
ar
X

iv
:1

41
2.

44
71

v3
 [

cs
.D

S]
 1

 M
ay

 2
01

5

Online Detection of Repetitions

with Backtracking

Dmitry Kosolobov

Ural Federal University, Ekaterinburg, Russia
dkosolobov@mail.ru

Abstract. In this paper we present two algorithms for the following
problem: given a string and a rational e > 1, detect in the online fashion
the earliest occurrence of a repetition of exponent ≥ e in the string.
1. The first algorithm supports the backtrack operation removing the
last letter of the input string. This solution runs in O(n logm) time and
O(m) space, where m is the maximal length of a string generated during
the execution of a given sequence of n read and backtrack operations.
2. The second algorithm works in O(n log σ) time and O(n) space, where
n is the length of the input string and σ is the number of distinct letters.
This algorithm is relatively simple and requires much less memory than
the previously known solution with the same working time and space.

Keywords: repetition-free square-free, online algorithm, backtracking

1 Introduction

The study of algorithms analyzing different kinds of string periodicities forms
an important branch of stringology. Repetitions of a given fixed order often play
a central role in such investigations. We say that an integer p is a period of w if
w = (uv)ku for some integer k ≥ 1 and strings u and v such that |uv| = p. Given
a rational e > 1, a string w such that |w| ≥ pe for a period p of w is called an
e-repetition. A string is e-repetition-free if it does not contain an e-repetition as
a substring. We consider algorithms recognizing e-repetition-free strings for any
fixed e > 1. To be more precise, we say that an algorithm detects e-repetitions if
it decides whether the input string is e-repetition-free. Further, we say that this
algorithm detects e-repetitions online if it processes the input string sequentially
from left to right and decides whether each prefix is e-repetition-free after reading
the rightmost letter of that prefix.

In this paper we give two algorithms that detect e-repetitions online for a
given fixed e > 1. The first one, which uses the ideas of the Apostolico-Breslauer
algorithm [1], works on unordered alphabet and supports backtracking, the op-
eration removing the last letter of the processed string. This solution requires
O(n logm) time and O(m) space, where m is the maximal length of a string gen-
erated during the execution of n given backtrack and read operations. Slightly
modifying the proof from [10], one can show that this time is the best possible

http://arxiv.org/abs/1412.4471v3

in the case of unordered alphabet. The second algorithm works on ordered al-
phabet and requires O(n log σ) time and linear space, where σ is the number of
distinct letters in the input string and n is the length of this string. Although
this result does not theoretically outperform the previously known solution [6],
it is significantly less complicated and can be used in practice. Both algorithms
report the position of the leftmost e-repetition.

Let us point out some previous results on the problem. Recall that a repeti-
tion of the form xx is called a square. A string is square-free if it is 2-repetition-
free. Squares are, perhaps, the most extensively studied repetitions. The classical
result of Thue [12] states that on a three-letter alphabet there are infinitely many
square-free strings. How fast can one decide whether a string is square-free? It
turns out that the orderedness of alphabet plays a crucial role here: while any
algorithm detecting squares on unordered alphabet requires Ω(n logn) time [10],
it is unlikely that any superlinear lower bound exists in the case of ordered al-
phabet, in view of the recent result of the author [8]. So, we always emphasize
whether an algorithm under discussion relies on order or not.

The best known offline (not online) results are the algorithm of Main and
Lorentz [10] detecting e-repetitions in O(n log n) time and linear space on un-
ordered alphabet, and Crochemore’s algorithm [4] detecting e-repetitions in
O(n log σ) time and linear space on ordered alphabets. Our interest in online
algorithms detecting repetitions was partially motivated by problems in the ar-
tificial intelligence research (see [9]), where some algorithms use the online square
detection. Apostolico and Breslauer [1] presented a parallel algorithm for this
problem on an unordered alphabet. As a by-product, they obtained an online
algorithm detecting squares in O(n logn) time and linear space, the best possi-
ble bounds as it was noted above. Later, online algorithms detecting squares in
O(n log2 n) [9] and O(n(log n+σ)) [7] time were proposed. Apparently, their au-
thors were unaware of the result of [1]. For ordered alphabet, Jansson and Peng
[7] found an online algorithm detecting squares in O(n log n) time and Hong and
Chen [6] presented an online algorithm detecting e-repetitions in O(n log σ) time
and linear space.

An online algorithm for square detection with backtracking is in the core of
the generator of random square-free strings described in [11]. Using our algorithm
with backtracking, one can in a similar way construct a generator of random
e-repetition-free strings for any fixed e > 1. This result might be useful in further
studies in combinatorics on words.

