definition of Hammersley’s process one should
take Xa > Xt+1 (rather than Xa < Xt+1). This small difference arises
since we want to capture MHSk(π), which generalizes LDS(π), rather
than LIS(π) (captured by Hammersley’s process). This slight difference
is, of course, inconsequential: our definition is simply the ”flipped around

• A number of individuals appear (at integer times i ≥ 1) as ran-
dom numbers Xi, uniformly distributed in the interval [0, 1].

• Each individual is initially endowed with k ”lifelines”.

• The appearance of a new individualXt+1 subtracts a life from the
largest individual Xa < Xt+1 (if any) still alive at moment t.

Figure 1: HADk, the multiset Hammersley process with k lifelines.

the midpoint of segment [0,1]” version of such a generalization, and has
similar behaviour).

3 A greedy approach to computing MHSk

First we show that one can combine patience sorting and the greedy ap-
proach in [BHMZ11] to obtain an algorithm for computing MHSk(X). To
do so, we must adapt to our purposes some notation in that paper.

A binary tree with n nodes has n+ 1 positions (that will be called slots)
where one can add a new number. We will identify a slot with the minimal
value of a number that can be added to that location. For heap-ordered
trees it is the value of the parent node. Slots easily generalize to forests.
The number of slots of a forest with d trees and n nodes is n+ d.

Given a binary heap forest T , the signature of T denoted sig(T), is the
vector of the (values of) free slots in T , in sorted (non-decreasing) order.
Given two binary heap forests T1, T2, T1 dominates T2 if |sigT1| ≤ |sigT2| and
inequality sigT1 [i] ≤ sigT2 [i] holds for all 1 ≤ i ≤ |sigT1 |.

Theorem 1. For every fixed k ≥ 1 there is a polynomial time algorithm that,
given sequence X = (X0, . . . , Xn−1) as input, computes MHSk(X).

Proof. We use the greedy approach of Algorithm 3.1. Proving correctness
of the algorithm employs the following

Algorithm 3.1: GREEDY(W)

INPUT W = (w1, w2, . . . , wn) a list of integers.
Start with empty heap forest T = ∅.
for i in range(n):

if (there exists a slot where Xi can be inserted):
insert Xi in the slot with the lowest value

else :
start a new heap consisting of Xi only.

Lemma 1. Let T1, T2 be two heap forests such that T1 dominates T2. Insert a new
element x in both T1 and T2: greedily in T1 (i.e. at the largest slot with value less
or equal to x, or as the root of a new tree, if no such slot exists) and arbitrarily in
T2, obtaining forests T ′1, T ′2, respectively. Then T ′1 dominates T ′2.

Proof. First note that, by domination, if no slot of T1 can accomodate x
(which, thus, starts a new tree) then a similar property is true in T2 (and
thus x starts a new tree in T2 as well).

Let sigT1 = (a1, a2, . . .) and sigT2 = (b1, b2, . . .) be the two signatures.
The process of inserting x can be described as adding two copies of x to
the signature of T1(T2) and (perhaps) removing a label ≤ x from the two
signatures. The removed label is ai, the largest label ≤ x, in the case of
greedy insertion into T1. Let bj be the largest value (or possibly none) in
T2 less or equal to x. Some bk less or equal to bj is replaced by two copies
of x in T2. The following are true:

• The length of sigT ′
1

is at most that of sigT ′
2
.

• The element bk (if any) deleted by x from T2 satisfies bk ≤ x. Its index
in T2 is less or equal to i.

• The two x’s are inserted to the left of the deleted (if any) positions in
both T1 and T2.

Consider some position l in sigT ′
1
. Our goal is to show that a′l ≤ b′l.

Several cases are possible:

• l < k. Then a′l = al and b′l = bl.

• k ≤ l < j. Then a′l = al and b′l = bl+1 ≥ al.

a1 a2 ... ak ... aj ... ai−1

ai≤x≤ai+1︷ ︸︸ ︷
ai

b1 b2 ... bk︸ ︷︷ ︸
bj←x

... bj︸ ︷︷ ︸
bj≤x≤bj+1

... bi−1 bi

a1 a2 ... ak ... aj ... ai−1

ai→︷ ︸︸ ︷
x x ai+1

b1 ...bk−1 bk+1︸ ︷︷ ︸
bk→

... bj x x ... bi−1 bi bi+1

Figure 2: The argument of Lemma 1. Pictured vectors (both initial and
resulting) have equal lengths (which may not always be the case).

• j ≤ l ≤ i+ k − 1. Then a′l ≤ x and b′l ≥ x.

• l > i+ k − 1. Then a′l = al−k+1 and b′l = bl−k+1.

Let X be a sequence of integers, OPT be an optimal partition of X
into k-heapable sequences and Γ be the solution produced by GREEDY.
Applying Lemma 1 repeatedly we infer that whenever GREEDY adds a
new heap the same thing happens in OPT. Thus the number of heaps
created by Greedy is optimal, which means that the algorithm computes
MHSk(X).

Trivially MHSk(X) ≤MHSk−1(X). On the other hand

Theorem 2. The following statements (proved in the Appendix) are true for every
k ≥ 2: (a). there exists a sequence X such that MHSk(X) < MHSk−1(X)
< . . . < MHS1(X); (b). sup

X
[MHSk−1(X)−MHSk(X)] =∞.

4 The connection with the multiset Hammersley
process

Denote by MinHADk(n) the random variable denoting the number of times
i in the evolution of process HADk up to time n when the newly inserted particle
Xi has lower value than all the existing particles at time i. The observation
from [Ham72, AD95] generalizes to:

Theorem 3. For every fixed k, n ≥ 1 Eπ∈Sn [MHSk(π)] = E[MinHADk(n)].

Proof Sketch: W.h.p. all Xi’s are different. We will thus ignore in the
sequel the opposite alternative. Informally minima correspond to new
heaps and live particles to slots in these heaps (cf. also Lemma 1).

