
Encoding Nearest Larger Values

Patrick K. Nicholson1 and Rajeev Raman2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 University of Leicester, Leicester, United Kingdom

Abstract. In nearest larger value (NLV) problems, we are given an ar-
ray A[1..n] of numbers, and need to preprocess A to answer queries of
the following form: given any index i ∈ [1, n], return a “nearest” index
j such that A[j] > A[i]. We consider the variant where the values in
A are distinct, and we wish to return an index j such that A[j] > A[i]
and |j − i| is minimized, the nondirectional NLV (NNLV) problem. We
consider NNLV in the encoding model, where the array A is deleted
after preprocessing, and note that NNLV encoding problem has an un-
expectedly rich structure: the effective entropy (optimal space usage) of
the problem depends crucially on details in the definition of the prob-
lem. Using a new path-compressed representation of binary trees, that
may have other applications, we encode NNLV in 1.9n + o(n) bits, and
answer queries in O(1) time.

1 Introduction

Nearest Larger Value (NLV) problems have had a long and storied history. Given
an array A[1..n] of values, the objective is to preprocess A to answer queries of
the general form: given an index i, report the index or indices nearest to i that
contain values strictly larger that A[i]. Berkman et al. [3] studied the parallel
pre-processing for this problem and noted a number of applications, such as
parenthesis matching and triangulating monotone polygons. The connection to
string algorithms for both the data structuring and the pre-processing variants
of this problem is since well-established.

Since the definition of “nearest” is a bit ambiguous, we propose replacing it
by one of the following options in order to fully specify the problem:

– Unidirectionally nearest : the solution is the index j ∈ [1, i − 1] such that
A[j] > A[i] and i− j is minimized.

– Bidirectionally nearest : the solution consists of indices j1 ∈ [1, i − 1] and
j2 ∈ [i+ 1, n] such that A[jk] > A[i] and |i− jk| is minimized for k ∈ {1, 2}.

– Nondirectionally nearest : the solution is the index j such that A[j] > A[i]
and |i − j| is minimized. As far as we are aware, this formulation has not
been considered before.

Furthermore, the data structuring problem has different characteristics depend-
ing on whether we consider the elements of A to be distinct (Berkman et al.
considered the undirectional variant when all elements in A are distinct).

We consider the problem in the encoding model, where once the data struc-
ture to answer queries has been created, the array A is deleted. Since it is not
possible to reconstruct A from NLV queries on A, the effective entropy of NLV
queries [9], the log of the number of distinguishable NLV configurations, is very
low and an NLV encoding of A can be much smaller than A itself. The encod-
ing variant has several applications in space-efficient data structures for string
processing, in situations where the values in A are intrinsically uninteresting:

– The bidirectional NLV when A contains distinct values boils down essentially
to encoding a Cartesian tree, through which route 2n + o(n)-bit and O(1)-
time data structures exist [7,4].

– The unidirectional NLV when A contains non-distinct values can be encoded
in 2n+ o(n) bits and queries answered in O(1) time [8,10].

– The bidirectional NLV for the case where elements in A need not be distinct
was first studied by Fischer [6]. His data structure occupies log2(3+2

√
2)n+

o(n) ≈ 2.544n+ o(n) bits of space, and supports queries in O(1) query time.

All of the above space bounds are tight to within lower-order terms.3

In this paper, we consider the nondirectionally nearest larger value (NNLV)
problem, in the case that all elements in A are distinct. The above results already
hint at the combinatorial complexity of NLV problems. However, the NNLV
problem appears to be even richer, and the space bound appears not only to
depend upon whether A is distinct or not, but also upon the specific tie-breaking
rule to use if there are two equidistant nearest values to the query index i.

For instance, given a location i where there is a tie, we might always select
the larger value to the right of location i to be its nearest larger value. We
call this rule I. We give an illustration in the middle panel of Figure 1 (on
page 4). Alternative tie breaking rules might be: to select the smallest of the
two larger values (rule II), or to select the larger of the two larger values (rule
III). Interestingly, it turns out that the tie breaking rule is important for the
space bound. That is, if we count the number of distinguishable configurations
of the NNLV problem for the various tie breaking rules, then we get significantly
different answers. We counted the number of distinguishable configurations, for
problem instances of size n ∈ [1, 12], and got the sequences presented in Table 1.