The paper is organized as follows. In Section 2 we present some basic defini-
tions and the key data structure, called catcher, which helps to detect repetitions.
Section 3 contains an algorithm with backtracking. In Section 4 we describe a
simpler solution without backtracking.

2 Catcher

A string of length n over the alphabet Σ is a map {1, 2, . . . , n} 7→ Σ, where n is
referred to as the length of w, denoted by |w|. We write w[i] for the ith letter of

w and w[i..j] for w[i]w[i+1] . . . w[j]. Let w[i..j] be the empty string for any i > j.
A string u is a substring of w if u = w[i..j] for some i and j. The pair (i, j) is not
necessarily unique; we say that i specifies an occurrence of u in w. A string can
have many occurrences in another string. A substring w[1..j] [resp., w[i..n]] is a
prefix [resp. suffix] of w. For any i, j, the set {k ∈ Z : i ≤ k ≤ j} (possibly empty)
is denoted by [i..j]; (i..j] and [i..j) denote [i..j] \ {i} and [i..j] \ {j} respectively.

We fix a rational constant e > 1 and use it throughout the paper. The input
string is denoted by text and n = |text|. Initially, text is the empty string. We
refer to the operation appending a letter to the right of text as read operation
and to the operation that cuts off the last letter of text as backtrack operation.

Let us briefly outline the ideas behind our results. Both our algorithms uti-
lize an auxiliary data structure based on a scheme proposed by Apostolico and
Breslauer [1]. This data structure is called a catcher. Once a letter is appended
to the end of text, the catcher checks whether text has a suffix that is an e-
repetition of length k such that k ∈ [l..r] for some segment [l..r] specific for
this catcher. The segment [l..r] cannot be arbitrary, so we cannot, for example,
create a catcher with l = 1 and r = n. But, as it is shown in Section 3, we can
maintain O(log n) catchers such that the union of their segments [l..r] covers the
whole range from 1 to n and hence these catchers “catch” each e-repetition in
text. This construction leads to an algorithm with backtracking. In Section 4 we
further reduce the number of catchers to a constant but this solution does not
support backtracking.

In what follows we first describe an inefficient version of the read operation
for catcher and show how to implement the backtrack operation; then, we im-
prove the read operation and provide time and space bounds for the constructed
catcher.

Let i and j be integers such that 1 ≤ i ≤ j < n. Observe that if for some k ≤ i,
the string text[k..n] is an e-repetition and e(n− j) ≥ n− k + 1, then the string
text[i..j] occurs in text[i+1..n] (see Fig. 1). Given this fact, the read operation
works as follows. The catcher searches online occurrences of the string text[i..j] in
text[i+1..n]. If we have text[i..j] = text[n−(j−i)..n], then the number p = n− j
is a period of text[i..n]. The catcher “extends” the repetition text[i..n] to the
left with the same period p. Then, the catcher online “extends” the repetition
to the right with the same period p until an e-repetition is found. We say that
the catcher is defined by i and j.

Fig. 1: An e-repetition text[k..n], where k = 5, n = 16. Here i = 6, j = 7, and
text[i..j] = text[14..15].

Example 1. Consider text = xxxxaceorsuv. Denote n = |text|. Suppose e = 1.5.
Let a catcher be defined by i = 6 and j = 7 (see Fig. 1). We consecutively
perform the read operations that append the letters a, c, e, o to the right of
text. The catcher online searches occurrences of the string text[i..j] = ce (e.g.,
using the standard Boyer-Moore or Knuth-Morris-Pratt algorithm). Once we
have text = xxxxaceorsuvace, the catcher has found an occurrence of text[i..j]:
text[n−1..n] = ce. Hence, the string text[i..n] = ceorsuvace has a period
p = n − j = 8. The catcher “extends” this repetition to the left and thus ob-
tains the repetition text[i−1..n] = aceorsuvace with period p. Then the catcher
online “extends” the found repetition to the right: after the next read opera-
tion, the catcher obtains the repetition text[i−1..n] = aceorsuvaceo that is an
e-repetition.

To support the backtrack operation, we store the states of the catcher in an
array of states and when the backtracking is performed, we restore the previous
state. For the described read operation, this approach has two drawbacks. First,
the state does not necessarily require a fixed space, so the array of states may
take a large amount of memory. Second, the catcher can spend a lot of time at
some text locations (alternating backtracking with reading) and therefore the
complexity of the whole algorithm can greatly increase. To solve these problems,
our improved read operation performs the “extensions” of found repetitions and
the searching of text[i..j] simultaneously.