5 The asymptotic behavior of E[MHS2[π]]

The asymptotic behavior of E[MHS1[π]] where π is a random permuta-
tion in Sn is a classical problem in probability theory: results in [Ham72],
[LS77], [VK77], [AD95] show that it is asymptotically equal to 2

√
n.

A simple lower bound valid for all values of k ≥ 1 is

Theorem 4. For every fixed k, n ≥ 1

Eπ∈Sn [MHSk(π)] ≥ Hn, the n’th harmonic number. (1)

Proof. For π ∈ Sn the set of its minima is defined as Min(π) = {j ∈ [n] :
π[j] < π[i] for all 1 ≤ i < j} (and similarly for maxima). It is easy to see
that MHSk[π] ≥ |Min[π]|. Indeed, every minimum of π must determine
the starting of a new heap, no matter what k is. Now we use the well-
known formula Eπ∈Sn [|Min[π]|] = Eπ∈Sn [|Max[π]|] = Hn [Knu98].

To gain insight in the behavior of process HAD2 we note that, rather
than giving the precise values of X0, X1, . . . , Xt ∈ [0, 1], an equivalent ran-
dom model inserts Xt uniformly at random in any of the t + 1 possible
positions determined by X0, X1, . . . , Xt−1. This model translates into the
following equivalent combinatorial description of HADk: word wt over
the alphabet {−1, 0, 1, 2} describes the state of the process at time t. Each

wt conventionally starts with a −1 and continues with a sequence of 0, 1’s
and 2’s, informally the ”number of lifelines” of particles at time t. For in-
stance w0 = 0, w1 = 02, w2 is either 022 or 012, depending on X0 <> X1,
and so on. At each time t a random letter of wt is chosen (corresponding to
a position for Xt) and we apply one of the following transformations, the
appropriate one for the chosen position:

• Replacing −10r by −10r2: This is the case when Xt is the smallest
particle still alive, and to its right there are r ≥ 0 dead particles.

• Replacing 10r by 0r+12: Suppose that Xa is the largest live label less
or equal to Xt, that the corresponding particle Xa has one lifetime
at time t, and that there are r dead particles between Xa and Xt.
Adding Xt (with multiplicity two) decreases multiplicity of Xa to 0.

• Replacing 20r by 10r2: Suppose thatXa is the largest label less or equal
to Xt, its multiplicity is two, and there are r ≥ 0 dead particles be-
tween Xa and Xt. Adding Xt removes one lifeline from particle Xa.

Simulating the (combinatorial version of the) Hammersley process with
two lifelines confirms the fact that E[MHS2(π)] grows significantly slower
than E[MHS1(π)]: The x-axis in the figure is logarithmic. The scaling is
clearly different, and is consistent (see inset) with logarithmic growth (dis-
played as a straight line on a plot with log-scaling on the x-axis). Experi-
mental results (see the inset/caption of Fig. 3) suggest the following bold

Conjecture 1. We have limn→∞
E[MHS2[π]]

ln(n)
= φ, with φ = 1+

√
5

2
the golden ratio.

More generally, for an arbitrary k ≥ 2 the relevant scaling is

lim
n→∞

E[MHS2[π]]

ln(n)
=

1

φk
, (2)

where φk is the unique root in (0, 1) of equation Xk −Xk−1 + . . .+X = 1.
We plan to present the experimental evidence for the truth of equa-

tion (2) and a nonrigorous, ”physics-like” justification, together with fur-
ther insights on the so-called hydrodynamic behavior [Gro02] of the HADk

process in subsequent work [IB15]. For now we limit ourselves to showing
that one can (rigorously) perform a first step in the analysis of the HAD2

process: we prove convergence of (some of) its structural characteristics.
This will likely be useful in a full rigorous proof of Conjecture 1.

Denote by Lt the number of digits 1+2, and by Ct the number of ones
in wt. Let l(t) = E[L(t)

t
], c(t) = E[C(t)

t
]. l(t), c(t) always belong to [0, 1].

102 103

size

0

20

40

60

80

100

120

140

160

av
er

ag
e

nu
m

be
r

of
 h

ea
ps

k=2

k=1

102
6

7

8

9

10

11

12

13

Case k=2 (zoom in)

Figure 3: Scaling of expected value of MHSk[π] for k = 1, 2. The inset
shows E[MHS2[π]] (red) versus φ · ln(n) + 1 (blue). The fit is strikingly
accurate.

Theorem 5. There exist constants l, c ∈ [0, 1] such that l(t)→ l, c(t)→ c.

Proof Sketch: We use a standard tool, subadditivity: if sequence an satis-
fies am+n ≤ am + an for all m,n ≥ 1 then (by Fekete’s Lemma ([Ste97] pp.
3, [Szp01]) limn→∞ an/n exists. We show in the Appendix that this is the
case for two independent linear combinations of l(t) and c(t).

Experimentally (and nonrigorously) l = φ − 1 =
√
5−1
2

and c = 3−
√
5

2
.

”Physics-like” nonrigorous arguments then imply the desired scaling. An
additional ingredient is that digits 0/1/2 are uniformly distributed (condi-
tional on their density) in a large wt. This is intuitively true since for large
t the behavior of the HADk process is described by a compound Poisson
process. We defer more complete explanations to [IB15].

6 Heap tableaux, a hook inequality and a gen-
eralization of the Robinson-Schensted Corre-
spondence.

Finally, we present an extension of Young diagrams to heap-based ta-
bleaux. All proofs are given in the Appendix. A (k-)heap tableau T is

k-ary min-heap of integer vectors, so that for every r ∈ Σ∗k, the vector
Vr at address r is nondecreasing. We formally represent the tableau as
a function T : Σ∗k × N → N ∪ {⊥} such that (a). T has finite support:
the set dom(T) = {(r, a) : T (r, a) 6=⊥} of nonempty positions is finite.
(b). T is v-nondecreasing: if T (r, a) 6=⊥ and q @ r then T (q, a) 6=⊥ and
T (q, a) ≤ T (r, a). In other words, T (·, a) is a min-heap. (c). T is columnwise
increasing: if T (r, a) 6=⊥ and b < a then T (r, b) 6=⊥ and T (r, b) < T (r, a).
That is, each column Vr is increasing. The shape of T is the heap S(T) where
node with address r holds value |Vr|.