Table 1. Number of distinguishable configurations of nearest larger value problems
with the three tiebreaking rules discussed.

n 1 2 3 4 5 6 7 8 9 10 11 12

rule I 1 2 5 14 40 116 341 1010 3009 9012 27087 81658
rule II 1 2 5 14 42 126 383 1178 3640 11316 35263 110376
rule III 1 2 5 12 32 88 248 702 1998 5696 16304 46718

3 For the unidirectional NLV the bound is tight even when all values are distinct.

2

Unfortunately, none of the above sequences appears in the Online Encyclo-
pedia of Integer Sequences4. Consider the sequence generated by some arbitrary
tie breaking rule. If zi is the i-th term in this sequence, then limn→∞ lg(zn)/n
is the constant factor in the asymptotic space bound required to store all the
answers to the NNLV problem subject to that tiebreaking rule.

Our Contributions. Our main result is the following:

Theorem 1. Let A[1..n] be an array containing distinct numbers. The array A
can be processed to obtain an encoding data structure that occupies 1.9n+o(n) bits
of space, that can answer the query NNLV(A, i) in O(1) time for any i ∈ [1, n].
Ties are resolved using rule I. At no point after preprocessing does the data
structure require access to the array A.

As mentioned before, the Cartesian tree (defined later) occupies 2n+o(n) bits
and can solve NNLV queries. In Section 3 we describe a novel path-compressed
representation of a binary tree that uses 2n + O(lg n) bits (but supports no
operations). To get the improved space bound of Theorem 1 we prove combina-
torial properties of the NNLV problem relating to long chains in the Cartesian
tree. These properties allow us to compress the Cartesian tree using the rep-
resentation of Section 3, losing some information, but still retaining the ability
to answer NNLV queries. The constant factor (1.9) comes from a numeric cal-
culation bounding the worst case structure of chains in the Cartesian tree for
our compression scheme (Section 4). In Section 4.1 we show how to support
operations on the “lossy” Cartesian tree, thereby proving Theorem 1.

Finally, in Section 5, we prove a lower bound, via exhaustive search:

Theorem 2. Any encoding data structure that can answer the query NNLV(A, i)
for any i ∈ [1, n] (breaking ties according to rule I) must occupy at least 1.3173n−
Θ(1) bits, for sufficiently large values of n.

Other Related Work: Asano et al. [1] studied the time complexity of computing
all nearest larger values in an array as well as higher dimensions, and mention
applications to communication protocols. Asano and Kirkpatrick [2] considered
sequential time-space tradeoffs for computing the nearest larger values of all
elements in the array. Finally, Jo et al. [11] and Jayapaul et al. recently studied
the nearest larger value problem in two dimensional arrays.

2 Cartesian Tree Review

Given a binary tree T , let d(v) denote the degree (i.e., number of children) of
node v, and p(v) denote the parent of v. We define the rank r(v) to be the
inorder rank of the node v in the binary tree T . Define the range of a node v to
be the range [e1(v), e2(v)], where e1(v) (resp. e2(v)) is the inorder rank of the
leftmost (resp. rightmost) descendant of v.

4 https://oeis.org/

3

Fig. 1. Top: an array containing a permutation of {1, . . . , 30}. Middle: The tree struc-
ture of the NNLV problem. Here the parent of a node represents its NNLV, breaking
ties by selecting the element on the right (rule I). Bottom: The Cartesian tree.

Suppose we are given an array A[1..n] which stores an n element permutation
π, i.e., A[i] = π(i). The Cartesian tree of A[1..n] is the n node binary tree T
such that the root v of T has rank r(v) = arg maxiA[i]. If r(v) > 1, then the left
child of v is the Cartesian tree of A[1..r(v)− 1], otherwise it has no left child. If
r(v) < n then the right child of v is the Cartesian tree of A[r(v)+1..n], otherwise
it has no right child. We give an example of these definitions in Figure 1.