This approach relies on a real-time constant-space string matching algorithm,
i.e., a constant-space algorithm that processes the input string online, spending
constant time per letter; once the searched pattern occurs, the algorithm reports
this occurrence. For unordered alphabet, we can use the algorithm of Galil and
Seiferas [5] though in the case of ordered alphabet, it is more practical to use
the algorithm of Breslauer, Grossi, and Mignosi [2].

The improved read operation works as follows. Denote h = (j − i + 1)/2.
The real-time string matching algorithm searches for text[i..i+⌈h⌉−1]. It is easy
to see that if we have text[n−⌈h⌉+1..n] = text[i..i+⌈h⌉−1], then the number
p = (n − ⌈h⌉ + 1) − i is a period of text[i..n]. The catcher maintains a linked
list P of pairs (p, lp), where p is found in the described way and lp is such that
p is a period of text[lp+1..n] (initially lp = i − 1). Each read operation tries
to extend text[lp+1..n] with the same period p to the right and to the left. If
text[n] 6= text[n−p], then the catcher removes (p, lp) from P . To extend to the
left, we could assign lp ← min{l : text[l+1..n] has a period p} but the calculation
of this value requires O(n) time while we want to keep within the constant time
on each read operation.

In order to achieve this goal, we will extend r symbols to the left after reading
a letter. We choose r = ⌈(e − 1)p/⌊h⌋⌉. Then one of two situations occurs at
the moment when text[i..j] = text[i+p..n] (i.e., an occurrence of text[i..j] is
found). Either we have text[lp] 6= text[lp+p] (lp cannot be “extended” to the
left) or text[lp+1..n] is an e-repetition. Suppose text[i..j] = text[i+p..n] and
text[lp] = text[lp+p]. Since at this moment we have performed ⌊h⌋ operations
decreasing lp by r, we have lp = i− 1−⌊h⌋r and hence n− lp ≥ p+ ⌊h⌋r. Thus,

if we put r = ⌈(e− 1)p/⌊h⌋⌉, then n− lp ≥ ep and therefore, text[lp+1..n] is an
e-repetition. The following pseudocode clarifies this description.

1: read a letter and append it to text (thereby incrementing n)
2: feed the letter to the algorithm searching for text[i..i+⌈h⌉−1]
3: if text[n−⌈h⌉+1..n] = text[i..i+⌈h⌉−1] then ⊲ found an occurrence
4: p← (n− ⌈h⌉+ 1)− i; lp ← i− 1; ⊲ p is a period of text[lp+1..n]
5: P ← P ∪ {(p, lp)};

6: for all (p, lp) in P do

7: if text[n] 6= text[n−p] then
8: P ← P \ {(p, lp)}; ⊲ text[lp+1..n] cannot be “extended” to the right
9: else

10: r ← ⌈(e− 1)p/⌊h⌋⌉; ⊲ maximal number of left “extensions”
11: while lp > 0 and r > 0 and text[lp] = text[lp+p] do
12: lp ← lp − 1; r ← r − 1; ⊲ “extend” text[lp+1..n] to the left

13: if n− lp ≥ ep then ⊲ if text[lp+1..n] is an e-repetition
14: detected e-repetition text[lp+1..n]

A state of the catcher consists of the list P and the state of the string matching
algorithm, O(|P |+ 1) integers in total. To support the backtracking, we simply
store the states of the catcher in an array of states.

Lemma 1. Suppose that i and j define a catcher on text, n is the current length
of text, and c > 0. If the conditions (i) text[1..n− 1] is e-repetition-free and (ii)
c(j − i + 1) ≥ n − i hold, then each read or backtrack operation takes O(c + 1)
time and the catcher occupies O((c + 1)(n− i)) space.

Proof. Clearly, at any time of the work, the array of states contains n− i states.
Each state occupies O(|P | + 1) integers. Hence, to estimate the required space,
it suffices to show that |P | = O(c). Denote v = text[i..i+⌈h⌉−1]. It follows from
the pseudocode that each (p, lp) ∈ P corresponds to a unique occurrence of v in
text[i+1..n]. Thus, to prove that |P | = O(c), it suffices to show that the string
v has at most O(c) occurrences in text[i+1..n] at any time of the work of the
catcher. Suppose v occurs at positions k1 and k2 such that i < k1 < k2 < k1+|v|.
Hence, the number k2−k1 is a period of v. Since text[1..n−1] is e-repetition-free
during the work of the catcher, we have k2 − k1 > 1

e
|v|. Therefore the string v

always has at most (n− i)/(1
e
|v|) occurrences in the string text[i+1..n]. Finally,

the inequalities |v| ≥ 1
2 (j−i+1) and n−i

j−i+1 ≤ c imply (n−i)/(1
e
|v|) ≤ 2ec = O(c).