A tableau is standard if (e). for all 1 ≤ i ≤ n = |dom(T)|, |T−1(i)| = 1
and (f). If x ≤lex y and T (y, 1) 6=⊥ then ⊥6= T (x, 1) ≤ T (y, 1). I.e., labels in
the first heap H1 are increasing from left to right and top to bottom.

Example 2. A heap tableau T1 with 9 elements is presented in Fig. 4 (a) and as
a Young-like diagram in Fig. 4 (b). Note that: (i). Columns correspond to rows
of T1 (ii). Their labels are in Σ∗2, rather than N. (iii). Cells may contain ⊥. (iv).
Rows need not be increasing, only min-heap ordered.

One important drawback of our notion of heap tableaux above is that
they do not reflect the evolution of the process HADk the way ordinary
Young tableaux do (on their first line) for process HAD1 via the Schen-
sted procedure [Sch61]: A generalization with this feature would seem
to require that each cell contains not an integer but a multiset of integers.
Obtaining such a notion of tableau is part of ongoing research.

However, we can motivate our definition of heap tableau by the first
application below, a hook inequality for such tableaux. To explain it, note
that heap tableaux generalize both heap-ordered trees and Young tableaux.
In both cases there exist hook formulas that count the number of ways to
fill in a structure with n cells by numbers from 1 to n: [FRT54] for Young
tableaux and [Knu98] (Sec.5.1.4, Ex.20) for heap-ordered trees. It is natu-
ral to wonder whether there exists a hook formula for heap tableaux that
provides a common generalization of both these results.

Theorem 6 gives a partial answer: not a formula but a lower bound. To
state it, given (α, i) ∈ dom(T), define the hook length Hα,i to be the cardinal
of set {(β, j) ∈ dom(T) : [(j = i) ∧ (α v β)] ∨ [(j ≥ i) ∧ (α = β)]}. For
example, Fig. 4(c). displays the hook lengths of cells in T1.

Theorem 6. Given k ≥ 2 and a k-shape S with n free cells, the number of ways to
create a heap tableau T with shape S by filling its cells with numbers {1, 2, . . . , n}

is at least n!∏
(α,i)∈dom(T)Hα,i

. The bound is tight for Young tableaux [FRT54], heap-
ordered trees [Knu98], and infinitely many other examples, but is also not tight
for infinitely many (counter)examples.

We leave open the issue whether one can tighten up the lower bound
above to a formula by modifying the definition of the hook length Hα,i.

2 4 8 [3]

111213[3] 6 14[2]

10[1]

λ 0 1 000110 λ 0 1 000110
1 2 11 6 ⊥ ⊥ 10 1 6 3 3 ⊥ ⊥ 1
2 4 1214 2 4 2 1
3 8 13 3 2 1

Figure 4: (a). Heap tableau T1 and its shape S(T1) (in brackets) (b). The
equivalent Young tableau-like representation of T1 and (c). The hook
lengths.

We can create k-heap tableaux from integer sequences by a version of
the Schensted procedure [Sch61]. Algorithm Schensted-HEAPk below per-
forms column insertions and gives to any bumped element k choices for
insertion/bumping, the children of vector Vr, with addresses r · Σk.

Theorem 7. The result of applying the Schensted-HEAPk procedure to an arbi-
trary permutation X is indeed a k-ary heap tableau.

Example 3. Suppose we start with T1 from Fig. 4(a). Then (Fig. 5) 9 is appended
to vector Vλ. 7 arrives, bumping 8, which in turn bumps 11. Finally 11 starts a
new vector at position 00. Modified cells are grayed.

Procedure Schensted-HEAPk does not help in computing the longest
heapable subsequence: The complexity of computing this parameter is
open [BHMZ11], and we make no progress on this issue. On the other
hand, we can give a k ≥ 2 version of the R-S correspondence:

Theorem 8. For every k ≥ 2 there exists a bijection between permutations π ∈
Sn and pairs (P,Q) of k-heap tableaux with n elements and identical shape, where
Q is a standard tableau.

Condition ”Q is standard” is specific to case k ≥ 2: heaps simply
have ”too many degrees of freedom” between siblings. Schensted-HEAPk
solves this problem by starting new vectors from left to right and top to
bottom.

2 4 8 9

111213 6 14

10

2 4 7 9

8 1213 6 14

1011

Figure 5: Inserting 9 and 7 into T1.

Algorithm 6.1: SCHENSTED-HEAPk(X = x0, . . . , xn−1)

for i in range(n) : BUMP (xi, λ)

PROCEDURE BUMP(x, S) : #S is a set of adresses.
- Attempt to append x to some Vr, r ∈ S (perhaps creating it)

(choose the first r where appending x keeps Vr increasing).
if (this is not possible for any vector Vr, r ∈ S) :

- Let Bx be the set of elements of value > x,
in all vectors Vr, r ∈ S (clearly Bx 6= ∅)

- Let y = min{Bx} and r the address of its vector.
- Replace y by x into Vr
- BUMP (y, r · Σk) #bump y into some child of r

7 Conclusion and Acknowledgments

Our paper raises a large number of open issues. We briefly list a few:
Rigorously justify Conjecture 1. Study process HADk and its variants
[Mon97, CG05]. Reconnect the theory to the analysis of secretary problems
[AM09, BKK+09]. Find the distribution of MHSk[π]. Obtain a hook for-
mula. Define a version of Young tableaux related to process HADk.