We require the following technical lemma about Cartesian trees:

Lemma 1. Consider a node v in a Cartesian tree having range [e1(v), e2(v)].
If e1(v) − 1 ≥ 1 then A[e1(v) − 1] > A[r(v)]. Similarly, if e2(v) + 1 ≤ n then
A[e2(v) + 1] > A[r(v)].

3 A Path Compressed Tree Representation

Consider an arbitrary binary tree T with n nodes. All binary trees we discuss
are rooted. We next describe a path compressed encoding of such a tree that
occupies no more than 2n+Θ(lg n) bits.

We identify all maximal chains v1, ..., v`, v`+1 such that:

1. Either v1 is the root of T , or d(p(v1)) = 2;
2. d(vi) = 1 for i ∈ [1, `], and;
3. d(v`+1) ∈ {0, 2}.

4

We refer to v`+1 as the terminal of the chain. Iteratively, we remove each
such maximal chain: i.e., the nodes v1, ..., v` are removed from the tree. If v1
was the root, then v`+1 is set to be the new root. Otherwise, v`+1 is set to be
the left (resp. right) child of p(v1) iff v1 was the left (resp. right) child of p(v1).
We call the chain left hanging if p(v1) had v1 as a left child, and right hanging
otherwise. After removing all such maximal chains, the tree T ′ that remains is a
full binary tree and has n′ ≤ n nodes. Suppose that we have removed k nodes,
for some k ∈ [0, n− 1], and so n = n′ + k.

Suppose there are m maximal chains removed during the process just de-
scribed. We now describe the representation of the original tree T .

– We store the tree T ′, which is a full binary tree and requires n′ +O(1) bits
to represent.

– We store a bitvector B of length n′. Bit B[i] = 1 iff the node v, corresponding
to the i-th node in an inorder traversal of T ′, is the terminal of a removed

chain. This requires dlg
(
n′

m

)
e bits.

– Suppose we order the subset of nodes that are terminals by their inorder
rank, and that v is the terminal ordered i-th. We refer to the chain having v
as its terminal as Ci, and its length as ci. We store a bitvector L of length k,
which represents the lengths of each removed chain; i.e., the values c1, ..., cm.
Let pi =

∑i
j=1 ci for i ∈ [1,m]. Then L[pi] = 1 for i ∈ [1,m], and all other

entries of L are 0. As L is a bit sequence of length k with m one bits, it can
be stored using dlg

(
k
m

)
e bits.

– For each chain Ci = {v1, ..., vci} having terminal node vci+1, we store a
bitvector Zi of length ci, in which Zi[j] = 0 if vj+1 is the left child of vj , and
Zi[j] = 1 otherwise. Let Z be the concatenation of each Zi, i ∈ [1,m] and is
of length k. We store Z naively using k bits.

We call the above data structures, bitvectors B, L, Z and the tree T ′ the
path compressed representation of T . Note that to decode this and recover the
tree T , we require the value of n and n′. These can be stored using an additional
Θ(lg n) bits. By summing the above space costs, we get the following lemma.

Lemma 2. The path compressed representation of T completely describes the

combinatorial structure of T , and can be stored using n′ + lg
(
n′

m

)
+ lg

(
k
m

)
+ k +

Θ(lg n) ≤ 2n′ + 2k +Θ(lg n) = 2n+Θ(lg n) bits.

4 Encoding Nearest Larger Values

In this section we show how to use the path compressed tree representation
to compress Cartesian trees—losing some information in the process—but still
retaining the ability to answer NNLV queries. Our key observation is that chains
in the Cartesian tree can be compressed to save space, as illustrated by the
following lemma:

5

Lemma 3. Consider the set of all possible chains with ci deleted nodes in a path
compressed representation of a Cartesian tree, excluding chains having nodes
representing array elements A[1] or A[n]. There are exactly ci+1 combinatorially
distinct chains with respect to answering nearest larger value queries, breaking
ties according to rule I.

Proof. Consider a chain with ci deleted nodes, {v1, ..., vci}, where vci+1 is the
terminal. Clearly, v1 represents the maximum element in the chain, and either
r(vj) = e1(vj) or r(vj) = e2(vj) for each j ∈ [1, ci]. This follows because since vj
is in a chain it is either the left or right endpoint of the range [e1(vj), e2(vj)]. In
turn, this implies that the range [e1(v1), e2(v1)] has a deleted prefix and deleted
suffix which in total contain the inorder ranks of the ci deleted nodes.