Obviously, each backtrack operation takes O(c) time. Any read operation
takes at least constant time for each (p, lp) ∈ P . But for some (p, lp) ∈ P ,
the algorithm can perform O((e − 1)p/h) = O(p/h) iterations of the loop in
lines 11–12 (see the value of r in line 10). Since p ≤ n− i for each (p, lp) ∈ P , we
have p/h ≤ 2(n − i)/(j − i + 1) ≤ 2c and therefore, the loop performs at most
O(c) iterations. The loop is executed iff text[lp] = text[lp+p]. But since for each
(p, lp) ∈ P , the value of r is chosen in such a way that text[lp] = text[lp+p] only
if text[i+p..n] is a proper prefix of text[i..j] (see the discussion above), there are
at most (j − i + 1)/(1

e
|v|) ≤ 2e periods p for which the algorithm executes the

loop. Finally, we have O(|P |+ 2ec) = O(c) time for each read operation. ⊓⊔

Lemma 2. If for some k, the string text[n−k+1..n] is an e-repetition and
n− i < k ≤ e(n− j), then a catcher defined by i and j detects this repetition.

Proof. Let p be the minimal period of text[n−k+1..n]. Since text[i..j] is a sub-
string of text[n−k+1..n] and p ≤ k

e
≤ n−j, the string text[i..j] occurs at position

i+ p. Thus, the catcher detects this e-repetition when processes this occurrence
(see Fig. 1). ⊓⊔

We say that a catcher covers [l..r] if the catcher is defined by integers i and
j such that n− i < n− r+1 ≤ n− l+1 ≤ e(n− j); by Lemma 2, this condition
implies that if for some k ∈ [l..r], the suffix text[k..n] is an e-repetition, then the
catcher detects this repetition. We also say that the catcher covers a segment of
length r−l+1. Note that if we append a letter to the end of text, the catcher still
covers [l..r]. We say that a set S of catchers covers [l..r] if

⋃
C∈S [lC ..rC] ⊃ [l..r],

where [lC ..rC] is a segment covered by catcher C.

3 Unordered Alphabet and Backtracking

Theorem 1. For unordered alphabet, there is an online algorithm with back-
tracking that detects e-repetitions in O(n logm) time and O(m) space, where m
is the length of a longest string generated during the execution of a given sequence
of n backtrack and read operations.

Proof. As above, denote n = |text|. If text is not e-repetition-free, our algorithm
skips all read operations until backtrack operations make text e-repetition-free.
Therefore, in what follows we can assume that text[1..n−1] is e-repetition-free
and thus, all e-repetitions of text are suffixes. In our proof we first give an
algorithm without backtracking and then improve it to support the backtrack
operation.

The algorithm without backtracking. Our algorithm maintains O(log n)
catchers that cover [1..n−O(1)] and therefore “catch” almost all e-repetitions.
For each k ∈ [0.. logn], we have a constant number of catchers covering adjacent
segments of length 2k. These segments are of the form (l2k..(l+1)2k] for some
integers l ≥ 0 precisely defined below. Let us fix an integer constant s for which
it is possible to create a catcher covering (n−s2k..n−(s−1)2k]. To show that
such s exists, consider a catcher defined by i = j = n− (s− 1)2k. By Lemma 2,
this catcher covers (n−s2k..n−(s−1)2k] iff e(n − j) = e(s − 1)2k ≥ s2k or,
equivalently, s ≥ ⌈ e

e−1⌉. As it will be clear below, to make our catchers fast, we
must assume that s > e

e−1 . Note that s ≥ 2 since e > 1, and s = 2 implies e > 2.
Now we precisely describe the segments covered by our catchers. Denote tr =

max{0, n− ((s− 1)2r + (n mod 2r))}. For any integer r ≥ 0, tr is a nonnegative
multiple of 2r. Let k ∈ [0.. logn]. The algorithm maintains catchers covering the
following segments: (tk+1..tk+1+2k], (tk+1+2k..tk+1+2 ·2k], (tk+1+2 ·2k..tk+1+
3 · 2k], . . . , (tk − 2k..tk] (see Fig. 2). Thus, there are at most 1

2k
(tk − tk+1) ≤ s

catchers for each such k. Obviously, the constructed segments cover [1..n−s+1].