We plan to address some of these in subsequent work. The most im-
portant open problem, however, is the complexity of computing LHS.

This research has been supported by CNCS IDEI Grant PN-II-ID-PCE-
2011-3-0981 ”Structure and computational difficulty in combinatorial op-
timization: an interdisciplinary approach”.

References

[AD95] D. Aldous and P. Diaconis. Hammersley’s interacting particle pro-
cess and longest increasing subsequences. Probability theory and related
fields, 103(2):199–213, 1995.

[AD99] D. Aldous and P. Diaconis. Longest increasing subsequences:
from patience sorting to the Baik-Deift-Johansson theorem. Bulletin of
the American Mathematical Society, 36(4):413–432, 1999.

[AM09] M. Archibald and C. Martı́nez. The hiring problem and permuta-
tions. DMTCS Proceedings, (01):63–76, 2009.

[BHMZ11] J. Byers, B. Heeringa, M. Mitzenmacher, and G. Zervas. Hea-
pable sequences and subseqeuences. In Proceedings of ANALCO, pages
33–44, 2011.

[BKK+09] A. Broder, A. Kirsch, R. Kumar, M. Mitzenmacher, E. Upfal,
and S. Vassilvitskii. The hiring problem and Lake Wobegon strategies.
SIAM Journal on Computing, 39(4):1233–1255, 2009.

[CG05] E. Cator and P. Groeneboom. Hammersley’s process with sources and
sinks. Annals of Probability (2005): 879-903.

[FRT54] J.S. Frame and G. Robinson, and R.M. Thrall. The hook graphs of
the symmetric group. Canad. J. Math 6.316 (1954): C324.

[GNW79] C. Greene and A. Nijenhuis and H.S.Wilf. A probabilistic proof of
a formula for the number of Young tableaux of a given shape. Advances in
Mathematics 31.1 (1979): 104-109.

[Ham72] J. M. Hammersley. A few seedlings of research. In Proceedings
of the Sixth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Theory of Statistics, 1972.

[Hiv07] F. Hivert. An introduction to combinatorial Hopf algebras Physics
and theoretical computer science: from numbers and languages to (quantum)
cryptography security, IOS Press, 2007.

[Gro02] P. Groenenboom. Hydrodynamical models for analyzing longest
increasing sequences. Journal of Computational and Applied Mathematics,
142 (2002), 83–105.

[IB15] G. Istrate and C. Bonchiş. Hammersley’s process with multiple life-
lines, and a conjecture on decomposing permutations into heapable sequences
(manuscript in preparation, 2015)

[Knu98] D. Knuth. The Art of Computer Programming. Volume 3: Sorting
and Searching. Addison Wesley, 1998.

[LP94] C. Levcopoulos and O. Petersson. Sorting shuffled monotone se-
quences. Information and Computation, 112(1):37–50, 1994.

[LS77] B.F. Logan and L.A. Shepp. A variational problem for random
Young tableaux. Advances in mathematics, 26(2):206–222, 1977.

[Mal63] C.L. Mallows. Patience Sorting. SIAM Review, 5(4), 375–376, 1963.

[Mon97] L. Cuellár Montoya. A rapidly mixing stochastic system of finite in-
teracting particles on the circle. Stochastic processes and their applications
67.1 (1997): 69-99.

[Rom14] D. Romik. The Surprising Mathematics of Longest Increasing Se-
quences. Cambridge University Press, 2014.

[Sch61] C. Schensted. Longest increasing and decreasing subsequences.
Canad. J. Math 13.2 (1961): 179-191.

[Szp01] W. Szpankowski. Average Case Analysis of Algorithms on Sequences.
Wiley, 2001.

[Ste97] J.M. Steele. Probability theory and combinatorial optimization. SIAM,
1997.

[VK77] A. Vershik and S. Kerov. Asymptotics of Plancherel measure of
symmetric group and limit form of Young tables. Doklady Akademii Nauk
SSSR, 233(6):1024–1027,1977.

Appendix

7.1 Proof of Theorem 2

1. For k ≥ 2, consider the sequence X = [1, k + 1, k, k − 1, · · · , 2].

Lemma 2. We have

MHS1(X) = k,MHS2(X) = k − 1, . . . ,MHSk(X) = 1.

Proof. Applying the Greedy algorithm we obtain the following heap
decompositions:

– MHS1(X) = k : H1 = [1, k + 1], H2 = [k], H3 = [k − 1], . . . ,
Hk = [2].

– MHS2(X) = k− 1 : H1 = [1, k+ 1, k], H2 = [k− 1], H3 = [k− 2],
. . . , Hk−1 = [2].
...

– MHSi(X) = k− i + 1 : H1 = [1, k + 1, k, . . . , k − i + 2], H2 =
[k − i+ 1], H3 = [k − i], . . . , Hk−i+1 = [k + 2].
...

– MHSk(X) = 1 : H1 = [1, k + 1, k, · · · , 2].

2. Let k, n ≥ 2. Define sequence

X(k,n) = [1,

(2 + (k − 1)), k, . . . , 2,

(3 + 2(k − 1) + (k − 1)2), (k + k2), . . . , (2 + k),
...
n∑
i=0

(n+ 1− i)(k − 1)i, . . . , 1 +
n−1∑
i=0

(n− i)(k − 1)i]

in other words X(k,n) = [1, X1, X2, . . . , Xn], where for each 1 ≤ t ≤ n
the subsequenceXt is Xt = [

∑t
i=0(t+1− i)(k−1)i, , . . . , 1+

∑t−1
i=0(t−

i)(k − 1)i]. Xt has (k − 1)t + (k − 1)t+1 + . . . + 1 = (k−1)t+1−1
k−2 many

elements.