The deleted nodes corresponding to this prefix (resp. suffix) appear contigu-
ously in the array A, and form a decreasing (resp. increasing) run of values in A.
Furthermore, by Lemma 1, and since 1, n 6∈ [e1(v1), e2(v1)] (by the assertion in
the statement of the lemma), we can assert that both A[e1(v1)− 1] > A[e1(v1)]
and A[e2(v1) + 1] > A[e2(v1)]. Thus, for each k such that vk is in the prefix we
have that A[e1(vk)− 1] > A[e1(vk)], and we can return the nearest larger value
of r(vk) = e1(vk) to be e1(vk) − 1. Similarly, for each k such that vk is in the
suffix we have that A[e2(vk)+1] > A[e2(vk)], and return the nearest larger value
of r(vk) = e2(vk) to be e2(vk) + 1.

This implies that, if we know the value ci, then we additionally need only
know how many nodes are in the prefix in order to determine the answer to a
nearest larger value query for any index represented by a deleted node. There
are at most ci + 1 possible options: {0, ..., ci}. Moreover, for an arbitrary index
i ∈ [1, n] \ [e1(v1), e2(v1)] the answer to a nearest larger value query cannot
be in [e1(v1), e2(v2)], since this range is sandwiched between larger values by
Lemma 1. Finally, consider indices in the range [e1(vci+1), e2(vci+1)]. Using the
fact that A[e1(vci+1) − 1] and A[e2(vci+1) + 1] by are larger than all elements
in A[e1(vci+1), e2(vci+1)] by Lemma 1, we can correctly answer queries for a
position i in the subtree. First, we find the solution j within the subtree, and
then return the nearest position to i of either j, e1(vci+1)− 1, or e2(vci+1) + 1,
breaking ties according to rule I. ut

Recall that to recover a chain of ci deleted nodes exactly required ci bits in
the path compressed tree representation. The previous lemma allows us to get
away with lg(ci + 1) bits: an exponential improvement. Using the above lemma,
we get the following upper bound for the NNLV problem (note that it does not
allow queries to be performed efficiently).

Lemma 4. The solutions to all nearest larger value queries can be encoded using

n′ + lg
(
n′

m

)
+ lg

(
k
m

)
+m lg(km + 1) +Θ(lg n) ≤ 1.9198n+Θ(lg n) bits.

Proof (Sketch). We store the path compressed version of T , the Cartesian tree
of A. However, we replace index Z, by an index Z ′ consisting of dlg

∏m
i=1(ci+1)e

bits. Z ′ represents, for each deleted chain—including those that contain nodes

6

representing A[1] and A[n]—the length of its deleted prefix. We explicitly store
the answers to nearest larger value queries for A[1] and A[n].

The space bound for storing the data structures described is n′ + lg
(
n′

m

)
+

lg
(
k
m

)
+ lg

∏m
i=1(ci + 1) +O(lg n) bits. This is bounded by n′+ lg

(
n′

m

)
+ lg

(
k
m

)
+

m lg(km +1)+O(lg n) bits using Jensen’s inequality. Finally, a numerical calcula-
tion reveals that this expression is upper bounded by 1.9198n+Θ(lg n) bits. ut

Using a slightly more complicated analysis that bounds the space required to
store L in terms of the zeroth-order empirical entropy of the sequence of chain
lengths, we can improve the space bound (slightly) to 1.9n + o(n), resulting in
Theorem 1. We defer details to the full version.

4.1 Supporting Queries

Until now we have only discussed space bounds for encoding NNLV queries, and
have made no effort to actually answer them efficiently. In this section we discuss
how to support NNLV queries in O(1) time.

In the previous section we showed how to encode a Cartesian tree in a lossy
way (losing information about the structure of chains in the tree). Thus, we can
view the encoding algorithm, given an input Cartesian tree T , as mapping it to
a new tree T0, in which chains follow a path through a descending run in the
prefix, then an ascending run in the suffix, and finally end at a terminal. We call
T0 the lossy Cartesian tree in this section. We wish to support the following tree
operations on the lossy Cartesian tree T0:

1. is chain prefix(i) (resp. is chain suffix(i)): given i, return whether
the node with inorder number i in T0 is within the prefix (resp. suffix) of a
chain. To clarify what we mean by prefix or suffix, refer to Lemma 3.