Fig. 2: A system of catchers covering [1..n−s+1].

To maintain this system of catchers, the algorithm loops through all k ∈
[0.. logn] such that s2k ≤ n and, if n is a multiple of 2k, creates a new catcher
covering (n − s2k..n − (s − 1)2k]; if, in addition, n is a multiple of 2k+1, the
algorithm removes two catchers covering (n − s2k+1..n − s2k+1 + 2k] and (n −
s2k+1+2k..n−(s−1)2k+1]. To prove that the derived system covers [1..n−s+1],
it suffices to note that if an iteration of the loop removes two catchers covering
(b1..b2] and (b2..b3], for some b1, b2, b3, then the next iteration creates a catcher
covering (b1..b3]. We detect e-repetitions of lengths 2, 3, . . . , s−1 by a simple
naive algorithm. In the following pseudocode we use the three-operand for loop
like in the C language.

1: read a letter and append it to text (thereby incrementing n)
2: check for e-repetitions of length 2, 3, . . . , s−1
3: for (k ← 0; s2k ≤ n and n mod 2k = 0; k ← k + 1) do
4: create a catcher covering (n− s2k..n− (s− 1)2k]
5: if n mod 2k+1 = 0 and n− s2k+1 ≥ 0 then

6: remove the catcher covering (n− s2k+1..n− s2k+1 + 2k]
7: remove the catcher covering (n− s2k+1 + 2k..n− (s− 1)2k+1]

When the algorithm creates a catcher covering (n−s2k..n−(s−1)2k], it has some
freedom choosing integers i and j that define this catcher. We put i = n−(s−1)2k

and j = max{i, n−⌈ s
e
2k⌉}. Indeed, in the case j 6= i we have e(n−j) = e⌈ s

e
2k⌉ ≥

s2k and, by Lemma 2, the catcher covers (n− s2k..n− (s− 1)2k]; the case j = i
was considered above when we discussed the value of s.

Clearly, the proposed algorithm is correct. Now it remains to estimate the
consumed time and space. Consider a catcher defined by integers i and j and
covering a segment of length 2k. Let us show that j− i+1 > α2k for a constant
α > 0 depending only on e and s. We have j − i + 1 = (s− 1)2k − ⌈ s

e
2k⌉+ 1 >

((s− 1)− s
e
)2k. The inequality s > e

e−1 implies (s− 1)− s
e
> 0 (here we use the

fact that s is strictly greater than e
e−1). Hence, we can put α = (s− 1)− s

e
.

Denote by n′ the value of n at the moment of creation of the catcher. The
algorithm removes this catcher when either n′ = n− s2k or n′ = n− (s− 1)2k.
Thus, since j − i + 1 > α2k for some α > 0, it follows from Lemma 1 that
the catcher requires O(1) time at each read operation and occupies O(2k) space.

Hence, all catchers take O(s
∑logm

k=0 2k) = O(m) space and the algorithm requires
O(logm) time at each read operation if we don’t count the time for creation of
catchers. We don’t estimate this time in this first version of our algorithm.

The algorithm with backtracking. Now we modify the proposed algo-
rithm to support the backtracking. Denote n′ = n + 1. The backtrack oper-

ation is simply a reversed read operation: we loop through all k ∈ [0.. logn′]
such that s2k ≤ n′ and, if n′ is a multiple of 2k, remove the catcher cov-
ering (n′ − s2k..n′ − (s − 1)2k]; if, in addition, n′ is a multiple of 2k+1,
the algorithm creates two catchers covering (n − s2k+1..n − s2k+1 + 2k] and
(n−s2k+1+2k..n− (s−1)2k+1]. Clearly, this solution is slow: if n = 2p for some
integer p, then n consecutive backtrack and read operations require O(n2) time.

To solve this problem, we make the life of catchers longer. In the modified
algorithm, the read and backtrack operations don’t remove catchers but mark
them as “removed” and the marked catchers still work some number of steps. If
a backtrack or read operation tries to create a catcher that already exists but is
marked as “removed”, the algorithm just deletes the mark.

How long is the life of marked catcher? Consider a catcher defined by i =
n′−(s−1)2k and j = max{i, n′−⌈ s

e
2k⌉}, where n′ is the value of n at the moment

of creation of the catcher in the corresponding read operation. The read operation
marks the catcher as “removed” when either n′ = n− s2k or n′ = n− (s− 1)2k;
our modified algorithm removes this marked catcher when n′ = n − (s + 1)2k

or n′ = n − s2k respectively, i.e., the catcher “lives” additional 2k steps. The
backtrack operation marks the catcher as “removed” when n′ = n+1; we remove
this catcher when n′ = n+min{2k, n′ − j} (recall that the catcher cannot exist
if n < j), i.e., the catcher “lives” additional min{2k, ⌈ s

e
2k⌉} = Θ(2k) steps.