We can see that this sequence is k-heapable, thus MHSk(X) = 1:
|Xt| = (k−1)|Xt−1|+1 < k|Xt|, and every number inXt is larger than

every number in Xt−1. Thus we can arrange the Xt’s on (incomplete)
heap levels, with every node in Xt a child of some node in Xt−1.

Theorem 9. We have

MHSk−1(X
(k,n)) = n+ 1.

Proof. We apply the GREEDY algorithm. After sequenceX1 two (k−
1)-heaps are created. H1 has two full levels,H2 contains only the root
2. Sequence X2 has length k2. (k − 1)2 elements go on the third level
of H1. k − 1 elements go on the second level of X2. The remaining
k2 − (k − 1)2 − 2(k − 1) = 1 element starts a new heap H3.

By induction we easily prove the following

Lemma 3. For every t ≥ 1, the (k−1)t+1−1
k−2 elements of Xt go via GREEDY

as follows:

– (k − 1)t of them go on level t of H1,

– (k − 1)t−1 of them go on level t− 1 of H2,

– . . .

– k − 1 of them go on the first level of Ht.

The remaining (k−1)t+1−1
k−2 −

∑t
i=1(k − 1)i = 1 element starts a new heap

Ht+1.

7.2 Proof of Theorem 5

First sequence: Define an to be the expected cardinality of the multiset of
slots (particles lifelines in process HAD2)) at moment n. Clearly an/n =
2l(n) − c(n). Also, given Z = (Z0, Z1, . . . , Zn−1) a finite trajectory in [0,1]
and an initial set of slots T , denote by s(Z;T) the multiset of particles
(slots) added during Z that are still alive at the end of the trajectory Z, if
at time t = 0 the process started with the slots in T (omitting the second

argument if T = ∅), and a(Z;T) = |s(Z;T)|. Finally denote by v(Z;T) the
submultiset of s(Z;T) consisting of elements with multiplicity two, and
by l(Z;T) = |v(Z;T)|.

Subadditivity of an will follow from the fact that the property holds on
each trajectory: IfX = (X0, . . . , Xn−1) and Ym = (Xn . . . Xn+m−1) then in fact
we can show that

a(XYm) ≤ a(X) + a(Ym). (3)

Clearly an = E|X|=n[a(X)] so (2) implies that an is subadditive. It turns out
that, together with (3), we will need to simultaneously prove that

s(Ym) ⊆ s(Ym; s(X)) (as multisets) (4)

We prove (3) and (4) by induction on m = |Ym|. Clearly the inclusion
is true if m = 0. Let Ym = Ym−1Xn+m−1 and s(XYm) = Wm ∪ Zm, with
Wm = s(X) ∩ s(XYm), Zm = Ym ∩ s(XYm).

s(XYm) modifies s(XYm−1) by adding two copies ofXn+m−1 toWm and,
perhaps, erasing some pm, the largest element (if any) in s(XYm−1) smaller
or equal to Xn+m−1. Thus a(XYm)− a(XYm−1) ∈ {1, 2}.

Similarly, s(Ym) modifies s(Ym−1) by adding two copies of Xn+m−1 and,
perhaps, erasing some rm, the largest element (if any) in s(Ym−1) smaller
or equal to Xn+m−1. Thus a(Ym)− a(Ym−1) ∈ {1, 2}.

All that remains in order to prove that a(XYm)− a(Ym) ≤ a(XYm−1)−
a(Ym−1) (and thus establish inequality (2) inductively for m as well) is that
(a(Ym) − a(Ym−1) = 1) ⇒ (a(XYm) − a(XYm−1) = 1). This follows easily
from inductive hypothesis (4) for m− 1: if a(Ym)− a(Ym−1) = 1 then some
element in s(Ym−1) is less or equal to Xn+m−1. The same must be true for
s(Ym−1; s(X)) and hence for s(XYm−1) as well (noting, though, that pm may
well be an element of X). Now we have to show that (4) also remains true:
clearly the newly added element, Xn+m−1, has multiplicity two in both
s(Ym) and s(Ym; s(X)). Suppose we erase some element rm from s(Ym−1).
Then rm belongs to s(Ym−1; s(X)), has multiplicity at least one there, and
is the largest element smaller or equal to Xn+m−1 in s(Ym−1; s(X)) ∩ s(Ym−1).
Thus, when going from s(Ym−1; s(X)) to s(Ym; s(X)) we either erase one
copy of pm or do not erase nothing (perhaps we erased some element in
s(X), which is not, however, in s(Ym−1; s(X))) Suppose, on the other hand
that no element in s(Ym−1) is smaller or equal to Xn+m−1. There may be
such an erased element pm in s(Ym−1; s(X)), but it certainly did not belong to
s(Ym−1). In both cases we infer that relation s(Ym) ⊆ s(Ym; s(X)) is true.

Second sequence:
The proof is very similar to the first one: Define, in a setting similar

to that of the first sequence, u(X,T) to be the cardinality of the submul-
tiset of s(Z, T) of elements with multiplicity two. Define an to be the
expected number of elements with multiplicity two at stage n. That is,
an = E|X|=n[u(X)] = l(n) − c(n). We will prove by induction on m that if
X = (X0, . . . , Xn−1) and Ym = (Xn . . . Xn+m−1) then

u(XYm) ≤ u(X) + u(Ym). (5)

The result is clear for m = 0. In the general case, m ≥ 1, v(XYm)
modifies v(XYm−1) by adding Xn+m−1 and, perhaps, erasing some pm, the
largest element (if any) in s(XYm−1) smaller or equal to Xn+m−1 if this ele-
ment is in v(XYm−1). Thus u(XYm) − u(XYm−1) ∈ {0, 1}. Similarly, u(Ym)
modifies u(Ym−1) by adding Xn+m−1 and, perhaps, erasing some rm, the
largest element (if any) in s(Ym−1), if this element is smaller or equal to
Xn+m−1. Thus u(Ym)− u(Ym−1) ∈ {0, 1}.