2. select inorder(i): return the node u in T0 having inorder number i.
3. subtree size(u): Return the size of the subtree rooted at node u in T0.
4. left(u) (resp. right(u)): return the left (resp. right) child of node u in T0.

Given the above operations on T0, we can answer NNLV queries as in Algo-
rithm 1. Correctness of the algorithm follows from the fact that the root of a
subtree in T0 is the largest value in a Cartesian tree, and Lemma 1.

Mini-micro Decomposition All that remains is to show that we can support
the operations listed above on the tree T0. The problem is that we only have
space available to store a path compressed version of T0. Thus, we require a
technical modification of the mini-micro tree decomposition presented by Farzan
and Munro [5] which can be stated as follows:

Lemma 5 (Theorem 1 [5]). For any parameter α > 1, a tree with n nodes
can be decomposed into Θ(nα) subtrees of size at most 2α, which are pairwise
disjoint aside from their roots. With the exception of edges branching from the
root of a subtree, there is at most one edge from a non-root node in a subtree to
a node outside the subtree.

7

Algorithm 1 Computing NNLV(A, i).

1: if i = 1 or i = n then
2: return explicitly stored answer for A[1] or A[n].
3: else if is chain prefix(i) then
4: return i− 1
5: else if is chain suffix(i) then
6: return i + 1
7: else
8: `← subtree size(left(select inorder(i)))
9: r ← subtree size(right(select inorder(i)))

10: if ` < r and i− `− 1 ≥ 1 then
11: return i− `− 1
12: else if i + r + 1 ≤ n then
13: return i + r + 1
14: else
15: return A[i] is the maximum (it has no NNLV)
16: end if
17: end if

The binary tree structure of Davoodi et al. [4] essentially applies Lemma 5
twice to the input tree, getting a set of O(n

lg2 n
) mini-trees of size O(lg2 n) and

O(n
lgn) micro-trees of size d lgnγ e, for some γ ≥ 8. Since a rooted binary tree

with g nodes can be represented using 2g bits, we can store a fingerprint of size
at most d 2 lgn

γ e bits for each micro-tree. We can then perform tree operations

by using these fingerprints to index into using a universal table of size o(n).
Overall, the space is bounded by the sum of the sizes of the fingerprints, and
totals 2n + o(n). Their representation supports a large number of operations,
which includes select inorder, subtree size, left, right.

The main idea of our approach is to take the lossy Cartesian tree T0, and
to decompose it using Lemma 5. We then adjust the decomposition to, roughly
speaking, ensure that chains do not cross subtree boundaries. The following
technical lemma captures this intution:

Lemma 6. For any parameter α > 1, a tree with n nodes can be decomposed into
Θ(nα) subtrees which are pairwise disjoint aside from their roots. Furthermore,
we have the following properties for the subtrees:

1. All nodes in a chain, except possibly the terminal, are contained in the same
subtree.

2. If a subtree contains a node of degree two, then it has size at most 2α.
3. Excepting edges branching from the root of a subtree, there is at most one

edge from a non-root node in a subtree to a node outside the subtree.

We apply the Lemma 6 twice to T0. The first application has parameter
α = dlg2 ne, which gives us a set of subtrees. We change and extend the defini-
tions of mini-trees and micro-trees slightly from the previous papers. Subtrees
which have at least one degree two node are referred to as mini-trees, and are

8

otherwise referred to as mini-chains. The second application of the lemma is
done to each mini-tree separately with α = d lgnβ e, for β ≥ 16. Similarly, the
resultant subtrees are called micro-trees if they contain a degree two node, and
micro-chains otherwise.