Let us analyze the time and space consumed by the algorithm. It is easy to
see that for any k ∈ [0.. logn], there are at most s+2 catchers covering segments
of length 2k. The worst case is achieved when we have s working catchers and two
marked catchers. Now it is obvious that the modified algorithm, as the original
one, takes O(m) space and requires O(logm) time in each read or backtrack
operation if we don’t count the time for creation of catchers. The key property
that helps us to estimate this time is that once a catcher covering a segment
of length 2k is created, it cannot be removed during any sequence of Θ(2k)
backtrack and read operations. To create this catcher, the algorithm requires
Θ(2k) time and hence, this time for creation is amortized over the sequence
of Θ(2k) backtrack and read operations. Thus, the algorithm takes O(n logm)
overall time, where n is the number of read and backtrack operations. ⊓⊔

4 Ordered Alphabet

It turns out that in some natural cases we can narrow the area of e-repetition
search. More precisely, if text[1..n−1] is e-repetition-free, then the length of any
e-repetition of text is close to the length of the shortest suffix v of text such that
v does not occur in text[1..n−1]. In the sequel, v is referred to as the shortest
unioccurrent suffix of text. Denote t = |v|. Suppose u is a suffix of text such that
u is an e-repetition. Let us first consider some specific values of e.

Example 2. Let e = 5. We prove that t ≤ |u| < 5
4 t. Denote by p a period of

u such that 5p ≤ |u|. Since the suffix of length t−1 occurs in text[1..n−1] and
text[1..n−1] is 5-repetition-free, we have |u| ≥ t. Suppose, to the contrary, |u| ≥

t + 1
4 t. Then t + p ≤ t + 1

5 |u| ≤ |u| and text[n−t+1..n] = text[n−t−p+1..n−p]
by periodicity of u (see Fig. 3 a), a contradiction to the definition of t.

Example 3. Let e = 1.5. We show that t ≤ |u| < 1.5
0.5 t. As above, we have |u| ≥ t.

Denote by p a period of u such that 1.5p ≤ |u|. Suppose |u| ≥ t + 1
0.5 t (or

t ≤ 0.5
1.5 |u|); then t+ p ≤ t+ 1

1.5 |u| ≤
0.5
1.5 |u|+

1
1.5 |u| = |u| and text[n−t+1..n] =

text[n−t−p+1..n−p] (see Fig. 3 b), which contradicts to the definition of t.

a

b

Fig. 3: (a) n = 16, u = text[2..n], t = 13, t′ = 11, text[n−t′+1..n]=text[n−t′−2..n−3];
(b) n = 15, u = text[4..n], t = 5, t′ = 3, text[n−t′+1..n] = text[n−t′−7..n−8].

Lemma 3. Let t be the length of the shortest unioccurrent suffix of text, and u
be an e-repetition of text. If text[1..n−1] is e-repetition-free, then t ≤ |u| < e

e−1 t.

Proof. Clearly, u is a suffix. We have t ≤ |u| since the suffix of length t−1 occurs
in text[1..n−1] and text[1..n−1] is e-repetition-free. Suppose, to the contrary,
|u| ≥ e

e−1 t (or t ≤ e−1
e
|u|). Denote by p the minimal period of u. We have

p ≤ 1
e
|u|. Further, we obtain t+p ≤ t+ 1

e
|u| ≤ e−1

e
|u|+ 1

e
|u| = |u|, i.e., t+p ≤ |u|.

Finally, since p is a period of u, we have text[n−t+1..n] = text[n−t−p+1..n−p]
(see Fig. 3 a,b). This contradicts to the definition of t. ⊓⊔

Lemma 3 describes the segment in which our algorithm must search e-repe-
titions. To cover this segment by catchers, we use the following technical lemma.

Lemma 4. Let l and r be integers such that 0 ≤ l ≤ r < n and c(n− r) > n− l
for a constant c > 0. Then there is a set of catchers {ck}

m
k=0 covering (l..r] such

that m is a constant depending on c and each ck is defined by integers ik and jk
such that jk − ik + 1 ≥ e−1

2e (n− r).