If u(XYm−1) ≤ u(X)− 1 + u(Ym) then clearly u(XYm)− u(Ym) ≤ u(X).
The only problematic case may be when u(XYm−1) − u(Ym−1) = u(X),
u(XYm) − u(XYm−1) = 1, u(Ym) − u(Ym−1) = 0. But this means that rm
exists (and is erased from v(Ym−1)). Since s(Ym−1) ⊆ s(Ym−1; s(X)), rm
must be erased from s(Ym−1; s(X)). In other words, the bad case above
cannot occur.

7.3 Proof of Theorem 6

We use essentially the classical proof based on the hook walk from [GNW79],
slightly adapted to our framework: Define for a heap table T with n ele-
ments

FT =
n!∏

(α,i)∈dom(T)Hα,i

and C(T), the set of corners of T , to be the set of cells (α, i) of T with Hα,i =
1. Given γ ∈ C(T) define Tγ = T \ {γ}. We want to prove that∑

γ∈C(T)

FTγ
FT
≥ 1. (6)

(of course, for k = 1 we can actually prove equality in Formula 6 above).
This will ensure (by induction upon table size) the truth of our lower
bound.

• Choose (uniformly at random) a cell (α1, i1) of T .

• let i = 1.

• while ((αi, ti) is not a corner of T):

• Choose (αi+1, ti+1) uniformly at random from H((αi, ti)) \
{(αi, ti)}.

• Let i = i+ 1.

• Return corner (αn, in).

Figure 6: The hook walk.

We need some more notation: for (α, i) ∈ dom(T), denote

Heapα,i = {(β, i) ∈ dom(T) : α v β} (7)

the heap hook of (α, i), and by

V ecα,i = {(α, j) ∈ dom(T) : i ≤ j} (8)

its vector hook (thus Hα,i = |Heapα,i|+ |V ecα,i| − 1).
By applying formulas for FT , FTγ we get

FTγ
FT

=
1

n
·

∏
γ∈Heapβ,j

Hβ,j

Hβ,j − 1
·
∏

γ∈V ecβ,j

Hβ,j

Hβ,j − 1

=
1

n
·

∏
γ∈Heapβ,j

(1 +
1

Hβ,j − 1
) ·

∏
γ∈V ecβ,j

(1 +
1

Hβ,j − 1
) (9)

We consider the hook walk on T , defined in Figure (6).
Interpret terms from the product in formula (9) as probabilities of paths

in the hook walk, ending in corner γ, as follows:

• Choose (α1, i1) uniformly at random from T (i.e. with probability
1/n).

• Terms (β, i) in the first product whose contribution is 1
Hβ,i−1

corre-
spond to cells where the walk makes ”hook moves” towards γ.

• Terms (β, i) in the second product whose contribution is 1
Hβ,i−1

cor-
respond to cells where the walk makes ”vector moves” towards γ.

Indeed, consider a path P : (α, i) := (α1, i1) → (α2, i2) → . . . → (αn, in) =
γ. Define its hook projection to be set A = {α1, α2, . . . , αn} and its vector
projection to be the set B = {i1, i2, . . . , in}.

Just as in [GNW79], given set of words A = {α1, . . . αm}, with α1 = α
and αi @ αi+1 and set of integers B = {i1, . . . , ir} with i1 = i and il < il+1,
the probability p(A,B) that the hook walk has the hook(vector) projections
A(B) (thus starting at (α1, i1)) is

P (A,B) ≤
∏

β∈A,β 6=αm

(1 +
1

Hβ,ir − 1
) ·

∏
i∈B,i 6=ir

(1 +
1

Hαm,i − 1
) (10)

Indeed, as in [GNW79]

P (A,B) =
1

Hα1,i1 − 1
[P (A− {α1}, B) + P (A,B − {i1})] ≤

≤ 1

Hα1,i1 − 1
[(Hα1,ir − 1) + (Hαm,i1 − 1)] · (RHS) (11)

where (RHS) is the right-hand side product in equation (10), and in the
second row we used the inductive hypothesis.

For k = 1, in [GNW79] we would use an equality of type Hα1,i1 − 1 =
(Hα1,ir − 1) + (Hαm,i1− 1). For k ≥ 2 such an equality is no longer true, and
we only have inequality

Hα1,i1 − 1 ≥ (Hα1,ir − 1) + (Hαm,i1 − 1) (12)

leading to a proof of equation (10).
To justify inequality (12), note that, by property (b) of heap tableaux,

since α1 @ αm,
|V ec(αm, i1)| ≤ |V ec(α1, i1)| (13)

On the other hand

|Heap(α1, i1)| ≥ |Heap(α1, ir)|+ (|Heap(αm, i1)| − 1). (14)

This is true by monotonicity property (c) of heap tableaux: every path
present in the heap Hr rooted at (α1, ir) is also present in the heap H1

rooted at (α1, i1). Heap Hr is empty below node γ = (αm, ir), but H1 con-
tains the subheap rooted at (α1, ir) (of size |Heap(α1, ir)|−1) any maybe some
other subheaps, rooted at nodes w ∈ H1 whose correspondent in Hr has no
descendents. Summing up equations (13) and (14) we get our desired in-
equality (12). Example in Figure 7 shows that inequality (12) can be strict:
The hook length of H1,λ − 1 = 7 but H2,λ − 1 = 2− 1 and H1,0 − 1 = 2− 1.
The reason is that the grayed cells are not counted in the hook of (1, 0), but
they belong to the hook of (1, λ).

λ 0 1 12 · · ·13 · · ·14 · · ·15

1 8 2 5 ⊥ 4 ⊥ 3 ⊥ 2 ⊥ 1
2 2 1

Figure 7: Example showing that inequality (12) is strict.