Next, we apply path compression to each micro-tree, micro-chain, and mini-
chain. We note that micro-chains and mini-chains end up as a single node after
path compression, and have degree 1. Furthermore, prior to path compression,
micro-chains were chains of length at least d lgnβ e and at most Θ(lg2 n), and

mini-chains were chains of length at least Θ(lg2 n). For micro-trees, each node
(after path compression) has either degree two or zero. Each micro-tree which
contains g degree two nodes can therefore be represented using g bits, rather
than 2g bits. Recall that we used n′ to represent the number of nodes in the
path compressed lossy Cartesian tree. If we sum over all the micro-trees there
are n′−1

2 degree two nodes in total after path compression. This means the sum
of the sizes of the fingerprints for all of the micro-trees can be stored in n′+o(n)
bits. One technical issue is that we must mark the branching edge of each micro-
tree, which can be done using an additional Θ(lg lg n) bits per micro-tree. Thus,
this additional cost is O(n lg lgn

lgn) when summed over all micro-trees. Note that

the number of micro- and mini-chains is bounded by Θ(n
lgn), so we can also

afford to mark these using a bit vector, indicating whether they are a micro-
chain or a mini-chain. Recalling the encoding from the previous section, this
path compressed tree we have constructed here is almost (but not quite) the
path compressed version of the lossy Cartesian tree T0: it has Θ(n

lgn) additional

degree one nodes, but nonetheless occupies n′ + o(n) bits.
We call the fingerprints of the micro-trees the path compressed fingerprints.

In the full version, we show that for an arbitrary micro-tree M we can use the
path compressed fingerprint to recover the fingerprint corresponding to M the
original (not path compressed) tree T0. We have the following lemma:

Lemma 7. We can recover the fingerprint of any micro-tree in T0 in O(1) time,
using space:

n′ + lg

(
n′

m

)
+

σ∑
i=1

(
mi lg

m(i+ 1)

mi

)
+O

(
n lg lg n

lg n

)
bits.

Using the previous lemma, it is not hard to prove Theorem 1. The main idea is
to construct the data structure of Davoodi et al. [4] using Lemma 7 as an oracle
to access the fingerprints of micro-trees. This allows us to support nearly all
the required query operations, except is chain prefix and is chain suffix.
These two operations can be supported by considering the cases of micro-trees,
micro-chains, and mini-chains separately.

5 Lower Bound

The main idea of the lower bound is to show that for a given n, there are many
configurations of A that can be distinguished by NNLV queries. To do this, we

9

define a restricted NNLV problem (RNNLV). The restricted problem is like the
original NNLV problem on an array A[1..n], except we pretend that the array
has entries A[0] =∞ and A[n+1] =∞. Thus, an answer to the restricted NNLV
query (RNNLV(A, i)) is either NNLV(A, i), 0, or n + 1: we choose the nearest of
these three possibilities, breaking ties using rule I. This restricts the solution
space, but will allow us to lower bound the unrestricted problem.

For an n element array, we use Rn to denote the number of different solutions
to RNNLV, and Sn to denote the number of solutions to NNLV, both subject to
tie breaking rule I. We computed the following sequences:

Table 2. Number of solutions to RNNLV problem (rule I).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rn 1 2 4 9 22 55 142 378 1015 2768 7662 21340 59962 169961
Sn 1 2 5 14 40 116 341 1010 3009 9012 27087 81658 246841 747728

Next we discuss how to use Table 2 to derive a lower bound. Consider an
array of length n, for n sufficiently large. Without loss of generality, we assume
that a parameter β ≥ 1 divides n − 2 and that n−2

β is odd. Let Di denote

the i-th odd block, and Ei denote the i-th even block. Locations A[1] and A[n]
are assigned values n − 1 and n, respectively. Odd block Di is assigned values
[(i − 1)β + 1, iβ], and can be arranged in one of Rβ configurations, to form an
instance of the RNNLV problem. Suppose there are ∆ odd blocks. Even block
Ei will be assigned values from [(∆+ i− 1)β+ 1, (∆+ i)β], and arranged in one
of the Sβ configurations of the NNLV problem.