Proof. Let us choose a number α such that 0 < α < 1. Denote n−r = s. Consider
the following set of catchers {ck}

m
k=0: ck is defined by integers ik = n−⌈(eα)ks⌉

and jk = n−⌈α(eα)ks⌉ (see Fig. 4). Denote i′k = n−(eα)ks and j′k = n−α(eα)ks.
By Lemma 2, ck covers (n − e(n − j′k)..i

′

k] = (n − (eα)k+1s..i′k]. Thus, for any

k ∈ [0..m−1], the catcher ck covers (i′k+1..i
′

k] and therefore, the set {ck}
m
k=0

covers the following segment:

(n− (eα)m+1s..i′m]∪ (i′m..i′m−1]∪ (i
′

m−1..i
′

m−2]∪ . . .∪ (i
′

1..i
′

0] = (n− (eα)m+1s..r].

Hence, if eα > 1 and (eα)m+1s ≥ cs, the set {ck}
m
k=0 covers (n− cs..r] ⊃ (l..r].

Thus to cover (l..r], we can, for example, put α = e+1
2e and m+ 1 = ⌈ log c

log(eα)⌉ =

⌈ log c

log(e+1)−1⌉. Finally for k ∈ [0..m], we have jk− ik+1 = ⌈(eα)ks⌉−⌈α(eα)ks⌉+

1 ≥ (eα)ks− (α(eα)ks+ 1) + 1 = (eα)k(1− α)s ≥ (1 − α)s = e−1
2e (n− r). ⊓⊔

Fig. 4: The system {ck}
m

k=0 with m = 2 (c3 is depicted for clarity), e ≈ 1.5, α ≈ 5

6
.

For each integer i > 0, denote by ti the length of the shortest unioccurrent
suffix of text[1..i]. We say that there is an online access to the sequence {ti} if
any algorithm that reads the string text sequentially from left to right can read
ti immediately after reading text[i]. The following lemma describes an online
algorithm for e-repetition detection based on an online access to {ti}. Note that
the alphabet is not necessarily ordered.

Lemma 5. If there is an online access to the sequence {ti}, then there exists an
algorithm that online detects e-repetitions in linear time and space.

Proof. Our algorithm online reads the string text while text is e-repetition-free.
Let n = |text|. Denote ln = max{0, n− e

e−1 tn} and rn = n−tn+1. By Lemma 3,
to detect e-repetitions, it suffices to have a set of catchers covering (ln..rn]. But
if the set covers only (ln..rn], then we will have to update the catchers in each
step i such that ri−1 < ri or li−1 > li. To reduce the number of updates, we
cover (ln..rn] with significantly long left and right margins. Thus, some changes
of ln and rn can be made without rebuilding of catchers.

We maintain two variables l and r such that l ≤ ln ≤ rn ≤ r. Initially
l = r = 0. To achieve linear time, we also require n− r ≤ 2(r− l). The following
pseudocode explains how we choose l and r:

1: read a letter and append it to text (thereby we increment n and read tn)
2: ln ← max{0, n− e

e−1 tn}; rn ← n− tn + 1;
3: if ln < l or rn > r or n− r > 2(r − l) then
4: l← max{0, n− 2e

e−1 tn}; r ← n− 1
2 tn;

5: update catchers to cover (l..r]

The correctness is clear. Consider the space requirements. Since n − r = 1
2 tn

and n − l = min{n, 2e
e−1 tn}, it follows that c(n − r) > n − l for any c > 4 e

e−1 .
Therefore, by Lemma 4, the algorithm uses a constant number of catchers and
hence requires at most linear space. Denote by m the number of catchers.

Let us estimate the running time. Observe that rn never decreases. In our
analysis, we assume that to increase rn, the algorithm performs rn − rn−1 in-
crements. Obviously, our assumption does not affect the overall running time:
to process any string of length k, the algorithm executes at most k increments.
Also the algorithm performs k increments of n. We prove that the time required
to maintain catchers is amortized over the sequence of increments of rn and n.

Suppose the algorithm creates a set of catchers {ck}
m
k=1 at some point. Denote

by n′ the value of n at this moment. Let us prove that it takes O(tn′) time to
create this set. For k ∈ [1..m], let ck be defined by ik and jk. By Lemma 4, for
each k ∈ [1..m], we have jk − ik + 1 ≥ e−1

2e (n′ − r). Since n′ − r ≥ e−1
4e (n′ − l) ≥

e−1
4e (n′ − ik), we obtain c(jk − ik + 1) ≥ n′ − ik for any c ≥ 8e2/(e − 1)2.
Hence, by Lemma 1, it takes O(n′ − ik) time to create the catcher ck. Note that
n′ − ik ≤ n′ − l ≤ 2e

e−1 tn′ and 1
2 tn′ ≤ n′ − ik, i.e., n

′ − ik = Θ(tn′). Therefore, to

build the set {ck}
m
k=1, the algorithm requires O(

∑m

k=1(n
′ − ik)) = O(tn′) time.