Finally, adding up suitable inequalities (10) we infer that sγ , the proba-
bility that the walk ends up at γ, equal to

sγ =
1

n

∑
p(A,B)

(the sum being over all suitable sets A,B) is less or equal than the expan-
sion (9) of FTγ

FT
. Since the sum of probabilities adds up to 1, inequality (6)

follows.
Let us now deal with examples/counterexamples.
First we present a set of arbitrarily large heap tableaux, different from

both heap-ordered trees and Young tableaux, for which the hook inequal-
ity is tight: for r ≥ 2, k ≥ 1 consider heap table Tr,k (Fig. 8(a)) to have
n = Sk,r +k−1 nodes, distributed in a complete k-ary tree H1 with r levels
0, 1, . . . r− 1 and Sk,r nodes, and then k − 1 one-element heaps H2, . . . , Hk.
We employ notation

Sk,l = 1 + k + . . .+ kl−1 =
kl − 1

k − 1

The number of ways to fill up such a heap tableau is
(
n−1
k−1

)
· Nk,r, where

Nk,r is the number of ways to fill up a complete k-ary tree with r levels.

Nk,r =
Sk,r!∏r−1

i=0 (Sk,r−i)k
i

15 2 1

4 4 4

1 1 1 1 1 1 1 1 1

8 2

2 1 5

4

3

2

1

Figure 8: (a). Example T3,3. (b). Counterexample W4. The hook formula is
tight for heap tableau (a). but not tight for (b). In both cases cell contents
represent the hook lengths.

This happens because for every subset A of {2, . . . , n} of cardinality k − 1,
element 1 together with those not in A can be distributed in H1 in Nk,r

ways.
Putting all things together, the total number of fillings of Tr,k is

(Sk,r + k − 2)! · (Sk,r)!
(k − 1)! · (Sk,r − 1)! · Sk,r ·

∏r−1
i=1 (Sk,r−i)k

i
=

(n− 1)!

(k − 1)! ·
∏r−1

i=1 (Sk,r−i)k
i

Hook lengths are 1, 2, . . . , k−1 (for the nodes in the one-element heaps),
(Sk,r−i)

ki (for the non-root nodes inH1) and n (for the root node ofH1). The
resulting formula

n!

(k − 1)! · n ·
∏r−1

i=1 (Sk,r−i)k
i

=
(n− 1)!

(k − 1)! ·
∏r−1

i=1 (Sk,r−i)k
i

(15)

is the same as the total number computed above.
Now for the counterexamples: consider heap tableaux Wr (Fig. 8(b),

identical to the heap tableau in Fig. 7) defined as follows: Wr consists
of two heaps, H1 with cells with addresses (1, λ), (1, 0), (1, 1), (1, 11), . . . ,
(1, 12r−3), and H2 with cells with addresses (2, λ), (2, 0). Wr has n = 2r + 1
nodes.

Hook values of cells in H1 are 2r, 2, 2r− 3, 2r− 4, . . . , 1. Hook values of

cells in H2 are 2, 1, respectively. Thus the hook formula predicts

(2r + 1)!

2 · 2 · 2r · (2r − 3) · (2r − 4) · . . . · 1
=

(2r + 1)(2r − 1)(2r − 2)

4

ways to fill up the table. If r is even then the number above is not an
integer, so the hook formula cannot be exact for these tableaux.

7.4 Proof of Theorem 7

We prove that inserting a single integer element x into a heap tableau T
results in another heap tableau T ← x. Therefore inserting a permutation
X will result in a heap tableau.

By construction, when an element is appended to a vector, the vector
remains increasing. Also, if an element y bumps another element z from
a vector V (presumed nondecreasing) then z is the smallest such element
in V greater than y. Thus, replacing z by y preserves the nondecreasing
nature of the vector V .

All we need to verify is that min-heap invariant (b) (initially true for
the one-element heap tableau) also remains true when inserting a new el-
ement x.

The case when x is appended to Vλ is clear: since invariant (b) was
true before inserting x for every address r we have |Vλ| ≥ |Vr|. See the
example above when we append x = 9. Thus what we are doing, in effect,
by appending x to Vλ is start a new heap.

Suppose instead that inserting x bumps element x1 from Vλ. Necessar-
ily x < x1. Suppose i is the position of x1 in Vλ, that is x1 was the root of
heap Hi. By reducing the value of the root, the heap Hi still verifies the
min-heap invariant. Now suppose x1 bumps element x2. We claim that
x2 has rank at most i in its vector. Indeed, the element with rank i in the
vector of x2 was larger than x1 (by the min-heap property of Hi). So x2
must have had rank at most i. Let j be this rank.

Since x1 < x2, by replacing x2 by x1 the min-heap property is satisfied
”below x2/x1”. It is satisfied ”above x2” as well, since the parent of x2
either was (and still is) the root of Hj , a number less or equal to x1 (in case
j < i) or is x (in case the rank of x2 is exactly i).

If x2 bumps x3, . . . , etc we repeat the argument above on the corre-
sponding sub-min-heap tableau.

↓ x
· · ·x1· · ·

i

↓ x1
· · ·x2· · · · · ·

j i

· · ·

↓ xn
· · ·xn

s

Figure 9: Inserting x and the bumps it determines.

Suppose, finally, that element xn, bumped from Vα by xn−1, is appended
to vector Vβ . Let s be the index of xn in Vβ . We claim that |Vα| ≥ s.

Indeed, xn is larger than the first s−1 elements of |Vβ|. By the min-heap
property, it is also larger than the initial s−1 elements of |Vα| as well. So its
index in Vα before getting bumped could not have been less than s. That
means that appending xn does not violate the min-heap invariant (b).

7.5 Proof of Theorem 8

Given permutation σ ∈ Sn, denote by Pσ the heap table obtained by ap-
plying the Schensted-HEAPk algorithm.

Define a second heap table Qσ as follows: whenever we insert σ(i) into
P , we record the resulting sequence of bounces and insert i at the last
place involved in the bounces.