Our claim is that each even (resp. odd) block can be assigned any of the Sβ
(resp. Rβ) possible configurations, without interference from other blocks. To
see this, consider that for each even block we have assigned values so that—with
the exception of the maximum element—the nearest larger value to all elements
must be within the same block. This follows since the adjacent odd blocks contain
strictly smaller values than those in any even block. Moreover, for odd blocks,
the values immediately to the left and right of the block are strictly larger than
any values in the block. Thus, we can force the global solution to the NNLV

problem on the entire array into at least (SβRβ)
n−2
2β distinct structures. This

implies that lgSn is at least (n−2)
2β lg(SβRβ): selecting β = 14 yields the lower

bound of Theorem 2.

6 Conclusions

We have introduced the encoding NNLV problem, and have noted its combina-
torial richness. Using a novel path-compressed representation of Cartesian trees,
we gave a space-efficient NNLV encoding that supports queries in O(1) time.
Determining the effective entropy of NNLV, and to consider the other NNLV
variants, is an open problem, as is extending the path-compressed Cartesian

10

tree representation of Section 4.1 to general binary trees. Finding ways to apply
NNLV encodings to compressed suffix trees, as Fischer [6] did for his bidirectional
NLV encoding, would also be interesting.

References

1. Asano, T., Bereg, S., Kirkpatrick, D.G.: Finding nearest larger neighbors. In:
Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms, Essays Dedicated to
Kurt Mehlhorn on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 5760, pp. 249–260. Springer (2009), http://dx.doi.org/10.1007/

978-3-642-03456-5_17

2. Asano, T., Kirkpatrick, D.G.: Time-space tradeoffs for all-nearest-larger-neighbors
problems. In: Dehne, F., Solis-Oba, R., Sack, J. (eds.) Algorithms and Data Struc-
tures - 13th International Symposium, WADS 2013, London, ON, Canada, August
12-14, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8037, pp. 61–72.
Springer (2013), http://dx.doi.org/10.1007/978-3-642-40104-6_6

3. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algo-
rithms based on finding all nearest smaller values. J. Algorithms 14(3), 344–370
(1993), http://dx.doi.org/10.1006/jagm.1993.1018

4. Davoodi, P., Navarro, G., Raman, R., Rao, S.: Encoding range minima and top-2
queries. Phil. Trans. R. Soc. A 372(2016), 1471–2962 (2014)

5. Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various fam-
ilies of trees. Algorithmica 68(1), 16–40 (2014), http://dx.doi.org/10.1007/

s00453-012-9664-0

6. Fischer, J.: Combined data structure for previous- and next-smaller-values. Theor.
Comput. Sci. 412(22), 2451–2456 (2011), http://dx.doi.org/10.1016/j.tcs.

2011.01.036

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

8. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)

9. Golin, M.J., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2d range
maximum queries. In: ISAAC. pp. 180–189 (2011)

10. Jayapaul, V., Jo, S., Raman, V., Satti, S.R.: Space efficient data structures for
nearest larger neighbor. In: Proc. IWOCA 2014 (2014), to appear.

11. Jo, S., Raman, R., Satti, S.R.: Compact encodings and indexes for the near-
est larger neighbor problem. In: Rahman, M.S., Tomita, E. (eds.) WALCOM:
Algorithms and Computation - 9th International Workshop, WALCOM 2015,
Dhaka, Bangladesh, February 26-28, 2015. Proceedings. Lecture Notes in Com-
puter Science, vol. 8973, pp. 53–64. Springer (2015), http://dx.doi.org/10.1007/
978-3-319-15612-5_6

11

http://dx.doi.org/10.1007/978-3-642-03456-5_17
http://dx.doi.org/10.1007/978-3-642-03456-5_17
http://dx.doi.org/10.1007/978-3-642-40104-6_6
http://dx.doi.org/10.1006/jagm.1993.1018
http://dx.doi.org/10.1007/s00453-012-9664-0
http://dx.doi.org/10.1007/s00453-012-9664-0
http://dx.doi.org/10.1016/j.tcs.2011.01.036
http://dx.doi.org/10.1016/j.tcs.2011.01.036
http://dx.doi.org/10.1007/978-3-319-15612-5_6
http://dx.doi.org/10.1007/978-3-319-15612-5_6

	Encoding Nearest Larger Values
	Introduction
	Cartesian Tree Review
	A Path Compressed Tree Representation
	Encoding Nearest Larger Values
	Supporting Queries

	Lower Bound
	Conclusions