Let us prove that to update the set {ck}
m
k=1, the algorithm must execute

Θ(tn′) increments of n or rn. Consider the conditions of line 3:

1. To satisfy ln < l (clearly l > 0 in this case), since we have ln−1 − ln ≤
e

e−1
for any n, we must perform at least (ln′ − l)/ e

e−1 = tn′ increments of n.
2. To satisfy rn > r, we must execute ⌈r − rn′⌉ = ⌈tn/2⌉ increments of rn.
3. To satisfy n− r > 2(r − l), since n− r = 1

2 tn′ + (n− n′) and 2(r − l) ≥ tn′ ,
we must increase n by at least ⌈ 12 tn′⌉.

The third condition forces us to update catchers after ⌈ 4e
e−1 tn′⌉ increments of n.

Indeed, we have n− r = ⌈ 4e
e−1 tn′⌉+n′− r ≥ 4e

e−1 tn′ = 2(n′− l) > 2(r− l). Recall
that for each k ∈ [1..m], we have n′ − ik = Θ(tn′) and jk − ik + 1 = Θ(tn′).
Hence, by Lemma 1, the catchers {ck}

m
k=1 take O(tn′) overall time. Thus the time

required to maintain all catchers is amortized over the sequence of increments
of n and rn. ⊓⊔

Theorem 2. For ordered alphabet, there exists an algorithm that online detects
e-repetitions in O(n log σ) time and linear space, where σ is the number of dis-
tinct letters in the input string.

Proof. To compute the sequence {ti}, we can use, for example, Weiner’s online
algorithm [13] (or its slightly optimized version [3]), which works in O(n log σ)
time and linear space. Thus, the theorem follows from Lemma 5. ⊓⊔

Corollary. For constant alphabet, there exists an algorithm that online detects
e-repetitions in linear time and space.

Acknowledgement. The author would like to thank Arseny M. Shur for the
help in the preparation of this paper and Gregory Kucherov for stimulating
discussions.

References

1. Apostolico, A., Breslauer, D.: An optimal O(log log n)-time parallel algorithm for
detecting all squares in a string. SIAM Journal on Computing 25(6), 1318–1331
(1996)

2. Breslauer, D., Grossi, R., Mignosi, F.: Simple real-time constant-space string
matching. In: Combinatorial Pattern Matching. pp. 173–183. Springer (2011)

3. Breslauer, D., Italiano, G.F.: Near real-time suffix tree construction via the fringe
marked ancestor problem. Journal of Discrete Algorithms 18, 32–48 (2013)

4. Crochemore, M.: Transducers and repetitions. Theoretical Computer Science 45,
63–86 (1986)

5. Galil, Z., Seiferas, J.: Time-space-optimal string matching. Journal of Computer
and System Sciences 26(3), 280–294 (1983)

6. Hong, J.J., Chen, G.H.: Efficient on-line repetition detection. Theoretical Com-
puter Science 407(1), 554–563 (2008)

7. Jansson, J., Peng, Z.: Online and dynamic recognition of squarefree strings. In:
Mathematical Foundations of Computer Science 2005, pp. 520–531. Springer (2005)

8. Kosolobov, D.: Lempel-Ziv factorization may be harder than computing all runs.
In: 32nd International Symposium on Theoretical Aspects of Computer Science
(STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 30,
pp. 582–593. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2015)

9. Leung, H.F., Peng, Z., Ting, H.F.: An efficient online algorithm for square detec-
tion. In: Computing and Combinatorics, pp. 432–439. Springer (2004)

10. Main, M.G., Lorentz, R.J.: Linear time recognition of squarefree strings. In: Com-
binatorial Algorithms on Words, pp. 271–278. Springer (1985)

11. Shur, A.M.: Generating square-free words efficiently. accepted to WORDS’2013
special issue of Theoretical Computer Science (2014)

12. Thue, A.: Über unendliche zeichenreihen (1906). In: Selected mathematical papers
of Axel Thue. Universitetsforlaget (1977)

13. Weiner, P.: Linear pattern matching algorithms. In: Switching and Automata The-
ory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium on. pp.
1–11. IEEE (1973)

	Online Detection of Repetitions with Backtracking