Example 4. Let k = 2 and consider the permutation σ =

(
1 2 3 4 5 6
4 2 6 3 5 1

)
.

The two corresponding heap tableaux are constructed below. For drawing conve-
nience, during the insertion process they are not displayed in the heap-like form,
but rather in the more compact Young-table equivalent format. The resulting
heap-tableaux are displayed in Figure 10.

← 4 ← 2 ← 6 ← 3 ← 5 ← 1

Pσ: λ
1 4

λ 0
1 2 4

λ 0
1 2 4
2 6

λ 0
1 2 4
2 3 6

λ 0
1 2 4
2 3 6
3 5

λ 0 1
1 1 4 2
2 3 6
3 5

Qσ: λ
1 1

λ 0
1 1 2

λ 0
1 1 2
2 3

λ 0
1 1 2
2 3 4

λ 0
1 1 2
2 3 4
3 5

λ 0 1
1 1 2 6
2 3 4
3 5

1 3 5

4 6 2

1 3 5

2 4 6

Figure 10: (a). Heap-tableau Pσ. (b). (Standard) heap-tableau Qσ.

There are two things to prove about the algorithm outlined above:

(i). For every permutation σ, Qσ is a heap tableau of the same shape as
heap tableau Pσ. Moreover,

Lemma 4. Qσ is a heap tableau in standard form.

(ii). One can uniquely identify permutation σ from the pair (Pσ, Qσ).

(i). The fact that the shape is the same is easy: whenever number σ(i)
is inserted into Pσ, this table changes by exactly one (filled) position.
When i is inserted into Qσ, the position on which it is inserted is
the unique position that was added to Pσ: the position of the final
insertion after a (perhaps empty) sequence of bumps. Therefore the
two heap tableaux have the same shape throughout the process, and
at the end of it.

Let us show now that Qσ is a heap tableau. We will show that invari-
ants (b),(c). remain true throughout the insertion process.

They are, indeed, true at the beginning when Qσ = [1]. Proving the
heap invariant (b). is easy: numbers are inserted into Qσ in the order
1, 2, . . . , n. Each number is, therefore, larger than any number that
is an ancestor in its heap. As each number i is inserted as a leaf

in its corresponding heap, all heap conditions are still true after its
insertion.

The vector invariant (c). is equally easy: number i is appended to
an old vector or starts a new one. The second case is trivial. In the
first one i is the largest number inserted so far into Qσ, therefore the
largest in its vector.

Finally, the fact that Qσ is a standard tableau follows from the Algo-
rithm: Schensted-HEAPk starts a new vector from the leftmost posi-
tion available. Therefore when it starts a new vector, its siblings to
the left have acquired a smaller number, as they were already cre-
ated before that point. Also, when it starts a new vector, all the vec-
tors on the level immediately above have been created (otherwise
Schensted-HEAPk would have started a new vector there) and have,
thus, acquired a smaller number.

(ii). This is essentially the same proof ideea as that of the Robinson-
Schensted correspondence for ordinary Young tableaux: given heap
tableaux P,Qwith the same shape we will recover the pairs (n, σ(n)),
(n−1, σ(n−1)), . . . , (1, σ(1)) in this backwards order by reversing the
sequences of bumps. We will work in the more general setting when
P contains n distinct numbers, not necessarily those from 1 to n. On
the other hand, since Q is standard, Q will contain these numbers,
each of them exactly once.

The result is easily seen to be true for n = 1, n = 2. From now on we
will assume that n ≥ 3 and reason inductively.

Suppose n is in vector Vλ of Qσ. Then the insertion of σ(n) into Pσ
did not provoke any bumps. σ(n) is the integer in vector Vλ of Pσ
sitting in the same position as n does in Qσ. Suppose, on the other
hand, that n is in a different vector of Qσ. Then n is the outcome of a
series of bumps, caused by the insertion of σ(n).

Let x be the integer in Pσ sitting at the same position as n inQσ. Then
x must have been bumped from the parent vector in the heap-table
by some y. y is uniquely identified, as the largest element smaller
than x in that vector. There must exist a smaller element in that vec-
tor by the heap invariant, so y is well-defined. Now y must have
been in turn bumped by some z in the parent vector. We identify z
going upwards, until we reach vector Vλ, identifying element σ(n).

Example 5. Consider, for example the case of n = 6 in Figure 10. Element
2 in Pσ (sitting in the corresponding position) must have been bumped by
1 in the top row. Therefore σ(6) = 1.

Now we delete σ(i), i from the two heap tableaux and proceed induc-
tively, until we are left with two tables with one element, identifying
permutation σ this way.

What allows us to employ the induction hypothesis is the following

Lemma 5. Removing the largest element n from a standard heap tableau T
yields another standard heap tableau.

Proof. Suppose n is in a vector of length at least two. Clearly, by re-
moving n all the vectors in the heap remain the same, so the resulting
table is standard.

Suppose, therefore, that n is the only element in a vector Vβ of T ,
β = zb, b ∈ Σk. Since T was standard, all the left sibling vectors Vza
of V (a ∈ Σk, a < b) are nonempty, and all the vectors on previous
levels of T are nonempty.

Removing V preserves these properties (its leftmost sibling becomes
the last vector, or the level disappears completely).

Completing the proof of Lemma 5 also completes the proof of
Theorem 8.

	1 Introduction
	2 Preliminaries
	3 A greedy approach to computing MHSk
	4 The connection with the multiset Hammersley process
	5 The asymptotic behavior of E[MHS2[]]
	6 Heap tableaux, a hook inequality and a generalization of the Robinson-Schensted Correspondence.
	7 Conclusion and Acknowledgments
	7.1 Proof of Theorem ??
	7.2 Proof of Theorem ??
	7.3 Proof of Theorem ??
	7.4 Proof of Theorem ??
	7.5 Proof of Theorem ??

